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  Abstract:  The main purpose of this paper is to use the idea of finding the unlimited 

integration of the product of powers of the (sinz) and (cosz)-functions, and the product of 

powers of the (tanz) and (secz)-functions to derive tow trigonometrically  identities. 
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§1.INTRODUCTION 

        This paper is inspired and motivation by the work of [1].The theory of functions  of 

complex variable , also called for brevity complex  variables or complex analysis , is one of 

the most beautiful as well as useful branches of mathematics. Although originating in an 

atmosphere of mystery, suspicion  and distrust ,as evidenced by the terms "imaginary" and 

"complex" present  in the literature, it was finally placed on a sound foundation in the 19 th  

century through the efforts of Cauchy, Riemann, Weierstrass, Gauss and other great  

mathematicians. Today the subject  is recognized as  an essential part of the mathematical 

background of  engineers, Physicists, mathematicians and other scientists. From the 

theoretical  view –point this is because many mathematical concepts become clarified and 

unified when examined in the light of complex variable theory. From the applied viewpoint 

the theory is of tremendous  value in the solution of problems of heat flow, potential theory , 

fluid mechanics, electromagnetic theory, aerodynamics, elasticity and many other field of 

science and  engineering. Many authors  doing in complex  variables and gave some results 

about that [see (2),(3),(4)]. A. D. Sinder [5] proved that , if the complex –valued function f(t) 

is continuous on [a,b] and F′(t)=f(t) for all t in [a,b],then                                                            
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 Murray R.Spiege [6]proved that, the integration of F(z)G(z) 

is equal to F(z)G(z)- 

Where  F(z) and  G(z) are complex  variable functions . Ruel  V. Churchill , James W. Brown 

and Roger F. Verhey  [7] proved  that   

Whenever the path of integrations  is a contour.                       

From  our we know study the integration of the trigonometric function (sinz cosz dz). 

The solution of  above integration we can find by substituting y=sin z  to obtain that. 

 

+c1 

If we use the substituting y=cos z , we obtain +c2 

It is clear from that the difference between these  tow answers is constant number this implies 

to . 

sin  z+cos  z=c  , 

where c is constant number and by substituting z=0 in the above  equation we get. 

sin  z+cos  z=1. 

In our  paper we shall is to use the idea of finding the unlimited integration of the product of 

powers of the (sin z) and (cos z)-functions, and the product of powers of the (tan z) and (sec 

z)-functions. 

 §2.THE MAIN RESULTS: 

Theorem 2.1:For all complex values of z , the following 

=  

Will be true where n,m are positive integers. 
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Proof: We consider the following integration 

z cos z dz 

By writing this integration by the  following 

z cos z cosz  dz 

= z (1-sin  

By using the substituting  y=sin z, we get 

 

And by using  Binomial  formula  we get 

  y dy 

=   dy 

= dy 

= +c1 

=  c1 

By same method we can find    z cos z dz 

By writing this integration by the  following 

 cos z sin z  dz 

Using  the substituting  y=cos z, for obtain 
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And by using  Binomial  formula  we get 

-   y dy 

=   dy 

= dy 

= +c2 

=  c2 

But the difference between tow answers  is constant number, this implies to 

+ =c(n,m) 

And by choose  z=0 ,we get 

C(n, m)=  

We assume that  x=m+1,which implies 

=  

Thus   c(n, m)=  

By same method in the proof of Theorem(2.1)we can prove the following theorem 

Theorem2.2: For all complex values of z , the following 
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  , will be true  where n, m are positive integers 

 

Proof: We consider the following integration 

 

 

We take   y=tan z  and   y=sec z, so it easy to complete  our prove by same method in 

Theorem(2.1). 

 

We closed our paper by the following corollaries after depended on some fundamental  

relations of exponential and  trigonometric  functions. 

 

Corollary 2.3: For all complex values of z, the following 

=  

Will be true where n, m are positive integers 

 

Corollary 2.4: For all complex values of z, the following 

=  

Will be true where n , m are positive integers 
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