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1. Introduction:

In 1996, Dontchev introduced contra-continuous functions. C. W. Baker defined
Subcontra-continuous functions in 1998 and almost contra -continuous functions in 2006.
J. Dontchev and T. Noiri introduced Contra-semicontinuous functions in 1999. S. Jafari
and T. Noiri defined Contra-super-continuous functions in 1999; Contra-a-continuous
functions in 2001 and contra-precontinuous functions in 2002. M. Caldas and S. Jafari
studied Some Properties of Contra-f—Continuous Functions in 2001. T. Noiri and V. Popa
studied unified theory of contra-continuity in 2002, Some properties of almost contra-
precontinuity in 2005 and unified theory of almost contra-continuity in 2008. E. Ekici
introduced almost contra-precontinuous functions in 2004 and studied another form of
contra-continuity in 2006. A.A. Nasef studied some properties of contra-y-continuous
functions in 2005. M.K.R.S. Veera Kumar introduced Contra-Pre-Semi-Continuous
Functions in 2005. During 2007, N. Rajesh studied total o—Continuity, Strong c-
Continuity and almost contra @-Continuity. Recently Ahmad Al-Omari and Mohd. Salmi
Md. Noorani studied Some Properties of Contra-b-Continuous and almost contra-b-
Continuous Functions in 2009 and Jamal M. Mustafa introduced almost contra Semi-I-

Continuous functions in 2010. Inspired with these developments, we introduce almost
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contra vg-continuous function, obtain its basic properties, preservation theorems and

relationship with other types of functions are verified.

2. Preliminaries:

Definition 2.1: Ac X is called

(i) regular open[pre-open; semi-open; o-open; B-open] if A = int(c/(A))[Ac int(cl(A); Ac
cl(int(A)); Ac int(cl(int(A))); Ac cl(int(cl(A))].

(i1) v-open[ra-open] if 3 a regular open set O such that Oc Ac ¢l (O)[Oc Ac acl(O)]
(iii)semi-0-open if it is the union of semi-regular sets and its complement is semi-0-closed.
(iv) g-closed[rg-closed; gr-closed] if cl(A)cU whenever AcU and U is open[r-open; open]
in X.

(v) sg-closed[gs-closed] if scl(A)cU whenever AcU and U is semi-open[open] in X.

(vi) pg-closed[gp-closed; gpr-closed] if pcl(A)cU whenever AcU and U is pre-open[open;
r-open] in X.

(vii)ag-closed[ga-closed;rga-closed] if acl(A)cU whenever AcU and U is a—open[open;
ra—open] in X.

(viii)vg-closed if vel(A)cU whenever AcU and U is v—open in X.

(ix) vg-dense in X if vgcl(A) = X.

(x) The vg-frontier of A is defined by vgFr(A) = vgcl(A)-vgcl(X-A) = vgcl(A)-vgint(A).

(x1) B-closed[0-semi-closed] if A = Clg(A) = {xeX:cl(V)NA = ¢; for every Vet}[A =
sClg(A) = {xeX:cl(V)NA # ¢; for every VeSO(X, x)}] and complement of 6-closed[6-

semi-closed] set is 8-open[0-semi-open].Clg(A)[sClg(A)] is O-closure[0-semi-closure] of A.

It is shown that Clg(V) = cl(V) for every Vet and Cly(S) is closed in X for every Sc X.

Definition 2.2: A filter base A is said to be v-convergent (resp. rc-convergent) to a point x

in X if for any UevO(X, x)(resp. UeRC(X, x)), 3 a BeA such that Bc U.

Definition 2.3: A function > X — Y is called
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(i) almost-contra-[resp: almost-contra-semi-; almost-contra-pre-; almost-contra-nearly-;
almost-contra-a-; almost-contra-f—; almost-contra- ro—; almost-contra-m—; almost-contra-
pre-semi-; almost contra-A—]continuous if inverse image of every regular open set in Y is
closed[resp: semi-closed; pre-closed; regular-closed; a—closed; B—closed; ro—closed;
o—closed; pre-semi-closed; A—closed] in X.

(i) regular set-connected if inverse image of every regular open set is clopen.

(iii) perfectly continuous inverse image of every open set V is clopen.

(iv)almost s-continuous if for each xe X and each Ve SO(Y) with f{x) € V, 3 an open set
U in X containing x such that {U) < scl(V).

(v) (p, s)-continuous(resp. (0, s)-continuous) if for each xe X and each Ve SO(Y, {(x)), 3
Ue PO(X, x) (resp. Uet containing x) such that AU) < CI(V).

(vi) weakly continuous if for each xe X and each open set Veo(Y), f(x)), 3 an open set U
of X containing x such that {U) c c/(V).

(vii) (8, s)-continuous iff for each O-semi-open set V of Y, £~ '(V) is open in X.

(viii)M-vg-open if the image of each vg-open set of X is vg-open in Y.

Definition 2.4: A graph G(f) of a function f'is said to be vg-regular if for each (x, y) in
(XxY) — G(f), 3 UevGC(X, x) and VeRO(Y, y) such that (UxV)\ G(f) = ¢.

Lemma 2.1: The following properties are equivalent for a graph G(f) of a function:
(1) G() is vg—regular;
(2) for each (x, y)e(XxY)—G(f), I UevGC(X, x) and VeRO(Y, y) such that {U)NV = ¢.

Lemma 2.2: If V is an regular-open set, then sClg(V ) = sCI(V) = Int(CI(V))
Lemma 2.3: For VY, the following properties hold:
(1) acl(V) = cl(V) for every VeBO(Y),

(2) vel(V) = cl(V) for every VeSO(Y),
(3) sclV = int(cl(V)) for every VeRO(Y).
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3. Almost contra vg-Continuous Functions:
Definition 3.1: A function f'is said to be Almost contra vg-continuous if the inverse image

of every regular open set is vg-closed.

Note 1: Here onwards we call Almost contra vg-continuous as al.c.vg.c., briefly.

Theorem 3.1: (i) fis al.c.vg.c. iff fis al.c.vg.c. at each xe X.
(i) fis al.c.vg.c. iff £ (U)evGO(X) whenever UesRC(Y).
(iii) If fis c.vg.c., then f'is al.c.vg.c. Converse is true if X is discrete space.

(iv) If fis al.c.vg.c. and AeRO(X), then f/, is al.c.vg.c.

Theorem 3.2: fis al.c.vg.c. iff V xeX and VeRGO(Y f(x))[resp: UyevGO(Y, fix))], 3
UevGO(X, x) s.t., AU) < V[resp: AA)  Uy].

Proof: Let UyeRO(Y) and let xef™(Uy). Then fix)eUy and 3 A,evGO(X, x) and f{A,)
Uy. Then xe A, /™ '(Uy) and £~ (Uy) = U A,. Hence /™ '(Uy) evGO(X).

Example 1: X =Y = {a, b, c}; 1 = {¢, {a}, {b}, {a, b}, X} and & = {9, {a}, {b, c}, Y}.
Then (i) the identity function f on X is al.c.vg.c., al.c.gs.c alc.fg.c., but not al.c.g.c.,
al.c.sg.c., al.c.pg.c., al.c.gp.c., al.c.rg.c; al.c.gr.c., al.c.gpr.c., alc.rpg.c, al.c.ag.c., al.c.ga.c.,
al.c.rga.c.

(ii) f defined by f{a) = c; f(b) = a; f{c) = b is al.c.vg.c., but not al.c.gs.c alc.pg.c.,

Example 2: X =Y = {a, b, ¢, d}: t= {0, {a}, {b}, {d}, {a, b}, {a,d}, {b,d}, {a, b, c}, {a,
b, d}, X} = . Then (i) fdefined by f(a) = b; f(b) = ¢; f{c) = d; f(d) = ais al.c.sg.c., al.c.gs.c.,
and al.c.gpr.c., but not al.c.vg.c; al.c.g.c., al.c.sg.c., al.c.pg.c., al.c.gp.c., al.c.rg.c; al.c.gr.c.,
alc.rpg.c, al.c.ag.c., al.c.ga.c., and al.c.rgo.c.

(i1) the identity function f'is al.c.sg.c., al.c.gs.c., and al.c.gpr.c., but not al.c.vg.c;
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(iii) f'defined by f{a) = b; fib) = a; f(c) = d; fid) = c is al.c.sg.c., al.c.gs.c., and al.c.gpr.c., but
not al.c.vg.c; al.c.g.c., al.c.sg.c., al.c.pg.c., al.c.gp.c., al.c.rg.c; al.c.gr.c., alc.rpg.c, al.c.ag.c.,

al.c.ga.c., and al.c.rgo.c.

under usual topology on R both al.c.g.c and al.c.rg.c. as well al.c.sg.c. and al.c.vg.c. are

same.

Theorem 3.3: Let fi: X; > Y; be al.c.vg.c. fori=1, 2. Let £ X;x X; = Y x Y, be defined
as follows: f(x,, X2) = (fi(X1), f2(x2)). Then f: X;x X, — Y x Y, is al.c.vg.c.

Theorem 3.4: Let 1:X—>XxX, be al.c.vg.c., where h(x) = (h(X), hy(X)). Then h:X—>X; is

al.cvg.c. fori=1, 2.

In general we have the following extension of theorems 3.3 and 3.4:

Theorem 3.5: (i) £ T1X;,— I1Y; is al.c.vg.c, iff f;: X;— Y, is al.c.vg.c for each Ae A.
(1)If £:X—>ITY,, is al.c.vg.c, then P, of: XY, is al.c.vg.c for every AeA; P;:I1Y; onto Y;.

Note 2: With respect to usual topology on R, open sets and regular open sets are one and

the same. So converse of theorem 3.5 is not true in general, as shown by.

Example 3: Let X = X; = X, =[0, 1]. Let fi: X— X, and f;: X— X, are defined as follows:
fix)=1if0<x<12and fi(x)=0if 1/2<x< 1. H(x)=11if 0 <x < 1/2 and fp(x) =0 if 1/2
<x < 1. Then fi: X—X; is clearly al.c.vg.c. fori =1, 2., but A(x) = (fi(x)), /2(X2)): X—>XxX,
is not al.c.vg.c., for S; (1, 0)eRO(X;xX>), but A7(S;5(1, 0)) = {1/2} 2vGO(X).

Remark 1: In general, (i) al.c.vg.c. function of al.c.vg.c. function is not al.c.vg.c.
(i1) The algebraic sum; product and composition of two al.c.vg.c. functions is not al.c.vg.c.

However the scalar multiple of al.c.vg.c. function is al.c.vg.c.
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(iii)The pointwise limit of a sequence of al.c.vg.c. functions is not al.c.vg.c. as shown by

the following examples.

Example 4: Let X = X, =X, = [0, 1]. Let f;:X—X, and f,:X—X, are defined as follows:
fix)=xif0<x<1/2and fi(x)=0if 1/2 <x<1; f(x) =0if 0 <x < 1/2 and fr(x) = 1 if 1/2

<x < 1. Then their product is not al.c.vg.c.

Example 5: Let X =Y = [0, 1]. Let £,:X—>Y is defined as follows: f,(x) = x, for n > 1 then
f: X—> Y is the limit of the sequence where f{x) = 0if 0 <x <1 and fx) =1ifx = 1.
Therefore fis not al.c.vg.c. For (1/2, 11evGO(Y), £~ '((1/2, 1]) = (1) 2vGO(X).

However we can prove the following theorem.

Theorem 3.6: Uniform Limit of a sequence of al.c.vg.c. functions is al.c.vg.c.
Problem: (i) Are sup{f, g} and inf{f, g} are al.c.vg.c iff, g are al.c.vg.c

(i) Is Cyrovgo(X, R), the set of all al.c.vg.c functions,

(1) a Group. (2) a Ring. (3) a Vector space. (4) a Lattice.

Example 6: Let X =Y = [0, 1]. Let - X— Y be defined as follows: fix)=1if0 <x <1/2

and f(x) = 0 if 1/2 <x < 1. Then obviously f'is al.c.vg.c. but not r-continuous.

Example 7: Let X =Y = {a, b, ¢}; 1= {9, {a}, {b}, {a, b}, X} and o = {¢, {a}, {b}, {a, b},

{a, ¢}, X}. The identity map f'is al.c.s.c., and al.c.vg.c. but not al.c.c., and r-irresolute.
Example 8: Let X =Y = {a, b, c}; 1= {9, {b}, {a, b}, {b, c}, X} and o = {0, {a}, {b}, {a,

b}, {a, c}, X}. fdefined as f{a) = f{b) = b; flc) = c is al.c.s.c., and al.c.c., but not al.c.vg.c.,

and r-irresolute.
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Remark 2: We have the following implication diagram for a function f

and reverse implication is true if vg-open sets are r-open.

al.c.gc alcgs.c

AN 0
al.c.rga.c — al.c.rg.c —» al.c.vg.c « al.c.sg.c < al.c.pg.c
0 0 0 0 0

al.cra.c - — —al.cv.c

al.crc. »alcnc —»alcc — alc.o.c—alcs.c— alcp.c

A 2 2
al.c.ng.c al.c.p.c— al.c.w.c.— al.c.go.c
{ {

al.c.gp.c « al.c.pg.c al.crm.c

Theorem 3.7: (i) If fis al.c.vg.c. [al.c.rg.c.] and g is r-irresolute then gef'is al.c.vg.c.

(i)If fis c.vg.c.[al.c.vg.c.] gis al.g.c.[al.rg.c.] and Y is T ,[rT,),], then gef'is al.c.vg.c.

(iii) If f'is al.c.vg.c.;[resp: vg.c.;] g is al.g.c.[al.rg.c.] and every g-open set[rg-open] in Y is
r-open, then gefis al.c.vg.c.

(iv) If fis vg-irresolute and g is al.c.vg.c.[al.c.g.c], then gefis al.c.vg.c.

(v) If fisal.c.vg.c. and g is al.c.,[resp: nearly continuous] then gef'is al.c.vg.c.

(vi)If fis c.vg.c.[al.c.rg.c.] g is al.c.g.c[al.c.rg.c] and Y is T+[rT:.], then gef'is al.c.vg.c.

Theorem 3.8: (i) If f'is vg-irresolute, vg-open and vGO(X) = t and g be a function, then gef
is al.c.vg.c iff g is al.c.vg.c.
(ii) If f'is vg-irresolute, vg-open[al-vg-open; M-vg-open] and bijective, g is a function. Then

g isal.c.vg.c. iff gof'is al.c.vg.c.
Corollary 3.1: (i) If fis c.c.[c.r.c.], g is al.c.,[r-irresolute], then gef'is al.c.vg.c.

(i) If fis c.c.[c.r.c.], g isal.g.c.,[al.rg.c.,] and Y is T{rTw}, then gef’is al.c.vg.c.
(ii)If fbe r-open, al.c.vg.c. and g be al.c.vg.c., then gef'is al.c.vg.c.
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Theorem 3.9: Let X, Y, Z be spaces and every vg-open set is r-open in Y, then the

composition of two al.c.vg.c. maps is al.c.vg.c.

Note 3: Pasting Lemma is not true with respect to al.c.vg.c. functions. However we have

the following weaker versions.

Theorem 3.10: Pasting Lemma: Let X; Y be such that X = AUB. Let f/, and gp are
al.c.vg.c.[resp: r-irresolute] such that f(x) = g(x) for every xe AnB. If A, BeRO(X) and
vGO(X)[resp: RO(X)] is closed under finite unions, then the combination o:X—Y is

al.c.vg.c.

Theorem 3.11: The following statements are equivalent for a function f-

(1) fis al.c.vg.c.;

(2) /™ '(F) evGO(X) for every Fe RC(Y);

(3) for each xe X and each FeRC(Y f(x)), 3 UevGO(X, x) such that fU) c F;

(4) for each xeX and each FeRO(Y) non-containing f{x), 3 KevGC(X) non-containing x
such that 1~ '(V) cK;

(5) £~ (int(cl(G))= vGC(X) for every regular open subset G of Y

(6) £~ '(cl(int(F)))= vGO(X) for every regular closed subset F of Y.

Example 9: Let X = {a, b, ¢}, t= {9, {a}, {b}, {a, b}, {a, ¢}.X} and 5 = {¢, {b}, {c}, {b,
¢},X}. Then the identity function f'on X is al.c.vg.c., but it is not regular set-connected.

Example 10: Let X = {a, b, ¢}, T = {¢, {a}, {a, b}, {a, c},X} and c = {¢, {a}, {a,
b},X}.Then the identity function f'on X is al.c.vg.c. which is not c.vg.c.

Remark 3: Every restriction of an al.c.vg.c. function is not necessarily al.c.vg.c.
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Theorem 3.12: Let f'be a function and £ = {U,: a.€l} be a vg-cover of X. If for each ael,
fua 1s al.c.vg.c., then fis an al.c.vg.c.

Proof: Let FeRC(Y). fiu, is al.c.vg.c. for each ael, f‘Uo[l(F)evGO‘Ua. Since U,evGO(X),
fiu (F)evGO(X) for each acel. Then f™'(F) = Uyeifive ' (F)evGO(X). Thus fis al.c.vg.c.

Theorem 3.13: Let f'be a function and xeX. If 3 UevGO(U, x) [resp: UeRO(X, x)] and
fuis al.c.vg.c. at x, then fis al.c.vg.c. at x.

Proof: Let FeRC(Y f(x)). Since fy is al.c.vg.c. at x, 3 VevGO(U, x) such that V) =
(fu)(V) c F. Since UeRO(X, x), it follows that VevGO(X, x). Hence fis al.c.vg.c. at x.

Theorem 3.14: Let g:X—>XxY be the graph function of f, defined by g(x) = (x, f(x)) for
every xe X. If g is al.c.vg.c., then f'is al.c.vg.c.

Proof: Let VeRC(Y), then XxV = Xxcl(int(V)) = cl(int(X))xcl(int(V)) = cl(int(XxV))e
RC(XxY). Since g is al.c.vg.c., then /™ '(V) = g "' (XxV)evGC(X). Thus, fis al.c.vg.c.

Theorem 3.15: For f'and g. The following properties hold:
(1) If fis al.c.vg.c.[c.vg.c.] and g is regular set-connected, then ge f'is al.c.vg.c.

(2) If fis al.c.vg.c. and g is perfectly continuous, then ge fis vg.c. and c.vg.c.

Theorem 3.16: If /'is a surjective M-vg-open[resp:M-vg-closed] and g is a function such

that ge f'is al.c.vg.c., then g is al.c.vg.c.

Theorem 3.17: If f'is al.c.vg.c., then for each point xe X and each filter base A in X vg-

converging to x, the filter base f{A) is rc-convergent to f{(x).

Definition 3.2: A function f is called (vg, s)-continuous if for each xe X and each Ve

SO(Y, f(x)), 3 Ue vGO(X, x) such that AU) < c/(V).

Theorem 3.18: For £, the following properties are equivalent:
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(1) fis (vg, s)-continuous;

(2) fis al.c.vg.c.;

(3) f (V) is vg-open in X for each 0-semi-open set V of Y;
(4) f~'(F) is vg-closed in X for each 0-semi-closed set F of Y.

Theorem 3.17: The following are equivalent:

(1) fis al.c.vg.c.;

(2) /7 (cl(V)) is vg-open in X for every VeBO(Y);

(3) f7(cl(V) ) is vg-open in X for every Ve SO(Y);
(4) f(int(cl(V))) is vg-closed in X for every VeRO(Y).

Corollary 3.2: For f, the following are equivalent:
(1) fis al.c.vg.c.;

(2) f(acl(V)) is vg-open in X for every VeBO(Y);
(3) f(vel(V)) is vg-open in X for every VeSO(Y);
(4) f(scl(V)) is vg-closed in X for every VeRO(Y).

Proof: This is an immediate consequence of Theorem 3.17 and Lemma 2.3.

Remark 4: al.vg.c. and al.c.vg.c. are independent of each other.

Theorem 3.18: For f, the following properties are equivalent:
(1) fis al.c.vg.c.;

(2) fivg(cl A)) < sClyg(f(A)) for every subset A of X;

(3) vgel{(f '(B))} < f~(sClg(B)) for every subset B of Y.

4. The preservation theorems:

Theorem 4.1: (i) If f is al.c.vg.c.[resp: al.c.rg.c] surjection and X is vg-compact[vg-
lindeloff],then Y is nearly closed compact[nearly closed lindeloff].

(i) If fis al.c.vg.c., surjection and X is vg-compact[vg-lindeloff] then Y is mildly closed
compact[mildly closed lindeloff].
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Theorem 4.2: If fis al.c.vg.c.[al.c.rg.c.], surjection and

(1) X is locally vg-compact[locally vg-lindeloff], then Y 1is locally nearly closed
compact[resp:locally mildly compact; locally nearly closed Lindeloff; locally mildly
lindeloff].

(i1) If f'is al.c.vg.c., surjection and X is s-closed then Y is mildly compact[mildly lindelofft].
(ii1)X is vg-compact[resp: countably vg-compact] then Y is S-closed[resp: countably S-
closed].

(iv) X is vg-Lindelof, then Y is S-Lindelof and nearly Lindelof.

Theorem 4.3: If fis an al.c.vg.c. and al.c., surjection and X is mildly compact (resp.
mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly

countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Theorem 4.4: (i) If fis al.c.vg.c.[contra vg-irreolute] surjection and X is vg-connected, then
Y is connected|[vg-connected]

(ii) If X is vg-ultra-connected and f'is al.c.vg.c. and surjective, then Y is hyperconnected.
(iii) The inverse image of a disconnected[vg-disconnected] space under al.c.vg.c.,[contra

vg-irreolute] surjection is vg-disconnected.

Theorem 4.5: If fis al.c.vg.c., injection and

(1) Y is UT[resp: UC;; UD;], then X is vg;[resp:vg C;; vg D;]1=0,1,2.
(i1) Y is UR;, then X is vgR; i =0, 1.

(ii1)Y is weakly Hausdorff[resp: rT,], then X is vg;[vg;; 1=0,1,2.]

(iv) If fis closed, Y is UT;, then X is vg; 1= 3, 4.

Theorem 4.6: (i) If fis al.c.vg.c.[resp: al.c.g.c.; al.c.sg.c.; al.c.rg.c] and Y is UT,,

(a) then the graph G(f) of fis vg-closed in XxY.
(b) then A = {(x, X3)| fAx1) =f(x2)} is vg-closed in XxY.
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(i) If fis al.c.rg.c.[al.c.g.c.]; g is c.vg.c., and Y is UT,, then E = {xeX: f(x) = g(x)} is vg-

closed in X.

5. Relations to weak forms of continuity:
Definition 5.1: A function f'is said to be faintly vg-continuous if for each xe X and each 6-

open set V of Y containing f{x), 3 UevGO(X, x) such that AU) c V.

Example 11: Let X = {a, b, ¢}, 1= {¢, {a, b}, X} and & = {¢, {a}, {b, ¢}, X}. Then, the

identity function f'is al.c.vg.c but it is not weakly continuous.

Example 12: Let X = {a, b, ¢}, 1= {9, {a}, {a, b}, {a, ¢}, X} and & = {9, {a}, {a, b}, X}.

Then, the identity function f'is (0, s)-continuous and al.c.vg.c.

Example 13: Let R be the reals with the usual topology and f- R — R the identity

function. Then fis continuous, weakly continuous, al.c.p.c., and al.c.vg.c.

Example 14: Let X = {a, b, c}, T = {¢, {a}, {b}, {a, b}, {a, c}, X} and o = {9, {b}, {c},

{b, ¢}, X}. Then, the identity function on X is c.c., c.s.c., and al.c.vg.c.
Corollary 5.1: If fis M-vg-open and c.vg.c., then fis al.c.vg.c.
Lemma 5.1: For f, the following properties are equivalent:

(1) fis faintly-vg-continuous;

() £~ (V)evGO(X) for every 0-open set V of Y;

(3) /' (K)evGC(X) for every O-closed set K of Y.

Theorem 5.1: If for each x; # x,€ X, 3 fof X into a Urysohn space Y such that f{x,) #
f(xy) and fis al.c.vg.c., at X; and X,, then X is vg>.
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Proof: For x; # x,, 3 Vie(o,/(x))) s.t., Ncl(V;) = ¢ for i = 1,2. For f'is al.c.vg.c., at x;, 3
U;ievGO(X, x)) s.t., AUpccl(V;) fori=1, 2., and NU; = ¢. Hence X is vg,.

Corollary 5.2: If fis al.c.vg.c. injection and Y is Urysohn, then X is vg,.

Theorem 5.2: {xe X: f'is not al.c.vg.c.} is identical with the union of the vg-frontier of the
inverse images of regular closed sets of Y containing f{x).

Proof: If fis not al.c.vg.c. at xeX. By Theorem 3.11, 3 FeRC(Y, f(x)) s.t., AU)N(Y -F) #
¢ for every UevGO(X, x). Then xe vgel(f” (Y -F)) = vgcl(X - £ '(F)). On the other hand,
we get xe f~'(F) < vgel{(f" '(F))} and hence xe vg Fr(f"'(F)).

Conversely, If fis al.c.vg.c. at x and Fe RO(Y, fx)), 3 UevGO(X, x) s.t xeUcf™ '(F).
Hence x evgint(f~'(F)), which contradicts xevgFr(f” '(F)). Thus fis not al.c.vg.c.

Theorem 5.3: Let Y be E.D. Then, fis al.c.vg.c. iff it is al.vg.c..

Definition 5.2: A function f'is said to have a strongly contra-vg-closed graph if for each (x,

y)e(XxY) - g(f) 3 UevGO(X, x) and VeRC(Y,y) such that (UxV)n{g()} = ¢.

Lemma 5.2: f'has a strongly contra-vg-closed graph iff for each (x, y) € (Xx Y) - g(f) 3
UevGO(X, x) and Ve RC(Y,y) such that AU)NV = ¢.

Theorem 5.4: If fis al.c.vg.c. and Y is Hausdorff, then g(f) is strongly contra-vg-closed.

Theorem 5.5: If fis injective al.c.vg.c. with strongly contra-vg-closed graph, then X is vg,.
Proof: Let x # ye X. Since f'is injective, we have f{x) # f(y) and (x, fy)) € (Xx Y) - g(f).
Since g(f) is strongly contra-vg-closed, by Lemma 5.2 3 UevGO(X, x) and VeRC(Y, Ay))
such that f{U)NV = ¢. Since f'is al.c.vg.c., by Theorem 3.11, 3 GevGO(X, y) such that
AG)cV. Therefore AU)NAG) = ¢; hence UNG = ¢. Thus X is vg».
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Corollary 5.3: If fis al.c.vg.c. and Y is Urysohn, then g(f) is strongly contra-vg-closed and

contra-vg-closed.

CONCLUSION: In this paper we defined Almost contra vg-continuous functions, studied

its properties and their interrelations with other types of such functions.
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