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Abstract. The purpose of this paper is to study the strong convergence of a hybrid
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variational inequalities for α-inverse- strongly monotone mapping and relaxed (c,d)-
cocoercive mapping, the set of solutions of a mixed equilibrium problem and the set
of common fixed points of a finite family of nonexpansive mappings in a real Hilbert
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sets under some control conditions. Our results extend recent results announced by
many others.
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1 Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and C be a nonempty
closed convex subset of H. Recall that T : C → C is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖,
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for all x, y ∈ C. The fixed point set of T is denoted by F (T ) := {x ∈ C : Tx = x}.
Let A : C → H be a nonlinear mapping. Then A is called

(i) monotone, if
〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C;

(ii) α-strongly monotone, if there exists a positive real number α > 0 such that
〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C;

(iii) L-Lipschitz continuous (or Lipschitzian), if there exists a constant L ≥ 0 such
that
‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C;

(iv) α-inverse-strongly monotone, if there exists a positive real number α > 0 such
that
〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

It is obvious that every α-inverse-strongly monotone mapping A is monotone and
Lipschitz continuous. It is known that if T is a nonexpansive mapping of C into
itself, then A = I − T is 1/2-inverse strongly monotone, where I is the identity
mapping of H.

A mapping A is called relaxed c-cocoercive, if there exists a constant c > 0 such
that

〈Ax−Ay, x− y〉 ≥ (−c)‖Ax−Ay‖2, ∀x, y ∈ C.

A mapping A is called relaxed (c,d)-cocoercive, if there exist two constants c, d > 0
such that

〈Ax−Ay, x− y〉 ≥ (−c)‖Ax−Ay‖2 + d‖x− y‖2, ∀x, y ∈ C.

For c = 0, A is d-strongly monotone. This class of mappings is more general than the
class of strongly monotone mappings. As a result, we have the following implication:
d-strong monotonicity ⇒ relaxed (c, d)-cocoercivity.

For a given nonlinear operator A : C → H, we consider the following variational
inequality problem of finding x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (1.1)

The set of solutions of the variational inequality (1.1) is denoted by V I(C,A). Vari-
ational inequality theory has emerged as an important tool in studying a wide class
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of obstacle, unilateral, free, moving, equilibrium problems arising in several branches
of pure and applied sciences in a unified and general framework. The variational
inequality problem has been extensively studied and continued in the literature, see,
Piri [12], Qin et al. [13], Shehu [14], Wangkeeree and Preechasilp [19], Yao et al.
[21], Yao et al. [23] and relevant references cited therein.

Next, we focus on a general system of variational inequality problems [in short,
GSVI] which is considered by Ceng et al. [2]: find (x∗, y∗) ∈ C × C such that{

〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

(1.2)

where A,B : C → H are two nonlinear mappings, λ > 0 and µ > 0 are two
constants. In particular, if A = B, then GSVI (1.2) reduces to find (x∗, y∗) ∈ C×C
such that{

〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈µAx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

(1.3)

which is defined by Verma [17], and is called the new system of variational inequali-
ties. Further, if we add the requirement that x∗ = y∗, then problem (1.3) reduces to
the classical variational inequality V I(C,A). Ceng et al. [2] introduced and studied
a relaxed extragradient method for finding a common element of the set of solutions
of GSVI (1.2) for the α and β-inverse-strongly monotone mappings and the set of
fixed points of a nonexpansive mapping in a real Hilbert space. Some related works,
we refer to see [3, 5, 8, 9, 18, 22].

Recently, in 2012, Ceng et al. [3] considered an iterative method for the system
of GSVI (1.2) and obtained a strong convergence theorem for the two different sys-
tems of GSVI (1.2) and the set of fixed points of a strict pseudocontraction mapping
in a real Hilbert space.

Let ϕ : C → R
⋃
{+∞} be a proper extended real-valued function and F be a

bifunction from C × C to R, where R is the set of real numbers. Ceng and Yao [4]
considered the following mixed equilibrium problem (in short, MEP):

Find x ∈ C such that F (x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.4)

The set of solution of MEP (1.4) is denoted by MEP (F,ϕ). It is easy to see that x
is a solution of MEP (1.4) implies that x ∈ domϕ = {x ∈ C | ϕ(x) < +∞}.

If ϕ = 0, then the MEP (1.4) becomes the following equilibrium problem:

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (1.5)
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The set of solution of (1.5) is denoted by EP (F ).
If F = 0, then the MEP (1.4) reduces to the convex minimization problem:

Find x ∈ C such that ϕ(y) ≥ ϕ(x), ∀y ∈ C.

If ϕ = 0 and F (x, y) = 〈Ax, y − x〉 for all x, y ∈ C, where A is a mapping
from C into H, then MEP (1.4) reduces to the classical variational inequality and
EP (F ) = V I(C,A). For solving problem MEP (1.4), Ceng and Yao [4] introduced
a hybrid iterative scheme for finding a common element of the set MEP (F,ϕ) and
the set of common fixed points of finite many nonexpansive mappings in a Hilbert
space. Some related works, we refer to see [8, 14, 18, 21].

Recently, in 2012, Kumam and Katchang [9] introduced an iterative algorithm
for finding a common element of the set of solutions of a system of mixed equilibrium
problems, the set of solutions of a general system of variational inequalities for
Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed
points for nonexpansive semigroups and the set of common fixed points for an infinite
family of strictly pseudocontractive mappings in Hilbert spaces.

Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into itself. In
1999, Atsushiba and Takahashi [1] defined the mapping Wn as follows:

Un,1 = λn,1T1 + (1− λn,1)I,

Un,2 = λn,2T2Un,1 + (1− λn,2)I,

Un,3 = λn,3T3Un,2 + (1− λn,3)I,
...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,

Wn = Un,N = λn,NTNUn,N−1 + (1− λn,N )I,

where {λn,i}Ni ⊆ [0, 1]. This mapping is called the W -mapping generated by T1, T2,

. . . , TN and λn,1, λn,2, . . . , λn,N . In 2000, Takahashi and Shimoji [16] proved that if
X is a strictly convex Banach space, then F (Wn) =

⋂N
i=1 F (Ti), where 0 < λn,i <

1, i = 1, 2, . . . , N.
In 2009, Kangtunyakarn and Suantai [7] introduced a new mapping called the

S-mapping. Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into
itself. For each n ∈ N, and j = 1, 2, . . . , N, let α(n)

j = (αn,j
1 , αn,j

2 , αn,j
3 ) be such that

αn,j
1 , αn,j

2 , αn,j
3 ∈ [0, 1] with αn,j

1 + αn,j
2 + αn,j

3 = 1. They defined the new mapping

4



International Journal of Mathematical Engineering and Science
ISSN : 2277-6982 Volume 1 Issue 12 (December 2012)

http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

Sn : C → C as follows:

Un,0 = I,

Un,1 = αn,1
1 T1Un,0 + αn,1

2 Un,0 + αn,1
3 I,

Un,2 = αn,2
1 T2Un,1 + αn,2

2 Un,1 + αn,2
3 I,

Un,3 = αn,3
1 T3Un,2 + αn,3

2 Un,2 + αn,3
3 I,

...

Un,N−1 = αn,N−1
1 TN−1Un,N−2 + αn,N−1

2 Un,N−2 + αn,N−1
3 I,

Sn = Un,N = αn,N
1 TNUn,N−1 + αn,N

2 Un,N−1 + αn,N
3 I.

The mapping Sn is called the S-mapping generated by T1, T2, . . . , TN and α
(n)
1 ,

α
(n)
2 , . . . , α

(n)
N . Nonexpansivity of each Ti ensures the nonexpansivity of Sn.

Motivated and inspired by Ceng et al. [2], Ceng et al. [3], Ceng and Yao [4] and
Kangtunyakarn and Suantai [7], we introduce a hybrid iterative scheme for finding
a common element of the set of solutions of GSVI (1.2) for α−inverse -strongly
monotone mapping and relaxed (c,d)-cocoercive mapping, the set of solutions of
MEP (1.4) and the set of common fixed points of a finite family of nonexpansive
mappings in a real Hilbert space. Starting with an arbitrary v ∈ C and let x1 ∈ C,
we define the sequences {xn}, {un} and {yn} by

F (un, y) + ϕ(y)− ϕ(un) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − µBun),
xn+1 = anv + bnxn + (1− an − bn)SnPC(yn − λAyn), n ≥ 1,

(1.6)

where λ > 0 and µ > 0 are two constants, {rn} ⊂ (0,∞) and {an}, {bn} ⊂ [0, 1].
Using the demi-closedness principle for nonexpansive mappings, we show that the
sequence {xn} converges strongly to a common element of those three sets under
some control conditions. Our results extend recent results announced by many
others.

2 Preliminaries

In this section, we recall the well known results and give some useful lemmas
that will be used in the next section.

Let C be a nonempty closed convex subset of a real Hilbert space H. For every
point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.
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PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H. (2.1)

Obviously, this immediately implies that

‖(x− y)− (PCx− PCy)‖2 ≤ ‖x− y‖2 − ‖PCx− PCy‖2, ∀x, y ∈ H. (2.2)

Recall that, PCx is characterized by the following properties: PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0,

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖PCx− y‖2, (2.3)

for all x ∈ H and y ∈ C; see Goebel and Kirk [6] for more details.
For solving the mixed equilibrium problem, let us give the following assumptions

for the bifunction F,ϕ and the set C:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) For each y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous;
(A4) For each x ∈ C, y 7→ F (x, y) is convex;
(A5) For each x ∈ C, y 7→ F (x, y) is lower semicontinuous;
(B1) For each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C
such that for any z ∈ C \Dx,

F (z, yx) + ϕ(yx) +
1
r
〈yx − z, z − x〉 < ϕ(z).

(B2) C is a bounded set.
In the sequel, we shall need to use the following lemmas.

Lemma 2.1. ([11]) Let C be a nonempty closed convex subset of H. Let F be a
bifunction from C × C to R satisfying (A1)-(A5) and let ϕ : C → R

⋃
{+∞} be a

proper lower semicontinuous and convex function. Assume that either (B1) or (B2)
holds. For r > 0 and x ∈ H, define a mapping Tr : H → C as follows.

Tr(x) =
{
z ∈ C : F (z, y) + ϕ(y) +

1
r
〈y − z, z − x〉 ≥ ϕ(z), ∀y ∈ C

}
for all x ∈ H. Then the following conclusions hold:
(1) For each x ∈ H, Tr(x) 6= Ø;
(2) Tr is single-valued;
(3) Tr is firmly nonexpansive, i.e. for any x, y ∈ H,

‖Tr(x)− Tr(y)‖2 ≤ 〈Trx− Try, x− y〉;
6
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(4) F (Tr) = MEP (F,ϕ);
(5) MEP (F,ϕ) is closed and convex.

Lemma 2.2. ([20]) Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(i)
∑∞

n=1 γn =∞;
(ii) lim supn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma 2.3. ([10]) Let (H, 〈., .〉) be an inner product space. Then, for all x, y, z ∈ H
and α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2

− αγ‖x− z‖2 − βγ‖y − z‖2.

Lemma 2.4. ([15]) Let {xn} and {yn} be bounded sequences in a Banach space X
and let {bn} be a sequence in [0, 1] with 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1.
Suppose xn+1 = (1 − bn)yn + bnxn for all integers n ≥ 1 and lim supn→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5. ([6]) Demi-closedness principle. Assume that T is a nonexpansive
self-mapping of a nonempty closed convex subset C of a real Hilbert space H. If T
has a fixed point, then I − T is demi-closed: that is, whenever {xn} is a sequence
in C converging weakly to some x ∈ C (for short, xn ⇀ x ∈ C), and the sequence
{(I −T )xn} converges strongly to some y (for short, (I −T )xn → y), it follows that
(I − T )x = y. Here I is the identity operator of H.

The following lemma is an immediate consequence of an inner product.

Lemma 2.6. In a real Hilbert space H, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.7. ([7]) Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C
into itself with

⋂N
i=1 F (Ti) 6= Ø and let αj = (αj

1, α
j
2, α

j
3), j = 1, 2, . . . , N , where

αj
1, α

j
2, α

j
3 ∈ [0, 1], αj

1+αj
2+αj

3 = 1, αj
1 ∈ (0, 1) for all j = 1, 2, . . . , N−1, αN

1 ∈ (0, 1]
and αj

2, α
j
3 ∈ [0, 1) for all j = 1, 2, . . . , N . Let S be the S-mapping generated by

T1, T2, . . . , TN and α1, α2, . . . , αN . Then F (S) =
⋂N

i=1 F (Ti).
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Lemma 2.8. ([7]) Let C be a nonempty closed convex subset of a Banach space X.
Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into itself and for all
n ∈ N and all j ∈ {1, 2, . . . , N}, let α(n)

j = (αn,j
1 , αn,j

2 , αn,j
3 ), αj = (αj

1, α
j
2, α

j
3) where

αn,j
1 , αn,j

2 , αn,j
3 ∈ [0, 1], αj

1, α
j
2, α

j
3 ∈ [0, 1], αn,j

1 +αn,j
2 +αn,j

3 = 1 and αj
1 +αj

2 +αj
3 = 1.

Suppose αn,j
i → αj

i as n → ∞ for all i ∈ {1, 3} and all j = 1, 2, 3, . . . , N . Let
S and Sn be the S-mappings generated by T1, T2, . . . , TN and α1, α2, . . . , αN and
T1, T2, . . . , TN and α

(n)
1 , α

(n)
2 , . . . , α

(n)
N , respectively. Then limn→∞ ‖Snx − Sx‖ = 0

for every x ∈ C.

Lemma 2.9. ([2]) For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (1.2) if and
only if x∗ is a fixed of the mapping G : C → C defined by

G(x) = PC [PC(x− µBx)− λAPC(x− µBx)], ∀x ∈ C,

where y∗ = PC(x∗ − µBx∗).

Throughout this paper, the set of fixed points of the mapping G is denoted by
GSV I(C,A,B).

3 Main Results

In this section, we prove a strong convergence theorem of the hybrid itera-
tive scheme (1.6) to a common element of the set of solutions of GSVI (1.2) for
α−inverse -strongly monotone mapping and relaxed (c,d)-cocoercive mapping, the
set of solutions of MEP (1.4) and the set of common fixed points of a finite family
of nonexpansive mappings in a real Hilbert space.

Next, we prove some lemmas which are very useful for our consideration.

Lemma 3.1. Let A : C → H be α-inverse-strongly monotone and let B : C → H

be L-Lipschitzian and relaxed (c
′
, d

′
)-cocoercive. Let the mapping G : C → C be

defined by

G(x) = PC [PC(x− µBx)− λAPC(x− µBx)], ∀x ∈ C.

If λ ∈ (0, 2α] and 0 < µ ≤ 2(d
′−c

′
L2)

L2 . Then G is nonexpansive.
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Proof. For any x, y ∈ C, we have

‖G(x)−G(y)‖ = ‖PC [PC(x− µBx)− λAPC(x− µBx)]

− PC [PC(y − µBy)− λAPC(y − µBy)]‖2

≤ ‖PC(x− µBx)− λAPC(x− µBx)

−
(
PC(y − µBy)− λAPC(y − µBy)

)
‖

= ‖(I − λA)PC(I − µB)x− (I − λA)PC(I − µB)y‖.

It is well known that if A : C → H be α-inverse-strongly monotone and B : C →
H be L-Lipschitzian and relaxed (c

′
, d

′
)-cocoercive, then I − λA and I − µB are

nonexpansive, where λ ∈ (0, 2α] and 0 < µ ≤ 2(d
′−c

′
L2)

L2 . It follows that (I −
λA)PC(I − µB) is nonexpansive, which implies that G is nonexpansive.

Theorem 3.2. Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let F be a function from C×C to R satisfying (A1)-(A5) and ϕ : C → R

⋃
{+∞}

be a proper lower semicontinuous and convex function. Let A : C → H be α-
inverse-strongly monotone mapping and let B : C → H be a L-Lipschitzian and
relaxed (c

′
, d

′
)-cocoercive mapping. Let {Ti}Ni=1 be a finite family of nonexpansive

self-mappings of C such that Ω =
⋂N

i=1 F (Ti)
⋂
GSV I(C,A,B)

⋂
MEP (F,ϕ) 6= Ø.

For all j ∈ {1, 2, . . . , N}, let α(n)
j = (αn,j

1 , αn,j
2 , αn,j

3 ) be such that αn,j
1 , αn,j

2 , αn,j
3 ∈

[0, 1], αn,j
1 + αn,j

2 + αn,j
3 = 1, {αn,j

1 }
N−1
j=1 ⊂ [η1, θ1] with 0 < η1 ≤ θ1 < 1, {αn,N

1 } ⊂
[ηN , 1] with 0 < ηN ≤ 1 and {αn,j

2 }Nj=1, {α
n,j
3 }Nj=1 ⊂ [0, θ2] with 0 ≤ θ2 < 1. Let Sn

be the S-mappings generated by T1, T2, . . . , TN and α(n)
1 , α

(n)
2 , . . . , α

(n)
N . Assume that

either (B1) or (B2) holds and that v is an arbitrary point in C. Let x1 ∈ C and
{xn}, {un}, {yn} be the sequences defined by

F (un, y) + ϕ(y)− ϕ(un) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − µBun),
xn+1 = anv + bnxn + (1− an − bn)SnPC(yn − λAyn), n ≥ 1,

where λ ∈ (0, 2α) and 0 < µ < 2(d
′−c

′
L2)

L2 . Suppose that the following conditions
hold:

(C1) limn→∞ an = 0 and
∑∞

n=1 an =∞;
(C2) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1;
(C3) lim infn→∞ rn > 0 and limn→∞ |rn+1 − rn| = 0;
(C4) limn→∞ |αn+1,i

1 − αn,i
1 | = 0 for all i ∈ {1, 2, . . . , N} and

limn→∞ |αn+1,j
3 − αn,j

3 | = 0 for all j ∈ {2, 3, . . . , N}.
Then {xn} converges strongly to x = PΩv and (x, y) is a solution of GSVI (1.2),
where y = PC(x− µBx).
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Proof. Let x∗ ∈ Ω and {Trn} be a sequence of mappings defined as in Lemma 2.1.
It follows from Lemma 2.9 that

x∗ = PC [PC(x∗ − µBx∗)− λAPC(x∗ − µBx∗)].

Put y∗ = PC(x∗ − µBx∗) and tn = PC(yn − λAyn), then x∗ = PC(y∗ − λAy∗) and

xn+1 = anv + bnxn + (1− an − bn)Sntn.

By nonexpansiveness of I − λA, I − µB, PC and Trn , we have

‖tn − x∗‖2 = ‖PC(I − λA)yn − PC(I − λA)y∗‖2

≤ ‖yn − y∗‖2 = ‖PC(I − µB)un − PC(I − µB)x∗‖2

≤ ‖un − x∗‖2 = ‖Trnxn − Trnx
∗‖2 ≤ ‖xn − x∗‖2, (3.1)

which, implies that

‖xn+1 − x∗‖ = ‖anv + bnxn + (1− an − bn)Sntn − x∗‖

≤ an‖v − x∗‖+ bn‖xn − x∗‖+ (1− an − bn)‖tn − x∗‖

≤ an‖v − x∗‖+ bn‖xn − x∗‖+ (1− an − bn)‖xn − x∗‖

≤ max{‖v − x∗‖, ‖x1 − x∗‖}.

Thus, {xn} is bounded. Consequently, the sequences {un}, {yn}, {tn}, {Ayn},
{Bun} and {Sntn} are also bounded. Also, observe that

‖tn+1 − tn‖ = ‖PC(yn+1 − λAyn+1)− PC(yn − λAyn)‖

≤ ‖yn+1 − yn‖

= ‖PC(un+1 − µBun+1)− PC(un − µBun)‖

≤ ‖un+1 − un‖. (3.2)

On the other hand, from un = Trnxn ∈ domϕ and un+1 = Trn+1xn+1 ∈ domϕ, we
have

F (un, y) + ϕ(y)− ϕ(un) +
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C, (3.3)

and

F (un+1, y) +ϕ(y)−ϕ(un+1) +
1

rn+1
〈y−un+1, un+1−xn+1〉 ≥ 0, ∀y ∈ C. (3.4)

Putting y = un+1 in (3.3) and y = un in (3.4), we have

F (un, un+1) + ϕ(un+1)− ϕ(un) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0,

10
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and

F (un+1, un) + ϕ(un)− ϕ(un+1) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

From the monotonicity of F , we obtain that

〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0,

and hence〈
un+1 − un, un − un+1 + un+1 − xn −

rn
rn+1

(un+1 − xn+1)
〉
≥ 0.

Then, we have

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)

〉
≤ ‖un+1 − un‖

{
‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖

}
,

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖. (3.5)

It follows from (3.2) and (3.5) that

‖tn+1 − tn‖ ≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖. (3.6)

Let xn+1 = bnxn + (1− bn)zn. Then, we obtain

zn+1 − zn =
xn+2 − bn+1xn+1

1− bn+1
− xn+1 − bnxn

1− bn

=
an+1v + (1− an+1 − bn+1)Sn+1tn+1

1− bn+1
− anv + (1− an − bn)Sntn

1− bn
=

an+1

1− bn+1
(v − Sn+1tn+1) +

an

1− bn
(Sntn − v) + Sn+1tn+1 − Sntn.

(3.7)

Next, we estimate ‖Sn+1tn+1 − Sntn‖.
11
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For each k ∈ {2, 3, . . . , N}, we have

‖Un+1,ktn − Un,ktn‖ = ‖αn+1,k
1 TkUn+1,k−1tn + αn+1,k

2 Un+1,k−1tn + αn+1,k
3 tn

− αn,k
1 TkUn,k−1tn − αn,k

2 Un,k−1tn − αn,k
3 tn‖

= ‖αn+1,k
1 (TkUn+1,k−1tn − TkUn,k−1tn)

+ (αn+1,k
1 − αn,k

1 )TkUn,k−1tn + (αn+1,k
3 − αn,k

3 )tn

+ αn+1,k
2 (Un+1,k−1tn − Un,k−1tn) + (αn+1,k

2 − αn,k
2 )Un,k−1tn‖

≤ αn+1,k
1 ‖Un+1,k−1tn − Un,k−1tn‖+ |αn+1,k

1 − αn,k
1 |‖TkUn,k−1tn‖

+ |αn+1,k
3 − αn,k

3 |‖tn‖+ αn+1,k
2 ‖Un+1,k−1tn − Un,k−1tn‖

+ |αn+1,k
2 − αn,k

2 |‖Un,k−1tn‖

= (αn+1,k
1 + αn+1,k

2 )‖Un+1,k−1tn − Un,k−1tn‖

+ |αn+1,k
1 − αn,k

1 |‖TkUn,k−1tn‖+ |αn+1,k
3 − αn,k

3 |‖tn‖

+ |αn+1,k
2 − αn,k

2 |‖Un,k−1tn‖

≤ ‖Un+1,k−1tn − Un,k−1tn‖+ |αn+1,k
1 − αn,k

1 |‖TkUn,k−1tn‖

+ |αn+1,k
3 − αn,k

3 |‖tn‖+ |(αn,k
1 − αn+1,k

1 ) + (αn,k
3 − αn+1,k

3 )|‖Un,k−1tn‖

≤ ‖Un+1,k−1tn − Un,k−1tn‖+ |αn+1,k
1 − αn,k

1 |‖TkUn,k−1tn‖

+ |αn+1,k
3 − αn,k

3 |‖tn‖+ |αn,k
1 − αn+1,k

1 |‖Un,k−1tn‖

+ |αn,k
3 − αn+1,k

3 |‖Un,k−1tn‖

= ‖Un+1,k−1tn − Un,k−1tn‖+ |αn+1,k
1 − αn,k

1 |(‖TkUn,k−1tn‖+ ‖Un,k−1tn‖)

+ |αn+1,k
3 − αn,k

3 |(‖tn‖+ ‖Un,k−1tn‖). (3.8)

It follow from (3.8) that

‖Sn+1tn − Sntn‖ = ‖Un+1,N tn − Un,N tn‖

≤ ‖Un+1,1tn − Un,1tn‖+
N∑

j=2

|αn+1,j
1 − αn,j

1 |(‖TjUn,j−1tn‖+ ‖Un,j−1tn‖)

+
N∑

j=2

|αn+1,j
3 − αn,j

3 |(‖tn‖+ ‖Un,j−1tn‖)

= |αn+1,1
1 − αn,1

1 |‖T1tn − tn‖

+
N∑

j=2

|αn+1,j
1 − αn,j

1 |(‖TjUn,j−1tn‖+ ‖Un,j−1tn‖)

+
N∑

j=2

|αn+1,j
3 − αn,j

3 |(‖tn‖+ ‖Un,j−1tn‖).

12
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This together with the condition (C4), we obtain

lim
n→∞

‖Sn+1tn − Sntn‖ = 0. (3.9)

It follows from (3.6) that

‖Sn+1tn+1 − Sntn‖ ≤ ‖tn+1 − tn‖+ ‖Sn+1tn − Sntn‖

≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

+ ‖Sn+1tn − Sntn‖. (3.10)

By (3.7) and (3.10), we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
an+1

1− bn+1
‖v − Sn+1tn+1‖+

an

1− bn
‖Sntn − v‖

+ ‖Sn+1tn+1 − Sntn‖ − ‖xn+1 − xn‖

≤ an+1

1− bn+1
‖v − Sn+1tn+1‖+

an

1− bn
‖Sntn − v‖

+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

+ ‖Sn+1tn − Sntn‖.

This together with (C1)-(C3) and (3.9), we obtain that

lim sup
n→∞

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ 0.

Hence, by Lemma 2.4, we get ‖xn − zn‖ → 0 as n→∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− bn)‖zn − xn‖ = 0. (3.11)

From (C3), (3.2) and (3.5), we also have ‖un+1 − un‖ → 0, ‖tn+1 − tn‖ → 0 and
‖yn+1 − yn‖ → 0, as n→∞.
Since

xn+1 − xn = an(v − xn) + (1− an − bn)(Sntn − xn),

therefore

‖Sntn − xn‖ → 0 as n→∞. (3.12)

Next, we prove that limn→∞ ‖xn − un‖ = 0. From Lemma 2.1(3), we have

‖un − x∗‖2 = ‖Trnxn − Trnx
∗‖2 ≤ 〈Trnxn − Trnx

∗, xn − x∗〉

= 〈un − x∗, xn − x∗〉 =
1
2
{
‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn − un‖2

}
.

13
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Hence

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2. (3.13)

From Lemma 2.3, (3.1) and (3.13), we have

‖xn+1 − x∗‖2 ≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)‖tn − x∗‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)‖un − x∗‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)
[
‖xn − x∗‖2 − ‖xn − un‖2

]
≤ an‖v − x∗‖2 + ‖xn − x∗‖2 − (1− an − bn)‖xn − un‖2.

It follows that

(1− an − bn)‖xn − un‖2 ≤ an‖v − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ an‖v − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn+1 − xn‖.

From the conditions (C1), (C2) and (3.11), we obtain

lim
n→∞

‖xn − un‖ = 0. (3.14)

Since

‖Sntn − un‖ ≤ ‖Sntn − xn‖+ ‖xn − un‖,

it follows from (3.12) and (3.14) that

lim
n→∞

‖Sntn − un‖ = 0. (3.15)

Next, we show that ‖Ayn − Ay∗‖ → 0 and ‖Bun − Bx∗‖ → 0 as n → ∞. From
(3.1), we have

‖xn+1 − x∗‖2 ≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)‖tn − x∗‖2

= an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)‖(yn − λAyn)− (y∗ − λAy∗)‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)
[
‖yn − y∗‖2 + λ(λ− 2α)‖Ayn −Ay∗‖2

]
≤ an‖v − x∗‖2 + ‖xn − x∗‖2

+ (1− an − bn)λ(λ− 2α)‖Ayn −Ay∗‖2,

14
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and

‖xn+1 − x∗‖2 ≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)‖tn − x∗‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)‖yn − y∗‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)‖(un − µBun)− (x∗ − µBx∗)‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)
[
‖un − x∗‖2 − 2µ〈un − x∗, Bun −Bx∗〉

+ µ2‖Bun −Bx∗‖2
]

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)
[
‖un − x∗‖2 + 2µc

′‖Bun −Bx∗‖2

− 2µd
′‖un − x∗‖2 + µ2‖Bun −Bx∗‖2

]
≤ an‖v − x∗‖2 + bn‖xn − x∗‖2

+ (1− an − bn)
[
‖xn − x∗‖2

+ (2µc
′
+ µ2 − 2µd

′

L2
)‖Bun −Bx∗‖2

]
≤ an‖v − x∗‖2 + ‖xn − x∗‖2

+ (1− an − bn)(2µc
′
+ µ2 − 2µd

′

L2
)‖Bun −Bx∗‖2.

Therefore, we have

− (1− an − bn)λ(λ− 2α)‖Ayn −Ay∗‖2

≤ an‖v − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn+1 − xn‖,

and

− (1− an − bn)(2µc
′
+ µ2 − 2µd

′

L2
)‖Bun −Bx∗‖2

≤ an‖v − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn+1 − xn‖.

This together with (3.11), (C1) and (C2), we obtain

‖Ayn −Ay∗‖ → 0 and ‖Bun −Bx∗‖ → 0 as n→∞. (3.16)

Next, we prove that ‖Sntn − tn‖ → 0 as n→∞. From (2.1) and nonexpansiveness

15
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of I − µB, we get

‖yn − y∗‖2 = ‖PC(un − µBun)− PC(x∗ − µBx∗)‖2

≤ 〈(un − µBun)− (x∗ − µBx∗), yn − y∗〉

=
1
2
[
‖(un − µBun)− (x∗ − µBx∗)‖2 + ‖yn − y∗‖2

− ‖(un − µBun)− (x∗ − µBx∗)− (yn − y∗)‖2
]

≤ 1
2
[
‖un − x∗‖2 + ‖yn − y∗‖2 − ‖(un − x∗)− (yn − y∗)‖2

+ 2µ〈(un − x∗)− (yn − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2
]
.

By (3.1), we obtain

‖yn − y∗‖2 ≤ ‖un − x∗‖2 − ‖(un − x∗)− (yn − y∗)‖2

+ 2µ〈(un − x∗)− (yn − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2

≤ ‖xn − x∗‖2 − ‖(un − x∗)− (yn − y∗)‖2

+ 2µ〈(un − x∗)− (yn − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2.

Hence

‖xn+1 − x∗‖2 ≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)‖yn − y∗‖2

≤ an‖v − x∗‖2 + bn‖xn − x∗‖2 + (1− an − bn)
[
‖xn − x∗‖2

− ‖(un − x∗)− (yn − y∗)‖2

+ 2µ〈(un − x∗)− (yn − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2
]

≤ an‖v − x∗‖2 + ‖xn − x∗‖2

− (1− an − bn)‖(un − x∗)− (yn − y∗)‖2

+ (1− an − bn)2µ‖(un − x∗)− (yn − y∗)‖‖Bun −Bx∗‖,

which implies that

(1− an − bn)‖(un − x∗)− (yn − y∗)‖2

≤ an‖v − x∗‖2 + (1− an − bn)2µ‖(un − x∗)− (yn − y∗)‖‖Bun −Bx∗‖

+ (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn+1 − xn‖.

This together with (C1), (3.11) and (3.16), we obtain

‖(un − x∗)− (yn − y∗)‖ → 0 as n→∞. (3.17)

From Lemma 2.6 and (2.2), it follows that

‖(yn − tn) + (x∗ − y∗)‖2 = ‖(yn − λAyn)− (y∗ − λAy∗)

−
[
PC(yn − λAyn)− PC(y∗ − λAy∗)

]
+ λ(Ayn −Ay∗)‖2
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≤ ‖(yn − λAyn)− (y∗ − λAy∗)−
[
PC(yn − λAyn)− PC(y∗ − λAy∗)

]
‖2

+ 2λ〈Ayn −Ay∗, (yn − tn) + (x∗ − y∗)〉

≤ ‖(yn − λAyn)− (y∗ − λAy∗)‖2 − ‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖2

+ 2λ‖Ayn −Ay∗‖‖(yn − tn) + (x∗ − y∗)‖

≤ ‖(yn − λAyn)− (y∗ − λAy∗)‖2 − ‖SnPC(yn − λAyn)− SnPC(y∗ − λAy∗)‖2

+ 2λ‖Ayn −Ay∗‖‖(yn − tn) + (x∗ − y∗)‖

≤ ‖(yn − λAyn)− (y∗ − λAy∗)

− (Sntn − x∗)‖
[
‖(yn − λAyn)− (y∗ − λAy∗)‖+ ‖Sntn − x∗‖

]
+ 2λ‖Ayn −Ay∗‖‖(yn − tn) + (x∗ − y∗)‖

= ‖un − Sntn + x∗ − y∗ − (un − yn)

− λ(Ayn −Ay∗)‖
[
‖(yn − λAyn)− (y∗ − λAy∗)‖+ ‖Sntn − x∗‖

]
+ 2λ‖Ayn −Ay∗‖‖(yn − tn) + (x∗ − y∗)‖.

This together with (3.15), (3.17) and (3.16), we obtain ‖(yn − tn) + (x∗ − y∗)‖ → 0
as n→∞. This together with (3.12), (3.14) and (3.17), we obtain that

‖Sntn − tn‖ ≤ ‖Sntn − xn‖+ ‖xn − un‖+ ‖(un − yn)− (x∗ − y∗)‖

+ ‖(yn − tn) + (x∗ − y∗)‖ → 0 as n→∞. (3.18)

Next, we show that

lim sup
n→∞

〈v − x, xn − x〉 ≤ 0,

where x = PΩv.
Indeed, since {tn} and {Sntn} are two bounded sequences in C, we can choose a
subsequence {tni} of {tn} such that tni ⇀ z ∈ C and

lim sup
n→∞

〈v − x, Sntn − x〉 = lim
i→∞
〈v − x, Snitni − x〉.

Since limn→∞ ‖Sntn − tn‖ = 0, we obtain that Snitni ⇀ z as i→∞.
Next, we show that z ∈ Ω.
(a) We first show z ∈

⋂N
i=1 F (Ti).

We can assume that αn,j
1 → αj

1 ∈ (0, 1) and αn,N
1 → αN

1 ∈ (0, 1] as n → ∞ for
all j ∈ {1, 2, . . . , N − 1} and αn,j

3 → αj
3 ∈ [0, 1) as n → ∞ for j = 1, 2, . . . , N .

Let S be the S-mappings generated by T1, T2, . . . , TN and α1, α2, . . . , αN where
αj = (αj

1, α
j
2, α

j
3), for j = 1, 2, . . . , N. From Lemma 2.8, we have ‖Sntn − Stn‖ → 0

as n→∞. Since

‖Stn − tn‖ ≤ ‖Stn − Sntn‖+ ‖Sntn − tn‖,
17
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it follows by (3.18) that ‖Stn − tn‖ → 0 as n→∞.
Since tni ⇀ z and ‖Stn − tn‖ → 0, we obtain by Lemma 2.5 and Lemma 2.7 that
z ∈ F (S) =

⋂N
i=1 F (Ti).

(b) Now, we show that z ∈ GSV I(C,A,B).
Since

‖tn − xn‖ ≤ ‖Sntn − tn‖+ ‖Sntn − xn‖,

it follows from (3.18) and (3.12) that ‖tn − xn‖ → 0 as n → ∞. Furthermore, by
Lemma 3.1, we have G : C → C is nonexpansive. Then, we have

‖tn −G(tn)‖ = ‖PC(yn − λAyn)−G(tn)‖

= ‖PC

[
P (un − µBun)− λAP (un − µBun)

]
−G(tn)‖

= ‖G(un)−G(tn)‖ ≤ ‖un − tn‖

≤ ‖un − xn‖+ ‖xn − tn‖,

which implies ‖tn − G(tn)‖ → 0 as n → ∞. Again by Lemma 2.5, we have z ∈
GSV I(C,A,B).

(c) We show that z ∈MEP (F,ϕ). Since tni ⇀ z and ‖xn− tn‖ → 0, we obtain
that xni ⇀ z. From ‖un − xn‖ → 0, we also obtain that uni ⇀ z. By using the
same argument as that in the proof of [11, Theorem 3.1, pp. 1825], we can show
that z ∈MEP (F,ϕ). Therefore there holds z ∈ Ω.

On the other hand, it follows from (2.3) and Snitni ⇀ z as i→∞ that

lim sup
n→∞

〈v − x, xn − x〉 = lim sup
n→∞

〈v − x, Sntn − x〉 = lim
i→∞
〈v − x, Snitni − x〉

= 〈v − x, z − x〉 ≤ 0. (3.19)

Hence, we have

‖xn+1 − x‖2 = 〈anv + bnxn + (1− an − bn)Sntn − x, xn+1 − x〉

= an〈v − x, xn+1 − x〉+ bn〈xn − x, xn+1 − x〉

+ (1− an − bn)〈Sntn − x, xn+1 − x〉

≤ an〈v − x, xn+1 − x〉+
1
2
bn(‖xn − x‖2 + ‖xn+1 − x‖2)

+
1
2

(1− an − bn)(‖tn − x‖2 + ‖xn+1 − x‖2)

≤ an〈v − x, xn+1 − x〉+
1
2
bn(‖xn − x‖2 + ‖xn+1 − x‖2)

+
1
2

(1− an − bn)(‖xn − x‖2 + ‖xn+1 − x‖2)

= an〈v − x, xn+1 − x〉+
1
2

(1− an)(‖xn − x‖2 + ‖xn+1 − x‖2),
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which implies that

‖xn+1 − x‖2 ≤ (1− an)‖xn − x‖2 + 2an〈v − x, xn+1 − x〉.

It follows from Lemma 2.2 and (3.19) that {xn} converges strongly to x. This
completes the proof.

If αn,j
2 = 0 for all j ∈ {1, 2, . . . , N} and all n ∈ N in Theorem 3.2, then the

mapping Sn reduces to the mapping Wn, so the following result is obtained directly
from Theorem 3.2.

Corollary 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let F be a function from C×C to R satisfying (A1)-(A5) and ϕ : C → R

⋃
{+∞}

be a proper lower semicontinuous and convex function. Let A : C → H be α-
inverse-strongly monotone mapping and let B : C → H be a L-Lipschitzian and
relaxed (c

′
, d

′
)-cocoercive mapping. Let {Ti}Ni=1 be a finite family of nonexpansive

self-mappings of C such that Ω =
⋂N

i=1 F (Ti)
⋂
GSV I(C,A,B)

⋂
MEP (F,ϕ) 6= Ø.

For all n ∈ N, let {αn,j
1 }Nj=1 ⊂ (0, b] with 0 < b < 1. Let Wn be the W -mapping

generated by T1, T2, . . . , TN and αn,1
1 , αn,2

1 , . . . , αn,N
1 . Assume that either (B1) or

(B2) holds and that v is an arbitrary point in C. Let x1 ∈ C and {xn}, {un}, {yn}
be the sequences generated by


F (un, y) + ϕ(y)− ϕ(un) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − µBun),
xn+1 = anv + bnxn + (1− an − bn)WnPC(yn − λAyn), n ≥ 1.

If λ ∈ (0, 2α), 0 < µ < 2(d
′−c

′
L2)

L2 and the sequences {rn}, {an}, {bn}, {αn,j
1 }Nj=1 are

as in Theorem 3.2, then {xn} converges strongly to x = PΩv and (x, y) is a solution
of GSVI (1.2), where y = PC(x− µBx).

If N = 1, T1 = S, ϕ = 0 and αn,1
2 , αn,1

3 = 0 ∀n ∈ N in Theorem 3.2, then we
obtain the following result.

Corollary 3.4. Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let F be a function from C × C to R satisfying (A1)-(A5). Let A : C → H

be α-inverse-strongly monotone mapping and let B : C → H be a L-Lipschitzian
and relaxed (c

′
, d

′
)-cocoercive mapping. Let S be a nonexpansive self-mappings of C

such that Ω = F (S)
⋂
GSV I(C,A,B)

⋂
EP (F ) 6= Ø. Assume that v is an arbitrary

19



International Journal of Mathematical Engineering and Science
ISSN : 2277-6982 Volume 1 Issue 12 (December 2012)

http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

point in C. Let x1 ∈ C and {xn}, {un}, {yn} be the sequences generated by


F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − µBun),
xn+1 = anv + bnxn + (1− an − bn)SPC(yn − λAyn), n ≥ 1.

If λ ∈ (0, 2α), 0 < µ < 2(d
′−c

′
L2)

L2 and the sequences {rn}, {an}, {bn} are as in
Theorem 3.2, then {xn} converges strongly to x ∈ PΩv and (x, y) is a solution of
GSVI (1.2), where y = PC(x− µBx).
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