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Abstract

In this work immersed in the field of control theory on a Given
a singular linear dynamic time invariant represented by EzT(t) =
Az(t)Bu(t), y(t) = Cx(t). We want to classify singular systems such
that by means a feedback and an output injection, the transfer ma-
trix of the system is a polynomial, for that we analyze conditions for
obtention of a coprime factorization of transfer matrices of singular lin-
ear systems defined over commutative rings R with element unit. The
problem presented is related to the existence of solutions of a Stein
matritial equation XE — NXA = Z.

Key words: Singular systems, feedback, output injection, coprime fac-
torization.

1 Introduction

Let R be a commutative ring with unity and (Ez™(t) = Axz(t) + Bu(t),
y(t) = Cz(t)) be a singular system over R, that we represent by (E, A, B, C).
Then, the transfer function of the system (E, A, B,C) is given by H(s) =
C(sE — A)~'B and provides an inputoutput relationship of the system.
The matrix (sE — A)~! in the transfer function is called the dynamical state
matrix.

This systems appear in literature when, for example, one studies linear
systems depending on a parameter or linear systems with delays.

We are interested in classify the singular systems (F, A, B, C) for which
there exist feedbacks (proportional and/or derivative) FF, F¥, and/or out-
put injections (proportional and/or derivative) F g ,FE, such that the state
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matrix (s(E + FSC + BFE) — (A+ F{C + BF¥))~! in the transfer func-
tion is polynomial. We will call systems with polynomial state matrix by
feedback (proportional and/or derivative) and/or output injection (pro-
portional and/or derivative) and we will write simply as pbfoi-systems,
the systems verifying this property. In the case where the state matrix
(s(E+ BFE)— (A+ BFE))~! in the transfer function is polynomial we will
write pbf and we will write pboi in the case (s(E + FSC) — (A + F{C))™!
is polynomial.

Notice that, if this property holds then the system is regularisable, re-
member that a system (F, A, B, C) is regularisable if and only if there exist
feedbacks FZ, F¥ and output injections Fg,FE, such that det(s(E+FF?C+
BFE)— (A+F{C+ BFZ%)) # 0 for some s € R. (Someone of the feedbacks
and output injections, or all can be zero).

In order to use a simple reduced system preserving these properties, we
consider the following equivalence relation deduced of to apply the standard
transformations in state, input and output spaces, premultiply the first equa-
tion by an invertible matrix, making feedback (proportional and derivative)
as well as output injection (proportional and derivative). More concretely.
Two systems (F;, A;, Bi, C;), i = 1,2, are equivalent if and only if there
exist matrices P € Gl(n;C), Q € Gl(p;C), R € Gl(m;C), S € Gl(q;C),
FB FB € Myyn(C), FS, F{ € Myy,(C) such that

Ey =QE\P+ QB FE+ FSCP,
Ay =QAP+ QB FY + F{C\P, (1)
BQ = QBle
Cy =S8SCP.
Note that, considering this equivalence relation and restricting out to

the regularisable systems for R = C, it is possible to reduce the system to
(Ec, A¢y Be, C) where
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By 0 0
0 B 0
Ci 0 0 O 0)
B.=| 0 0 0|, C.= <
0 0 0 0 0 Ca 0 O
0 0 O
and N; denotes a nilpotent matrix in its reduced form: N; = diag (N;,,..., N;,),

The matrix J denotes the Jordan matrix J = diag (J1(\1), ..., Jm(Am)),
with Jz()\z) = diag(Jil ()\Z‘, ce Jzt()\z)) and Jij ()\z) =M1+ N.

Notice that not all subsystems must necessarily appear in canonical re-
duced form.

Remark 1.1 Canonical reduced form can be obtained easily using the com-
plete set of invariants (see [G]).

2 Coprime factorization

A quality of the systems pbfoi is that the state matrix associated to the
transfer function of the system obtained after applying the corresponding
feedback (proportional and/or derivative) and/or output injection (propor-
tional and/or derivative) admits a coprime matrix function description.
Two polynomial matrices N(s) € Mpxm(R[s]) and D(s) € M, (R]s])

are called (Bézout) right coprime if (gg) is left-invertible, that is to say,

if there exist X(s) € Mpxp(R[s]), Y(s) € M, (R]s]) satisfying “Bézout
identity”
X(s)N(s) +Y(s)D(s) = L.

The polynomial matrices X (s) and Y (s) are called left Bézout factors
for the pair (N(s), D(s)).

Let R(s) be a rational matrix admitting a factorization R(s) = N(s)D~1(s),
we will call this factorization a rcf (right coprime factorization) of R(s).

Theorem 2.1 Let (E, A, B,C) be a pbfoi system. Then there exist a right
coprime factorization of the state matriz associated to the transfer function
of the system.

Proof. Taking into account that (E, A, B,C) is a pbfoi system (s(E +
FSC + BFE) — (A+ F{C + BF}))~' = Q(s) is polynomial. First, the
matrix pair (N(s), D(s)) with N(s) = Q(s) and D(s) = I — (s(BFE +
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FEC) + (BFE + F{0))Q(s) is coprime: X (s)N(s) + Y(s)D(s) = I with
X(s)=s(BFE+ FSC)+ (BF} + F{C) and Y (s) = I.

Second,
D(s) =
I —X(s)Q(s) + (sE — A)Q(s) — (sE — A)Q(s) =
I—(X(s) + (sE - A))Q(s) + (sE — A)Q(s) =

(sE— A)Q(s).

Consequently det D(s) = ’ydet(sE A) for all s € R, N(s)D7(s) =
Q(s)((sE — A)Q(s)) ™ = (sE - A)~

Restricting to the subclass of smgular systems in the linear variety
(0,0,0,C) + [(E, A, B,0)] that we will write as triple of matrices.

Theorem 2.2 Let (E,A,B) by a pbf system. Then, there exist a right
coprime factorization of the transfer function associated to the system.

Remark 2.1 For the proof of theorem observe that
1) B(I - X(s)Q(s)B)~' = (I - BX(s)Q(s))"'B

2) and the well known formula det X det(Y — ZX ~'T) = det Y det(X —
TY 17).

Proof. Taking into account that (s(E + BFE) — (A+ BF}))™! = Q(s) is
polynomial. Consider the matrix pair (N(s), D(s)) with N(s) = Q(s)B and
D(s) = I — (sFE — F$)Q(s)B is coprime: X (s)N(s) + Y (s)D(s) =1
X(s) =sFE — FP and Y(s) = I.

det Q(s) "' det(I— X (s)Q(s)B) = det I det(Q(s) "' —BX(s)) = det(sE—
4)

So det D(s) = !

det Q()
(s)D(s ) =Q(s)B(I — X(s)Q)s)B)! =
)(I — BX(5)Q(s))'B =
)T - B(8FE FP)Q(s))"'B =
s)') M - B(SFB F{)Q(s))'B =

det(sE — A).

(@Q

(I — B(sFE — FB)Qs)Q(s)™1)" 1B =

(Q(s)™! — B(sFg — F{)™'B =

(sE + BFB A—BF} —sBFE + BFP)"1B =

By duality, in the linear variety (0,0, B,0) + [(E, A,0,C)], we have the
following result.
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Corollary 2.1 Let (E,A,C) be a pboi system. Then, there exist a left
coprime factorization of the transfer function associated to the system.

3 Stein matritial equation

In the case where the polynomial matrix (s(E+ FSC+ BFB)— (A+F{C+
BFZ))7! exists, it can be obtained solving a Stein matrix equation.

Proposition 3.1 Let (E, A, B,C) be a pbfoi linear system, then there erist
FB FS, FB,FY, such that A+ BFY + F{C is invertible and (E + BFE +
FEC) A+ BFY + F{O)~1 is nilpotent.

Proof. If (E, A, B,C) is a pbfoi linear system, then there exist FE,FE,
FBFS, such that P(s) = s(E + FSC + BFE) — (A+ F{C + BFY) is
invertible, so there exist Q(s) = s°Qy+...+sQ1 +Qq such that P(s)Q(s) =
I,.

Consequently:

—(A+ BF} + F{C)Qo = I,
(E+ BFE + FEC)Qo — (A+ BFE + F{C)Q, =0,
(E+ BFE + FEC)Q1 — (A+ BFY + F{0O)Q2 =0,

(E+ BFE + FEC)Qp—1 — (A+ BF? + F{C)Q, =0,
(E+ BFE +FSC)Q, = 0.
First equality says that —(A + BFf + FEC)*1 = Qo.
Hence, since A + BFE + FEC is invertible, we can obtain Q;, £ > ¢ > 1.

Qi=—((A+BF} +F{C)"\(E+ BFE + FE0))
(A+BF{ +FJC)! =
—(A+BF? + F{C)"'((E + BFE + FSC)
(A+ BFB + F{C)~ 1)
So, last equation implies
0= (E+BFE+FSC)Qp =
((E+ BFf + F{C)(A+ BFY + F{C)~H)
Consequently
(E+ BFE + FSC)(A+ BF + F{C)™! (2)

is a nilpotent matrix and taking into account that @, # 0, the nilpotency
order is ¢ + 1.
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Corollary 3.1 If a system (E, A, B,C) is pbfoi then it is repairable.

Remember that a system (F, A, B, C) is repairable if and only if there exist
F f and Fg such that A+ BF f + FEC is invertible, (for more information
about repairable systems see [7]).

Remark 3.1 Conwverse is not true as we can see in the following example:
let (E,A,B,C) be a system with E = (§§§)’ A=13 B = (é), C =

(010), considering all possible feedbacks Fg, Ff, and output injections
FS, F§ matriz s(E+ FSC + BFE) — (A+ F{C + BF%) is

—1—c1+sa; —co—di+s(ag+b1) —c3+ sas
0 —1 —dy + sby 0 ,
0 —d3 + sbs —1+s

which inverse is not polynomial because of det(s(E + F§C + BFE) — (A +
F{C + BF¥})) ¢ Cy.

Proposition 3.2 Let (E, A, B,C) be a pbfoi system. Then the equation
XE—-NXA = Z with N a nilpotent has a solution (X, Z) with X invertible.

Proof. Matrix is equivalent to a nilpotent matrix N in its reduced
Jordan form

(E+ BFB+FSC)(A+ BF} + F{C)' = X" INX,
equivalently
X(E+ BFE + FSC)=NX(A+ BFY +F{0)

and

XE-NXA=-X(FEC+ BFE)+ NX(F{C+BF})=2. (3)

The existence of F g , F g , F f , Fg, verifying proposition implies that
the equation XE — NXA = Z has a solution with X invertible (matrix of
basis change) and Z = —X(F§C + BFE) + NX(F{C + BF%).

Remark 3.2 Toking into account corollary if the system (E, A, B,C)
is pbfoi, then it is repairable and there exist Ff and FE be such that A +
BFA3 + FEC is invertible. We consider the solution (X, Z) of the equation
XE -~ NXA=Z and the matriv M = X'Z — X" INX(F{C + BFY). It
is easy to observe that M = FgC’ + BFg.
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and we can deduce the following corollary which in a some sense can be
considered reciprocal of Proposition [3.2

Corollary 3.2 Suppose that the system (E, A, B,C) is repairable and let
FB and Fg be such that A+ BFY + FEC is invertible.

If the equation XE — NXA = Z, with N a nilpotent matriz, has a
solution (X, Z) with X invertible, and the equation —(FSC + BFE) = M
with M = X~ 'Z — X"INX(F{C + BF%) has a solution (F§,FE). Then,
the system is pbfoi, and

Qi=—-(A+BFF + F{O)"'1xNiXx~L.

then, we can obtain Q(s) solving a linear system.

Example 3.1 Let (E,A,B) with E=1, A= (8 (1)>; B = <é>

Solving

T 1‘2_01 r1 T2 01_21 Z9
T3 T4 0 0 T3 T4 0 0 a zZ3 24
Tl T2 —2X3\ (21 %2
r3 xa ) \z3 A

Taking a particular (invertible) solution for X, for example X = Z =1 and

solving M = —BFg =1- NBFAB we have that a possible solution is
FEB=(0 1), F§=(1 0)

and Q(s) = <_01 _01> + (8 _01> 5.

Notice that we can provide various solutions by choosing different solu-
tions for X.

Remark 3.3 We can solve the equation XE — NXA = Z using Kronecker
product, vec operator and linearizing the system in the following manner

(B'® 1T — A'® N)vec(X) = vec(Z). (4)

It is easy to observe that if the matriz E is invertible it is the same for
the matriz of the equation .
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4 Characterization of pbfoi-systems

In this section we will try to characterize pbfoi-systems.

Proposition 4.1 Let (E, A, B,C) and (E1, A1, B1,C1) be equivalent sys-
tems. There exist FE, FB, FS F{, such that (s(E + FSC + BFE) — (A +
FEC’ + BF®))™! is polynomial if and only if and there exist Fgll, Ffll,
FgY, FSY, such that (s(Ey+ Fy' C1+ BiFg') — (AL + F{'C1 + BiF "))~
1s polynomial.

Proof. Equivalency of systems implies

Ey =QEP+FSCP+ QBFE,
Ay = QAP + F{CP + QBF¥%,
By = QBR,
Cy = SCP.

So,

(s(B1+ FglCi + BiFR!) — (A1 + F{'Cy + BiFYY ) 7t =
(s(QEP + F§CP + QBFE + F5'SCP + QBRFy')—

(QAP+ F{CP + QBF} + F{'SCP + QBRF}')~! =

sQE+ Q *FSC + BFBP~' + Q= 'FS*SC + BRFE P~ P—

E E Eq Ey

QA+ Q'F{C+ BFYP~' + Q7'F{*SC + BRF{'P~1)P)~! =
P~Ys(E+Q'FSC+BFEP™' + Q7 'F5!SC + BRF5' P~1)—
(A+Q 'F{C+BFSP' + Q7 'F{"SC + BRF}'P~1)"1Q ! =
P~Ys(E+ (Q7'FS + Q7'F5'S)C + B(FEP™' + RFZ' P~1))—
(A+(Q'F{ +Q'F{'S)C + B(F{P~' + RF{ P~1)))1Q !

and F§ = Q7\FS+Q7'F5'S, F§ = FEP'+ RF' P!, F{ = Q'F{ +
QLF{'S, F¥ = F¥P~' + RF) P!

4.1 Case R=C

Firstly, we analyze the case where the ring R is the field of complex numbers,
because in this case, there are a canonical reduced form which facilitates the
study.

Proposition [£.1] permit us to characterize the pbfoi-systems.

Lemma 4.1 Let (E,A,B,C) be a system equivalent to (E,, A, B,,C,),
I N3 By
with B, = I3 , A = Ny ,B=10 and C, =
N I 0
(0 Cy 0). Then, the system is pbfoi.
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Proof. It is easy to prove that the system is equivalent (see [7]) to (E, A, B, C)

Ns I

with E = Ny LA = I3 B = B,,and C = C,.. Then,
Ny Is

taking FZ = F¥ = 0 and FEQ = FE = 0 we have that (3(E+F§C’—|—BF€)—

(A+ FAGC’ + BFA—;)) is invertible.
Now, it suffices to apply proposition

Lemma 4.2 Let (E, A, B,C) be a system equivalent to (Ey, Ay, By, Cy) with
I N3 By

I and C, =

o O O

N I5
(0 Cy 0 0). Then, the system can be not pbfoi.

Proof. It is easy to prove that the system is equivalent (see [7]) to (E, A, B, C)

N3 I
with £ = N LA = I3 B=B,andC =C,
Iy J
Ny I
Then, ) . . .
det(s(E + FEC + BFE) — (A+ F{C + BF%)) =

detdet(sly — J) ¢ Co

Now, it suffices to apply the proposition and the proof is concluded.
Taking into account corollary from now on we consider repairable
systems.

Theorem 4.1 Let (E, A, B,C) be a repairable system verifying one of the
following conditions

1. the system has not finite zeros.

2. the number t of Jordan blocks is less or equal than r = rankB; =
rankCq.

Then, the systems is pbfoi.

Proof. If the system (E, A, B, () is pbfoi it is repairable. So, the system is
equivalent (see [7]) to (E1, A1, B1,C1) with

E A
B =
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]‘zl £2 8 8 C; 00 0
B, = ,Ci=[0 0 Cy O
0 0 00 00 0 0
0 0 0O
1 B 0 = J - 0 1
w1thE:< I),J:( Ng),A:( N>Blz<0>,01:(l 0)
and J = diag(Ji,...,J;), J; non derogatory with simple non-zero eigen-

value (different J; may be the same eigenvalue). After lemmas it suffices to

: . 0 1 1 .
consider systems in the form (( J) , < I) , <0> , (I 0)> which are

equivalent to <<O I) , <I Jl) , <é> (I 0)).
1

a
Suppose now ¢ = 1, that is to say J ! = , and taking
a 1
a
-1 1 0 ... 0 0O ... 0
o -1 1 ... 0 0O0 ... 0 00 ... 0
Fi=1. . L FY = |, and
0o 0 0 ... =1 10 ...0 Lo ... 0
FS¢ =0, FE = 0, we have det(s(E + BFE + FS) + A+ BFP + F{) =
01 0 O
00 1 0
0
00 1 0
det |0 0O a+s 1 =1
0 0 a+s 1
00 0 a-+s 1
1 0 0 a+s

For 1 < t <r = rank By = rank Cy, the system (E, A, B,C) with E =
0 0

, A= ) is equivalent to (Fy, A1, B1,CY)

with

10
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0 0
I Jit
Ey = , Ay = , B1 =
04 0
I Jit
0 1
1
0
0 10 0
1 , C1 = 10 ... 0 . Then, it
0 0
0
0

suffices to apply the case t =1
For t > r the result is not true, as we can see in the following example.

Example 4.1 Let

0 0 1
1 , 0 ,[0].(1 0 0)
1 0/ \0

be a repairable system,

s(ag +b1) — (c1 +d1 sags —ca) sasz — c3
det sby — do S 0 Qé Cop.
Sb3 - d3 0 S

So, the system is not pbfoi.

4.2 Case R a principal ideal domain

On one hand, by proposition it is clear that if we have an equivalent
system to a system in the previous form, then we can construct a coprime
factorization of the transfer matrix of the system. On the other hand, in
principal ideal domains, it is no possible to reduce a system to a form like
C. So, in order to realize a first study over principal ideal domains, we

11
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consider systems zT(t) = Az(t) + Bu(t), it is, we consider systems in the
linear variety (0,0,0,C)+[(I, A, B,0)]. We will write that systems as a pair
of matrices (A, B).

In our particular case of the pbfoi systems (A, B) we have that (I, +
BFg)(A+ BF4)~! is a £ + l-order nilpotent matrix and in this case the
matrix (A + BFa)" (I, + BFg) is also a £ + 1-order nilpotent matrix. So,
we can consider the matrix equation in the form AXN — X = BY with N
a r-order nilpotent matrix.

Below we introduce some lemmas useful for the development of the sec-
tion.

Lemma 4.3 Let M € My,«n(R) be an arbitrary matriz. Then the matriz
X = Zg;& A'BMN? is the unique solution of the equation X — AXN =
BM. N*® A is a r-order nilpotent matriz de orden r.

Proof.

r—1 r—1
> A'BMN'— A()  A'BMN')N = BM
i=0 i=0
The uniqueness is due to the matrix I — N* ® A is invertible.
It is obvious to prove the following lemmas.

Lemma 4.4 Let X —AXN = BM be the Stein equation, and Ny = PNP~!
be a nilpotent matriz equivalent under similarity to N. Then X, = X P!
is the solution of Stein equation AX Ny + X; = BM; with My = MP~! if
and only if X is solution of the Stein equation X — AXN = BM.

Lemma 4.5 Let (A1, B1) = (P~'AP+ P7'BF4, P7'BQ) be a system with
P e Gl(n;R), Fa € Myxn(R) and Q € Gl(m; R).Then X is the solution of
the Stein equation AXN + X = BM if and only if X1 = PX is solution of
the Stein equation A1 XN + X = B1 My with M1 = QM — FoXN.

Lemma 4.6 Let (A, B), (A1, B1) be two feedback equivalent systems over
R. Then, A is invertible modulo B if and only if A1 is invertible modulo
B1. Furthermore, if (A1, B1) = (P~AP+P~'BF, P71 BQ) and there exists
K1 such that Ay + B1K7 is invertible, then the matric A + BK with K =
(F + QK,)P~! is invertible.

Lemma 4.7 Let A € M,(R), B € Mpxm(R) be two matrices and N €
M, (R) a r-order nilpotent matriz (r < n+1). If the Stein equation X —
AXN = BM has a solution X invertible for a given matrix M, then the
system (A, B) is reachable.

12
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Proof. By hypothesis we have X = BM + AX N invertible and for lemma
.3 X = 3170 AIBMN?. So, X = BM+ABMN +A>BMN?+ A BMN®+
.e.+ A"IBMN"™' + A"BMN". Then, and taking into account that r —
1 < n, is is clear that the reachability matrix of the system (A, B) verifies
U, (B|AB| A’B|...| A" 'B) =R.

Remark 4.1 The existence of feedbacks Fa and Fg that make invertible
the transfer matriz of the close-loop system (A, B), is related to a invertible
solution of the Stein equation X — AXN = BM and the invertibility of A
modulo B. It is known that over polo assignable rings, all reachable system
(A, B) verifies that A is feedback invertible modulo B. The fields, local rings,
principal ideal domains, Dedekind rings and rings of dimension zero or one
are polo assignable rings (ver []]).

Suppose now the matrix M = Y is unknown, we have the following
result.

Proposition 4.2 Let (A, B) be a system over a principal ideal domain.
Then are equivalent conditions:

1. There exist Fp and Fy such that P(s) = (s, — (A + sBFE + BFj))
18 an unimodular matriz.

2. The system is repairable, it is, there exist Fa such that A + BF4 is
invertible. The equation X — NXA = BY, with N nilpotent, has a
solution (X,Y) with X invertible.

Proof. First implication is direct by corollary and proposition Re-
ciprocally, we consider Fg = (FAXN — Y)X ! € Mpxn(R), then (I, +
BFg)(A+ BF4)~! is nilpotent of order r: ((I,, + BFg)(A + BF4)~!)" =
TN™T1 = 0, where T = ((A + BF4))X. Furthermore, since ((I, +
BFg)(A+ BF4))"! # 0, we define

Qi = ((A+ BF4) (I, + BFg))"(A+ BF4) !,
for all i = 0,1,...,r — 1. So, we have (I, + BFg)Q,—1 = 0 and Q,_1 #
0. Finally, we consider polynomial matrix Q(s) = Z;-:(} Q;s' verifying

P(s)Q(s) = I,,. Note that r = ¢+ 1.

Corollary 4.1 Let (A, B) be a repairable system. If equation X — AXN =
BY, with N nilpotent, has a solution (X,Y) with X invertible, then there
exist a coprime factorization of the transfer matriz associated to the system.

13
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Proof. By theorem and proposition (N(s) = Zé:o N;is', D(s) =
Sy Nis') with No = XC, N; = XN'C for alli = 1,...,¢, Dy = BFa(A+
BF4)~'—1I,, D = BYC and D;;; = BYN'C for all i = 1,...,/, where
C = X Y(A+ BF4)™ !, is a coprime factorization of the transfer matrix
associated to the system (A, B).

Remark 4.2 We can write a procedure with Input (A, B) n-dimensional
m-input reachable system, and Output (N(s), D(s)) coprime matriz fraction
description of the transfer matriz of the system. In particular, H(s) =
(sI, — A+ sBFg + BF4)"'B is a polynomial transfer matriz.

Step 1.- Give canonical form

(A1, B1) = (P7'AP + P~'BF, P7'BQ).
Step 2.- Find F’ such that Ay + B1F’ is invertible.
Step 3.- Solve equation X1 — A1 X1 N = B1Y7.
Step 4.- Calculate

X=PX;andY =QY, — FX|N.
Step 5.- Calculate
Fi=(F+QF)P ! and Fp = (FAXN—-)X 1.
Step 6.- Return polynomial coeff. of N(s) and D(s)
No = XC, N;=(-1)XNiC,
C=X1Y—A+BFy)™!
Dy = BFs(~A+ BFy)~' - I,,, D;=BYC,
D;i1 = BYN'C

4.2.1 Single input reachable system

Theorem 4.2 Let (A, B) be a single input reachable system. If N is nilpo-
tent of order n, then there exist Y such that AXN + X = BY equation has
a solution (X,Y) with X invertible.

Proof. First, by proposition we can consider an equivalent canonical

system. (Agr,BR) = ((Iftl 8) ’ <(1)>)

Second, if N has nilpotent order r < n then X is no invertible: X =
(B...(-1)ytA™1B(-1)"A"B ... (-1)" 1A 1B)(Y ...YN""10...0) =
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(B ... (-1 tA™=1B)(Y ... YN 1) so

1 ... 0 v

X = 0 ( 1)7’—1 :
P _— r—1
0 ... 0 YN
is no invertible. Hence, we suppose N of order n and reduced triangular
form (see [11]), N = (a;j) with a;; = 0 Vj <. In this case

X =X1X5
with
1 O 0
0 -1
X; =
(1
'l Y2 Y3 Un
0 apy1 aizyr +azsys ... Z?;llamyi
Xy = .

0 0 0 o I asiam

Since N is of order n, a;4+1 # 0 for all i = 1,...n — 1. so, we can consider
Y such that y; # 0.

Corollary 4.2 Let (A, B) be a single input reachable system. Then (A, B)
s a pfboi-system.

Proof. We suppose (A, B) reduced canonical system. If we consider Fy =
(0 ... 0 1) and Fg = (FAXN —Y)X !, then A+ BF4 and P(s) =
(sI, — A+ sBFg + BFy) are invertible matrices.
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