
International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

1 

 

 

Object Tracking System Using Stratix FPGA 
SAISUDHEER.A1, MTECH VLSISD 

saisudheervlsisd@gmail.com 
 

 

Abstract: Object tracking is an important task in computer vision applications. One of the crucial challenges is 
the real time speed requirement. In this paper we implement an object tracking system in reconfigurable 

hardware using an efficient parallel architecture. In our implementation, we adopt a background subtraction 
based algorithm. The designed object tracker exploits hardware parallelism to achieve high system speed. We 
also propose a dual object region search technique to further boost the performance of our system under 
complex tracking conditions. For our hardware implementation we use the Altera Stratix III 
EP3SL340H1152C2 FPGA device. We compare the proposed FPGA-based implementation with the software 
implementation running on a 2.2 GHz processor. The observed speedup can reach more than 100X for complex 

video inputs. 
 

Keywords: Object Tracking, FPGA, Stratix. 

1. Introduction 
 

Computer vision has become an important application of smart embedded systems used in a wide range of fields 
ranging from human computer interaction to robotics. Object tracking is a fundamental component of computer 
vision that can be very beneficial in applications such as unmanned vehicles, surveillance, automated traffic 

control, biomedical image analysis and intelligent robots, to name a few. Object tracking is used for identifying 
the trajectory of moving objects in video frame sequences. Like most computer vision tasks, object tracking 
involves intensive computation in order to extract the desired information from high-volume video data. In 
addition, the real time processing requirements of different computer vision applications stress the need for high 
performance object tracking implementations. In this work we propose the implementation of an efficient object 
tracking system on FPGA that could be employed in a wide range of embedded systems providing high-

performance and low-power. With shrinking process technologies enabling higher transistor capacities per 
silicon die, FPGAs have become attractive compute platforms for complex applications with high-performance 
and low-power requirements. With hundreds of thousands of configurable logic blocks along with thousands of 
distributed memory and hard DSP modules, they offer great flexibility for mapping applications onto spatially 
parallel architectures. Nevertheless, exploiting the advantages of their re-configurable and hard modules 
requires efficient mapping of algorithms through careful balancing of performance, area and power parameters. 

In this paper we describe our object tracking implementation on the Altera Stratix III FPGA. Through profiling 
and analysis of the software implementation we identified the performance bottlenecks and designed a hardware 
architecture which leverages efficiently the spatial parallelism of the reconfigurable fabric and exposes the 
different types of inherent parallelism in the selected object tracking algorithm. Our experimental results show 
that significant performance improvement (over 100X) can be achieved compared to the software execution for 
multi-objects video inputs. 

 
The contributions of this work can be summarized as follows: 
 

 We propose a highly parallel hardware implementation of an object tracking algorithm. 
 

 We improve the object region identification performance of the object tracking algorithm by 
Introducing  a dual search technique. 

 

 We provide experimental results that show that our hardware implementation achieves up to 100X 

speedup over the software execution. 
 

In the next section we discuss related work and we provide a detailed overview of the selected object tracking 
algorithm in Section III. The proposed hardware implementation on the Altera FPGA is presented in figure 1. 
 
2.  Proposed Work 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

2 

 

Numerous algorithms for object tracking have been proposed. It is a complex task which comprises two main 
subtasks: i) object detection and ii) tracking. Object detection algorithms can be classified according to 
Yilmazetal into point-detection schemes, background subtraction techniques, and supervised learning 
techniques. Furthermore the tracking portion of object tracking can be performed either separately or jointly 
with object detection. Tracking aims to generate the trajectory of objects across video frames and Yilmazetal. 

characterized tracking algorithms across three main categories: i) point tracking  ii) kernel tracking iii) silhouette 
tracking. In this work we leverage an efficient algorithm which is based on background subtraction detection 
and kernel tracking of objects. The main focus of this work is on the performance improvement achieved over a 
software implementation from a carefully-crafted hardware implementation on the FPGA. Due to the 
advantages offered by FPGAs in compute intensive applications, several object tracking algorithms have been 
implemented on reconfigurable devices in previous works. Nevertheless, one of the biggest challenges of 

custom hardware implementations is mapping complex algorithms onto reconfigurable fabric architectures that 
can offer good performance under rigid resource constraints. Jung et al. implemented a multiple objects tracking 
system on hardware based on particle filters. However, the tracking speed was below 57 frames per second (fps) 
and no comparison with software execution was provided. Usman et al. adopted an FPGA software processor 
based design to implement mean shift based object tracking. However, the biggest size of tracked objects is 
limited to32X32 pixels and the performance does not exceed 25 fps. Jinbo et al. implemented a hardware 

detection system based on the Active Shape Model (ASM) algorithm, and they reported speedup of up to 15X 
compared to software execution. However, their implementation does not include tracking. A multi-camera 
object tracking system based on multiple-Cam-shift algorithm is implemented by Sirisak, but the reported speed 
is constrained to 25 fps. Our FPGA implementation employs a carefully designed parallel architecture which 
helps significantly boost tracking performance over software execution. Moreover, we proposea dual-search 
method to utilize resources in an efficient and compact way. For the evaluation of our implementation, we use 

an Altera Stratix-III EP3SL340H1152C2 FPGA device. We achieve 21X to 104X speedup over the software 
execution with performance that ranges between 70-690fps for frames with 0-6 objects. 
 

3. Object Tracking Algorithm 

The algorithm employed in this work is based on the background subtraction object tracking algorithm proposed 
by Yuri. This algorithm tracks moving objects in video frames captured by fixed cameras (i.e. nonmoving 
cameras).Initially the background scene is built through averaging of several successive frames to handle time 

varying background scenes, such as waves on the water, moving clouds etc. This task is called background 
training and it helps build are ferrous frame which can be used to classify object regions during the actual object 
tracking processing. Generally, the reference frame is formed based on a weighted averaging function which 
takes as input N previous frames during background training. After the reference scene has been established, all 
subsequent frames will be classified in relation to it. The reference frame is updated when the values of all the 
frame pixels have changed significantly with respect to the corresponding reference frame pixels. Our hardware 

implementation takes VGA resolution (640x480) video as input. The incoming video frames are processed 
within three main stages: i) preprocessing stage, ii) main detection and search stage and iii) tracking and display 
stage. In the preprocessing stage, the VGA-resolution input frames are downscaled to 80x60 resolutions. 
Subsequently, in the main detection and search stage classification of the downscaled frame is performed with 
regard to the reference frame and the object tracking map is generated. In addition, further object region 
processing steps are implemented in this stage. Finally, in the third stage, the locations of moving objects are 

identified and marked on the screen. In the following sub-sections we describe the three processing stages in 
more detail. 
 
3.1 Preprocessing Stage 
 

During the preprocessing stage the resolution of input frames is reduced from 640x480 to 80x60. Each frame is 
down scaled by a factor of eight through 2D Haar transform. Each 2D Haar transformation contains two 1D 
Haar transformations that take place sequentially first along frame rows and then along pixel columns. The 

dimensions of the frame that is generated by one 2D Haar transform are half of the original frame dimensions. 
We use three consecutive 2DHaar transforms to get the 80x60 size frame on which the rest of the object tracking 
processing is performed. The main motivation for image compression in our design is related to storage resource 
constraints as well as computation throughput constraints. Through downscaling, a reduction of the data volume 
per frame is achieved (i.e. from9000Kbits/frame to 140.6Kbits/frame). Hence, the volume of data that needs to 
be stored and processed is significantly cut down. Subsequently, the new background reference frame,Bn+1, is 

determined in the downscaled image resolution of80x60, according to the following weighted averaging 
function 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

3 

 

Bn+1 = α * Fn + (1 – α) * Bn, ------------------ (1) 
 
Where α is the background training rate (typically 0.05), Fn is the most recent input frame, Bn is the old 
reference frame andBn+1 is the newly trained reference frame. Tracking proceeds as normal until significant 
difference is measured in the input frame with regard to the reference frame. In that case the reference scene 

image is updated to the weighted average. 
 
3.2 Main Detection Stage 

 
An initial classification of each pixel in the current frame is performed in this stage. Back ground subtraction 
based object detection relies on the property that the color values of pixels within the frame regions of moving 

objects, generally differ greatly from those of the corresponding pixels in the reference frame of the background 
scene. Thus, the absolute difference of the RGB values between the corresponding pixels in the current frame 
and the reference frame is used to identify potential moving object locations. One difference value is calculated 
for each color component in the RGB representation of the frame. If the value for any of the R, G, or B absolute 
differences exceeds apre determined threshold, the corresponding pixel is marked as foreground (i.e. potential 
moving object region). Otherwise, it is marked as background (i.e. reference scene region).The frame 

classification generates an 80x60 binary matrix, called object map. Each binary element in the object map 
corresponds to one pixel in the 80x60 down scaled frame, which is set to ‘1’ or ‘0’ depending on whether the 
corresponding pixel is classified as foreground or background, respectively. In particular the value of each 
element in the object map is determined as follows: 

ΔIt,R(x,y) = |It,R(x,y) - Ibg,R(x,y)| ---------------------------(2) 

ΔIt,G(x,y) = |It,G(x,y) - Ibg,G(x,y)| ---------------------------(3) 
ΔIt,B(x,y) = |It,B(x,y) - Ibg,B(x,y)| ----------------------------(4) 

L(x,y) = {1  if ∆I ≥ th , 0 if ∆I < th------------------(5) 
 

where It,R(x,y) represents the Red color component of the(x,y) th pixel in the current frame and Ibg,R(x,y) 
represents the Red color component of the (x,y)th pixel in the reference image. L(x,y) is the classification value 
of the (x,y)th element in the object map. Subsequently, the object map is processed through a filtering phase 
which aims to smoothen the edges of the identified object regions. The filtering phase comprises three 
transformation steps which are applied to reduce the noise and scratch-like artifacts in the object map. In 
particular, dilation and erosion filters with structure sizes of 3x3 and5x5 are used in a three-step dilation-

erosion-dilation sequence which generates a new object map. The newly generated object map is used in the 
final object region identification phase. In particular the binary matrix of the object map is scanned to identify 
the exact location of each individual object in the image. We have improved the original algorithm of object 
region identification to include two object identification modes: i)single mode and ii) block mode. Moreover, we 
parallelize the object region identification by splitting the binary matrix of the object map into 12 sub-matrices. 
All the 12 sub matrices are processed concurrently. Details for both the dual mode identification technique and 

the object map processing parallelization. 
 
3.3 Tracking and Display Stage 
 

In this stage, the object region identification results generated in the previous stage for each sub-matrix are 
combined to calculate object region results for the entire frame. A boundary joiner module is used to build the 
final object position information from the partial information calculated for each sub-matrix of the object map. 
The object regions at the frame level are built through a 5-stage filtering process. Subsequently a bounding 
rectangle for each object is superimposed over each video frame and sent to the video output for display. 

 

4. Hardware Implementation 
 

4.1 System Architecture Overview 

 
In our implementation we have used the Altera DE3Development Board to take advantage of the different input 

and output interfaces to implement and verify the object tracking system. A daughter board with a video camera 
is connected to the GPIO interface of the DE3 development board to provide real-time video data, while a VGA 
display is connected to the corresponding DVI output of the DE3board to display the processed video with 
highlighted object tracking results. Apart from the FPGA device the DE3board contains abundant DRAM 
memory (2GB of DDR2).The DDR2 memory is used to either temporally store the streaming video data input or 
pre-load video frame sets that need to be processed. To evaluate the performance of our object tracking system, 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

4 

 

we explored in our experimental study the second case. Thus, we were able to measure processing throughputs 
beyond the real-time restrictions imposed by the system camera. Such a scenario is useful to process pre-
recorded videos to identify and track certain objects of interests. A control button on the DE3 board allows the 
user to select between training and tracking modes in the system operation. In both modes the pre-processing 
stage converts the raw video frames to downscaled RGB frames. This is achieved with the use of a frame 

grabber module and a 2DHaar module. The frame grabber module converts raw data captured with a CCD 
camera into standard RGB image values for a 640x480 frame. Then the RGB data are stored in the DDR2 
memory of the DE3 board. Due to the high compute density of the 2D Haar transform, the system employs a 
pipelined architecture for processing the Haar transform and the subsequent tracking computations without 
impacting throughput. That is, 2D Haar transform operates on the (N+1)th frame while the rest of the tracking 
hardware is processing the (N)th frame. Furthermore, the rich memory resource on the DE3 board is leveraged 

to build a quadruple buffering scheme to enhance performance (Fig. 2).One of the most important compute 
throughput boosters in our hardware implementation is the architecture of the object region identification 
subsystem. This hardware subsystem integrates 12 object map processing modules (marked as P1–P12 in Fig. 
2). Each of these modules processes one sub-matrix of the object map binary matrix. By processing the object 
map matrix with 12 parallel processing modules the FPGA implementation achieves significant speedup 
compared to the software implementation, which processes the object map elements in a sequential fashion. As 

mentioned in the previous section, the proposed FPGA implementation incorporates a new object region 
identification technique which helps enhance the algorithm efficiency. In the proposed technique, there are two 
region identification modes: i) single mode and ii) block mode. The software version uses only the single mode 
which expands the identified object region by four neighboring points in the horizontal and vertical dimension, 
during each step. By introducing the block mode for object region identification,16 points can be explored 
concurrently. By combining both modes, the proposed implementation achieves high processing throughput 

during the object region identification stage, especially for video inputs with large objects. The 12 object map 
processing modules are complemented with a five-stage cascaded boundary joiner in the tracking and display 
stage. The boundary joiner module is responsible for combining the results of the parallel object map processing 
modules to get the accurate position information of all moving objects. In particular, the boundary joiner decides 
which objects are sub-parts of larger objects in order to correctly identify the frame-level objects and highlight 
them in the output video stream.  

 
4.2 Parallel Object Map Processing 

 
Based on execution latency profiling we have observed that the object region identification computation 
constitutes a big part of the total execution latency. The object region identification initially scans for 
foreground elements in the object map. Then a set of new elements to be examined is selected based on a 2D 

wave front originating from the foreground elements which are stored in a BRAM. Therefore, the object region 
identification process entails an linearly growing set of elements with slope equals to 1 that have to be examined 
in each step. The computation density of each exploration step increases accordingly. In the original software 
version the exploration process is done in a sequential fashion, which results in high execution latencies. For 
example, a thousand comparisons need to be performed for a single exploration step in the worst case for the 
selected resolution. To improve execution latency we distribute the compute load to 12 parallel object 
exploration engines. We split the object map into 12 20x20 sub-matrices (in a 3x4layout), which constrains the 

critical path latency to the time needed to examine 400 points in every sub-matrix. The advantage of this 
parallelism exposure is particularly useful in the case of large foreground regions. As shown in Fig. 1, each 
object map processing module keeps track of foreground point by storing their coordinates into a BRAM of size 
400x13 bits. There are 12 such BRAMs in our design. 
 

4.3 Dual-Mode Object Identification 

 
In our implementation, we combine the single mode and block modes to search the object map in a more 

efficient way. While in the single mode, the object region is built by starting from the first identified object 
element and then progressing to the four neighboring elements. Conversely, in the block mode, a four-element 
block is used as the object exploration unit, with neighboring blocks scanned in each step. Rather than 4 new 
pixels as in the single mode, the block mode examines up to 16 new pixels during each step; therefore, it is 
particularly suitable for video inputs with high ratios of object-to-frame area (i.e. objects cover a big percentage 
of the video frame area). By combining the single and block modes, object region identification gains 

considerable efficiency improvement. We evaluated the latency improvement with dual-mode object region 
identification over single mode for video input with dense distribution of objects. With single mode execution 
latency reached 13.4 ms while with dual-mode execution latency dropped to 9.8ms (i.e. a reduction of 26.9%). 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

5 

 

 

 

Fig .1. FPGA-Based Object Tracking System – Block Diagram. 

 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

6 

 

Fig.2. System Task-Level Parallelism. 

 

Fig.3. Dual-Mode Search Overview (A) Single Mode (B) Block Mode. 
 

Fig. 3(a) shows the single mode exploration whereas Fig.3(b) shows the block mode exploration. As depicted in 
Fig.4, we can see that the single mode is based on exploring four neighboring elements from the current object 
map element across the vertical and horizontal dimensions; the block mode is based on a similar exploration 
strategy but with the difference that exploration is performed on neighboring block regions instead of single 
elements. The numbers in both figures represent the exploration order: for example, if the top-left corner 
element x1 is the first foreground element detected in the object map, we examine its right neighbor element 

which is marked as x2 and the lower neighbor x3(there are no left and upper neighbors for x1). After x1, we 
start examining neighbors of x2. Fig. 4 depicts the pseudo code for the single mode and block mode search 
algorithms which were implemented in Verilog in our hardware implementation. The pseudo code also 
describes how the system switched between the two modes. 
 
4.4 Cascade Boundary Joiner 

 
Due to the parallelization of the object map processing across 12 object exploration engines, the object region 
information for the entire frame is separated into 12 parts. Each part corresponds to one object map sub-matrix 
and it is stored in a separate on-chip buffer called sub-frame object RAM (SFORAM). Initially, the actual frame-
wise physical information of the foreground elements contained in each SFORAM is recovered and stored into a 
frame object RAM (FORAM). Subsequently, a five-stage boundary joiner processes the physical position 

information in the FORAM (Fig. 5). Every partial object is represented as a rectangle window in the frame. The 
joiner algorithm first consolidates the object boundary information across row-wise neighboring sub-frames. As 
shown in Fig. 6(a), during the first three filtering steps, all the sub-frames across the horizontal axis are merged 
into frame-wide sub-frames. Subsequently, during the last two filtering steps, column wise merging is 
performed to obtain the frame-wide object region boundaries. Fig. 6(b) lists the sub-frames being merged in 
each stage of the boundary joiner. Merging is performed for each neighboring pair of sub-frames, hence, 

generating larger and potentially overlapping sub-frames. Redundant and overlapping object boundaries are 
identified and removed. At the output of the joiner, the complete object tracking information is collected and 
used to highlight the identified objects in the output video stream. 
 
 
 

 
 
 
 
 
 

 
 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

7 

 

 

LOGIC BETWEEN SINGLE MODE AND BLOCK MODE: 

SINGLE MODE:                                                                              

if(right_neighbor&down_neighbor&di

ag_neighbor) 

block_mode <=1; 

single_mode<=0; 

else begin 

add_left_neighbor; 

add_right_neighbor; 

add_up_neighbor; 

add_down_neighbor; 

end 

search_order <= search_order+1; 

 

 

BLOCK MODE: 

if(all_left_unit) 

add_left_unit; 

else if(~ all_left_unit) 

add_ones_in_left_unit; 

suspend_left <=1; 

if(all_right_unit) 

add_right_unit; 

else if(~ all_right_unit) 

add_ones_in_right_unit; 

suspend_right<=1; 

if(all_up_unit) 

add_up_unit; 

else if(~ all_up_unit) 

add_ones_in_up_unit; 

suspend_up <=1; 

if(all_down_unit) 

add_down_unit; 

else if(~all_down_unit) 

add_ones_in_down_unit; 

suspend_down<=1; 

if(suspend_left || suspend_right || suspend_up 

||suspend_down) 

single_mode<=1; 

block_mode<=0; 

if(~suspend_left&&suspend_right&&suspend_up&

&suspend_down) 

search_order<= search_order+1; 
 

 
5.  Experimental Results 
 
The employed object tracking algorithm is based on Chesnokov Yuriy's framework which achieves tracking 

rates between 0.5-35 fps on a 2.2 GHz processor. In this section, we compare the performance between the 
hardware implementation and the original software version. The algorithm executed in both implementations is 
equivalent in terms of functionality. The software implementation is 

 

4(A) Visual Overview Of Five-Stage Boundary Joiner. 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

8 

 

 

 

 

 

 

 

 

 

 

 

 

4(B) Sub-Frame Merging In Each Stage Of The Boundary Joiner. 

Fig.4. Boundary Joiner Written In Visual C++ With Sse Optimizations. 

 

Its performance is measured on an AMD Turion processor with2.2 GHz frequency. The proposed hardware 
implementation s designed for the Altera DE3 board, which features the Stratix III (EP3SL340H1152C2) FPGA 
device, and it can run at a clock rate of 182.88MHz. Table I shows the hardware resource utilization on the 
FPGA device. 
 

 

Fig.5. Frame-Level Foreground Information Composition. 

Table1:  Fpga Resoure Utilization Summary. 

RESOURE USED RESOURCES UTILIZATION 

REGISTERS 32880 12% 

LUTs 73794 22% 

BLOCK MEMORY 847 Kbits 5% 

 

 

 

Filter1: 
Merge (1,2); Merge (2,3); Merge (3,4); 

Merge (5,6); Merge (6,7); Merge (7,8); 
Merge (9,10); Merge(10,11); Merge(11,12) 
Filter2 [1]: 
Merge (A, B) in Row 1; Merge (B, C) in Row 1; 

Merge (A, B) in Row 2; Merge (B, C) in Row 2; 
Merge (A, B) in Row 3; Merge (B, C) in Row 3; 
Filter3: 
Merge (A1', B1'); 

Merge (A2', B2'); 
Merge (A3', B3'); 

Filter4: 
Merge (A1'', A2''); 

Merge (A2'', A3''); 
Filter5: 
Merge (A1''', A2'''); 
Note [1]: Even though A, B and C sub-frames are marked in 
different rows for clarity purposes, they exist in every row. 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/


International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 10 (October 2013)              ISSN: 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

9 

 

Table2:  Performance Comparisons:  Sw   Vs   Hw. 

OBJECT  # SW exec.time SW fps HW exce.time HW fps SPEEDUP 

0 30 ms 33.3 1.45 ms 689.6 20.69X 

1 79 ms 12.66 3.53 ms 283.3 22.38X 

3 392 ms 2.55 5.17 ms 193.4 75.82X 

5 857 ms 1.17 8.73 ms 114.5 98.16X 

6 1489 ms 0.67 14.4 ms 69.4 103.4X 

 
Implementation performance results are listed in the fourth and fifth columns of Table II. Finally the sixth 

column of Table II lists the speedup of the proposed FPGA implementation over the software version. We can 
see that the speedup of the FPGA-based tracker is higher for video inputs with higher number of objects. This 
further demonstrates the advantages of the proposed architecture in scenarios with video input that depicts dense 
traffic environments. Fig. 7 depicts frames of the video output for two different examples. The left frame, in 
both examples, shows the background scene during the initial background training and the right frame shows the 
objects tracking result with highlighted object regions. The algorithm is able to identify both moving and static 

objects. 
 
 CONCLUSION 

 

In this work, we implemented an FPGA-based object tracking system which employs a background subtraction 

algorithm. The design was carried out using Verilog HDL and the implementation was based on the Altera 
DE3development board. We studied and profiled the object tracking algorithm implemented in the software 
version and designed a highly-parallel architecture to achieve high throughput. We measured the hardware 
system performance through different experiments and observed more than 100Xspeedup compared to the 
software version for complex video inputs. As future work we plan to improve the sensitivity of the tracking 
algorithm to the luminance of the scene. This can be achieved by more accurate background training as well as 

using techniques based on hidden Markov models. 
 
REFERENCES 

 

1. U. Ali, M. B. Malik and K. Munawar, “FPGA/Soft-processor based real-time object tracking system”, 
Proc. IEEE Southern Conference on Programmable Logic (SPL’09), 2009. 

2. S. Leephokhanon and T. Wiangtong, “Object Tracking and Motion Capturing in Hardware-Accelerated 
Multi-camera System,” Proc.ACM Int’l Workshop on Reconfigurable computing: Architectures, Tools 
and Applications (ARC’09), 2009. 

3. C. Yuriy, “Real-time object tracker in C++,” http://www.codeproject.com/KB/audio-
video/object_tracker.aspx, 2007. 

4. J. U. Cho, S. H. Jin, X. D. Pham, and J. W. Jeon, “Multiple Objects Tracking Circuit using Particle 

Filters with Multiple Features,” Proc. IEEE Int’l Conference on Robotics and Automation , 2007. 
5. J. Xu , Y. Dou , J. Li, X. Zhou and Q. Dou, “FPGA Accelerating Algorithms of Active Shape Model in 

People Tracking Applications,”Proc. 10th IEEE Euro micro Conference on Digital System Desig n 
Architectures, Methods and Tools (DSD’07), 2007. 

6. A. Yilmaz, O. Javed and M. Shah, “Object tracking: A survey,” ACM Computing Surveys (CSUR), 
Vol. 38, No. 4, 2006. 

7. K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” Proc. IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR’03), 2003. 

8. P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and appearance”, 
Proc IEEE Int’l Conference on Computer Vision (ICCV’03), pp. 734–741, 2003. 

9. C. Veenman, M. Reinders, and E. Backer, “Resolving motion correspondence for densely moving 
points,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 23, No 1, pp. 54–72, 2001. 

10. H. Rowley, S. Baluja, and T. And kanade, “Neural network-based face detection,” IEEE Trans. on 
Pattern Analysis and Machine Intelligence, Vol. 20, No 1, pp. 23–38, 1998. 

https://sites.google.com/site/ijcesjournal
http://www.ijces.com/

