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Abstract

It is argued that the main reason of crisis in quantum theory is that na-
ture, which is fundamentally discrete, is described by continuous mathematics.
Moreover, no ultimate physical theory can be based on continuous mathematics
because, as follows from Goédel’s incompleteness theorems, any mathematics in-
volving the set of all natural numbers has its own foundational problems which
cannot be resolved. In the first part of the paper inconsistencies in standard
approach to quantum theory are discussed and the theory is reformulated such
that it can be naturally generalized to a formulation based on discrete and finite
mathematics. Then the cosmological acceleration and gravity can be treated
simply as kinematical manifestations of de Sitter symmetry on quantum level
(i.e. for describing those phenomena the notions of dark energy, space-time
background and gravitational interaction are not needed). In the second part of
the paper motivation, ideas and main results of a quantum theory over a Galois
field (GFQT) are described. In contrast to standard quantum theory, GFQT
is based on a solid mathematics and therefore can be treated as a candidate
for ultimate quantum theory. The presentation is non-technical and should be
understandable by a wide audience of physicists and mathematicians.
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1 What is the main reason of crisis in quantum
theory?

The discovery of atoms and elementary particles indicates that at the very funda-
mental level nature is discrete. As a consequence, any description of macroscopic
phenomena using continuity and differentiability can be only approximate. For ex-
ample, in macroscopic physics it is assumed that coordinates and time are continuous
measurable variables. However, this is obviously an approximation because coor-
dinates cannot be measured with the accuracy better than atomic sizes and time
cannot be measured with the accuracy better than 107185, which is of the order of
atomic size over c. As a consequence, distances less than atomic ones do not have a



physical meaning and in real life there are no strictly continuous lines and surfaces.
As an example, the water in the ocean can be described by differential equations of
hydrodynamics but this is only an approximation since matter is discrete.

It is also obvious that standard division and the notion of infinitely small
are based on our everyday experience that any macroscopic object can be divided
by two, three and even a million parts. However, it seems obvious that the very
existence of elementary particles indicates that standard division has only a limited
meaning. Indeed, consider, for example, the gram-molecule of water having the mass
18 grams. It contains the Avogadro number of molecules 6 - 102. We can divide
this gram-molecule by ten, million, billion, but when we begin to divide by numbers
greater than the Avogadro one, the division operation loses its meaning.

The above examples show that describing quantum theory with continuous
mathematics is at least unnatural. Note that even the name ”quantum theory”
reflects a belief that nature is quantized, i.e. discrete. Nevertheless, when quantum
theory was created it was based on continuous mathematics developed mainly in the
19th century when people did not know about atoms and elementary particles and
believed that every macroscopic object could be divided by any number of parts.
One of the greatest successes of the early quantum theory was the discovery that
energy levels of the hydrogen atom can be described in the framework of continuous
mathematics because the Schrodinger differential operator has a discrete spectrum.
This and many other successes of quantum theory were treated as indications that
all problems of the theory can be solved by using continuous mathematics. As a
consequence, even after almost 90 years of the existence of quantum theory it is still
based on continuous mathematics. Although the theory contains divergencies and
other inconsistencies, physicists persistently try to resolve them in the framework of
continuous mathematics.

The mathematical formalism of Quantum Field Theory (QFT) is based
on continuous space-time background and it is assumed that this formalism works at
distances much smaller than atomic ones. The following problem arises: should we
pose a question on whether such distances have any physical meaning? One might say
that this question does not arise because if a theory correctly describes experiment
then, by definition, mathematics used in this theory does have a physical meaning.
In other words, such an approach can be justified only a posteriori.

However, even if we forget for a moment that QFT has divergencies and
other inconsistencies (see Sec. 3), the following question arises. On macroscopic level
space-time coordinates are not only mathematical notions but physical quantities
which can be measured. Even in the Copenhagen formulation of quantum theory
measurement is an interaction with a classical object. If we know from our macro-
scopic experience that space-time coordinates are continuous only with the accuracy
of atomic sizes then why do we use continuous space-time at much smaller distances
and here we treat space-time coordinates only as mathematical objects?

In particle physics distances are never measured directly and the phrase



that the physics of some process is defined by characteristic distances [ means only
that if ¢ is a characteristic momentum transfer in this process then | = h/q. This
conclusion is based on the assumption that coordinate and momentum representations
in quantum theory are related to each other by the Fourier transform. However, as
noted in Ref. [1], this assumption is based neither on strong theoretical arguments
nor on experimental data.

Many physicists believe that M theory or string theory will become "the
theory of everything”. In those theories physics depends on topology of continu-
ous and differentiable manifolds at Planck distances {p ~ 1072*m. The correspond-
ing value of ¢ is ¢ ~ 10Gev/c, i.e. much greater than the momenta which can
be achieved at modern accelerators. Nevertheless, the above theories are initially
formulated in coordinate representation and it is assumed that at Planck distances
physics still can be described by continuous mathematics. Meanwhile, as noted above,
there are no such physical objects as continuous lines and surfaces and therefore such
mathematical notions can describe physics only with some approximation. In addi-
tion, lessons of quantum theory indicate that it is highly unlikely that any continuous
topology or geometry can describe physics at Planck distances (and even much greater
ones).

Another example is the discussion of the recent results [2] of the BICEP2
collaboration on the B-mode polarization in CMB. In the literature those results are
widely discussed in view of the problem of whether or not those data can be treated
as a manifestation of gravitational waves in the inflationary period of our World.
Different pros and cons are made on the basis of inflationary models combining QFT
or string theory with General Relativity (GR). The numerical results are essentially
model dependent but it is commonly believed that the inflationary period lasted in
the range (1073%s, 1073%5) after the Big Bang. For example, according to Ref. [3], the
inflationary period lasted within about 1072°s during which the size of the World has
grown from a patch as small as 1072m to macroscopic scales of the order of a meter.

The inflationary models are based on the assumption that space-time man-
ifolds at such distances can be treated as continuous and differentiable. However, in
addition to the above reservations, the following problem arises. As noted above,
measurement is understood as an interaction with a classical object. However, at this
stage of the World there can be no classical objects and therefore the very mean-
ing of space and time is problematic. In addition, the problem of time is one of
the fundamental unsolved problems of quantum theory, GR is a pure classical the-
ory and its applicability at such time intervals is highly questionable (see Sec. 2).
Inflationary models are based on the hypothesis that there exists an inflaton field;
its characteristics are fitted with a considerable number of parameters for obtaining
observable cosmological quantities. In view of these remarks, statements that the
BICEP2 results indicate to the existence of primordial gravitational waves are not
based on strong theoretical arguments.

Discussions about the role of space-time in quantum theory were rather



popular till the beginning of the 1970s. As stated in Ref. [4], local quantum fields and
Lagrangians are rudimentary notions which will disappear in the ultimate quantum
theory. Now physicists usually cannot believe that such words could be written in such
a known textbook. The reason is that in view of successes of QCD and electroweak
theory those ideas have become almost forgotten. However, although those successes
are rather impressive, they do not contribute to resolving inconsistencies in QFT.

It is also very important to note that even continuous mathematics by
itself has its own foundational problems. As it has been shown by Russel and other
mathematicians, the Cantor set theory contains several fundamental paradoxes. To
avoid them, several axiomatic set theories have been proposed and the most known
of them is the ZFC theory developed by Zermelo and Fraenkel. However, the con-
sistency of ZFC cannot be proved within ZFC itself and it has been proved that the
continuum hypothesis is independent of ZFC. Godel’s incompleteness theorems state
that no system of axioms can ensure that all facts about natural numbers can be
proved and the system of axioms in standard mathematics cannot demonstrate its
own consistency. Therefore only discrete and finite theory has a chance to be free of
foundational problems. Additional arguments in favor of this statement are given in
Secs. 6 and 7.

The absolute majority of physicists and mathematicians believe that, ac-
cording to the famous Hilbert’s phrase, ” No one shall expel us from the paradise that
Cantor has created for us”. However, in view of the above discussion, one might
expect that the ultimate quantum theory will be based on mathematics which is not
only discrete but even finite. In other words, for constructing the ultimate quantum
theory we will have to leave the Cantor paradise (and the meaning of paradise is
rather subjective).

The reason why modern quantum physics is based on continuity, differ-
entiability etc. is probably historical: although the founders of quantum theory and
many physicists who contributed to it were highly educated scientists, discrete math-
ematics was not (and still is not) a part of standard physics education.

General Relativity is usually treated as the ultimate classical theory of
gravity. A common opinion is that the ultimate quantum theory should combine
a quantized version of GR with quantum field theories of electromagnetic, strong
and weak interactions and that string theory or M theory can be treated as possible
candidates of such a theory. In Secs. 2 and 3 it is noted that both, GR and QFT have
fundamental inconsistencies and so a program of combining those theories probably
will not be successful. In Secs. 6 and 7 an approach based on Galois fields is described.
This approach gives a new look at fundamental problems of quantum theory.



2 Is General Relativity the Ultimate Classical
Theory of Gravity?

There are several well-known experiments which are treated as a strong
confirmation of GR. As noted in Ref. [5], this conclusion is model dependent because
it is based on additional assumptions or on the choice of several fitted parameters.
Nevertheless, the majority of physicists believe that the results of all gravitational
experiments clearly demonstrate that GR outperforms all the alternative classical
theories of gravity. However, even if this is the case, this does not mean yet that GR
should be treated as the ultimate classical theory of gravity. The history of physics
knows examples when a theory which perfectly described experimental data turned
out to be inconsistent with the new knowledge (e.g. the theory of heat and Bohr’s
theory of atomic levels). Only those theories have a chance to become ultimate ones
which are based on solid physical principles. Below we argue that GR does not satisfy
this criterion.

The existence of singularities in GR is often treated as an indication that
self-consistency of GR is broken at small distances where quantum effects should be
taken into account. This does not contradict a possibility that GR can be the ultimate
classical theory. The situation is analogous to that in classical electrodynamics which
also has consistency problems at small distances. Below it is argued that GR has
more serious foundational problems.

Classical field theories work with fields defined on a space-time background
characterized by four-dimensional coordinates x = (r,¢). For example, we know
that the electromagnetic field is a collection of photons but classical electrodynamics
does not work with individual photons. The classical fields E(z) and B(x) describe
the mean effect of all the photons in the field, namely how the photons act on a
macroscopic test body having the position r at the moment of time ¢. Analogously,
it is believed that the gravitational field is a collection of gravitons but in GR this
field is described by the Ricci tensor Ry, (x) (1, v = 0,1,2,3) which shows how the
field acts on macroscopic test bodies.

In classical theory it is assumed that test bodies can be made practically
weightless and at each moment of time ¢ the spatial coordinates r can be measured
with the absolute accuracy. Moreover, in GR the reference frame is understood as a
collection of weightless bodies characterized by three spatial coordinates and supplied
by weightless clocks [6]. However, in view of the remarks in Sec. 1, weightless bodies
can exist only if matter can be divided by any number of parts. In real situations,
since the quantities x refer to macroscopic bodies, they can have a physical meaning
only with the accuracy discussed in Sec. 1. In particular, there is no reason to believe
that GR is valid at distances of the order of 1072%m and times of the order of 1073%s.
Note also that from the point of view of the measurability principle (see Sec. 1),
the space-time background has a physical meaning only as a space of events for real
particles while if particles are absent, the notion of empty space-time background has



no physical meaning. Indeed, there is no way to measure coordinates of a space which
exists only in our imagination.
In GR the geometry of space-time is defined by the Einstein equations

1
R, + EQWRC +Agu = (87TG/C4)TW (1)

where R, is the scalar curvature, 7T}, is the stress-energy tensor of matter, g,, is
the metric tensor, GG is the gravitational constant and A is the cosmological constant
(CC). In modern quantum theory space-time in GR is treated as a description of
quantum gravitational field in classical limit. It is believed that a quantized version
of R,, describes the gravitational field as a collection of gravitons. Then the fol-
lowing question arises: why does T}, describe the contribution of electrons, protons,
photons and other particles but gravitons are not included into 7}, and are described
separately by a quantized version of R,,7 It is believed that gravitons are particles
with mass zero and spin 2 and it is not clear what makes gravitons so special.

In any case, quantum theory of gravity has not been constructed yet and
gravity is known only at macroscopic level. Here the coordinates and the curvature
of space-time are the physical quantities since the information about them can be
obtained from measurements using macroscopic test bodies. Since matter is treated
as a source of the gravitational field, in the formal limit when matter disappears, the
gravitational field should disappear too. Meanwhile, in this limit the solutions of the
Einstein equations are Minkowski space when A = 0, de Sitter (dS) space when A > 0
and anti-de Sitter (AdS) space when A < 0. Hence in GR Minkowski, dS or AdS
spaces can be only empty spaces, i.e. they are not physical because the argument x of
classical fields can refer only to macroscopic test bodies. This shows that the formal
limit of GR when matter disappears is nonphysical since in this limit the space-time
background survives.

This inconsistency of GR has far reaching consequences in view of the
discovery in 1998 that A > 0. In textbooks on gravity written before the discovery it
is often claimed that A is not needed since its presence contradicts the philosophy of
GR: matter creates curvature of space-time, so in the absence of matter space-time
should be flat (i.e. Minkowski) while empty dS space is not flat. Such a philosophy
has no physical meaning since the notion of empty space is unphysical. Nevertheless,
in view of this philosophy, the discovery of the fact that A # 0 has ignited many
discussions.

The most popular approach follows. One moves the term with A in the
Einstein equations from the left-hand side to the right-hand one and then the term
with A is treated as the stress-energy tensor of a hidden matter which is called dark
energy: (87G/ 04)T£,E = —Ag,,. With the observed value of A this dark energy
contains more than 70% of the energy of the World. In this approach G is treated as
a fundamental constant, the goal of the theory is to express A in terms of G and to
explain why A is as it is. Hence a problem arises whether G is indeed a fundamental
physical quantity. This problem is discussed in Sects. 3 and 5.



3 Does quantum theory need space-time back-
ground?

The phenomenon of QFT has no analogs in the history of science. There is
no branch of science where so impressive agreements between theory and experiment
have been achieved. At the same time, the level of mathematical rigor in QFT is very
poor and, as a result, QFT has several known difficulties and inconsistencies. The
absolute majority of physicists believe that agreement with experiment is much more
important than the lack of mathematical rigor, but not all of them think so (see e.g.
Dirac’s paper [7]). In addition, QFT fails in quantizing gravity since the gravitational
constant has the dimension (length)? (in units where ¢ = ii = 1), and as a result,
quantum gravity is not renormalizable.

The fact that standard approach to QFT has mathematical problems is
well-known. Theories aiming to construct QFT on a solid mathematical basis are
often called Axiomatic Quantum Field Theory or Algebraic Quantum Field Theory
(AQFT) while the theory used by a majority of physicists is called Conventional
Quantum Field Theory (CQFT). Efforts to reconcile AQFT and CQFT are discussed
in a wide literature. Below we use for CQFT the standard notation QFT. We first
describe problems of QFT and then make remarks on AQFT.

In the framework of QFT any theory is constructed according to the fol-
lowing scheme. First one chooses a space-time background, which in the case of
Poincare invariance is Minkowski space. Then one constructs local fields ¥ (z) which
depend on the space-time coordinates x, possibly on spin variables and satisfy a co-
variant equation (e.g. Klein-Gordon, Dirac etc.). Here the following question arises.
According to principles of quantum theory, every physical quantity can be discussed
only in conjunction with the operator of this quantity. Meanwhile, as it has become
clear even from the beginning of quantum theory (see e.g. p. 63 of Ref. [8]), there is
no operator corresponding to time. This poses a problem why the principle of quan-
tum theory that every physical quantity is defined by an operator does not apply
to time. On the other hand, a position operator must exist (see the discussion in
Ref. [1]). Hence in contrast to classical theory, in quantum one spatial and temporal
coordinates are not on equal footing.

The next problem is that the fields ¥(x) do not have a probabilistic inter-
pretation because they are described by non-unitary representations of the Poincare
group induced from the Lorentz group. As it has been shown for the first time by
Pauli [9], in the case of fields with an integer spin it is not possible to construct a
positive definite charge operator and in the case of fields with a half-integer spin it is
not possible to construct a positive definite energy operator. So in the framework of
quantum theory neither x nor ¥ have a clear physical meaning, and a problem arises
why we need local fields at all.

There are two major reasons for that. The first one is that ¥(z) can have a
physical meaning in approximations when creation of particle-antiparticle pairs can be



neglected. A known example is that in the approximation (v/c)? the Dirac equation
correctly reproduces the fine structure of the hydrogen energy levels. On the other
hand it cannot reproduce the Lamb shift because for that purpose the approximation
(v/c)? should be correctly taken into account.

The second reason is that after second quantization local fields are used
for constructing interacting Lagrangians. In contrast to classical theories which do
not work with individual particles comprising the corresponding fields (see Sec. 2),
the secondly quantized fields ¥(z) are operators in the Fock space and therefore the
contribution of each particle in the field is explicitly taken into account. Therefore
each particle in the field can be described by its own coordinates. In view of this fact
the following natural question arises: why do we need an extra coordinate x which
does not belong to any particle? This coordinate does not have a clear physical
meaning and is simply a parameter arising from the second quantization of the non-
quantized field ¥(x). Hence quantized local fields are only auxiliary notions. In this
approach the problem of the physical meaning of  and ¥ does not arise because they
enter the theory only under integration signs for representation operators. As noted
in Sec. 1, in this case the need for having those quantities can be justified only a
posteriori. After the representation operators and the S-matrix has been constructed,
one can safely forget about local fields and calculate observables in momentum space.

It is known (see e.g. the textbook [10]) that quantum interacting local
fields can be treated only as operatorial distributions. A known fact from the theory
of distributions is that their products at the same point are poorly defined. Hence if
U, (z) and Wo(x) are two local operatorial fields then the product Wy (z)Wy(x) is not
well defined. This is known as the problem of constructing composite operators. A
typical approach discussed in the literature is that the arguments of the field operators
¥, and W,y should be slightly separated and the limit when the separation goes to
zero should be taken only at the final stage of calculations. However, no universal
way of separating the arguments is known and it is not clear whether any separation
can resolve the problems of QFT. Physicists often ignore this problem and use such
products to preserve locality (although the operator of the quantity = does not exist).

As a consequence, the representation operators of interacting systems con-
structed in QFT are not well defined and the theory contains anomalies and infinities.
While in renormalizable theories the problem of infinities can be somehow circum-
vented at the level of perturbation theory, in quantum gravity infinities cannot be
excluded even in lowest orders of perturbation theory. One of the ideas of the string
theory is that if products of fields at the same points (zero-dimensional objects)
are replaced by products where the arguments of the fields belong to strings (one-
dimensional objects) then there is hope that infinities will be less singular. However,
a similar mathematical inconsistency exists in string theory as well and here the prob-
lem of infinities has not been solved yet. In summary, the situation with infinities
in quantum theory can be characterized such that first people create problems by
introducing operators which mathematically are poorly defined and then great efforts



are made for resolving those problems.

An additional problem in Lagrangian interacting theories (classical an
quantum) is that symmetry conditions do not define the form of the interaction
Lagrangian unambiguously, to say nothing about the fact that the values of interac-
tion constants are fully arbitrary. As an example, consider a question whether the
gravitational constant G in GR can be treated as a fundamental physical quantity.

The quantity G defines the gravitational force in the Newton law of gravity.
Numerous experimental data show that this law works with a very high accuracy.
However, this only means that G is a good phenomenological parameter. At the level
of the Newton law one cannot prove that G is the exact constant which does not
change with time, does not depend on masses, distances etc.

In GR G is the coefficient of proportionality between the left-hand-side and
rihgt-hand-side of Eq. (1). GR cannot calculate G or give a theoretical explanation
why this value should be as it is. A problem arises whether the quantity G should be
treated as a fundamental or phenomenological constant.

For example, the quantity h is the fundamental constant from the following
consideration. Quantum theory shows that each projection of the angular momentum
in dimensionless units can take only the values £1/2, +1, .... Therefore if the minimum
magnitude is denoted as i/2 then i = 1 by definition. However, for historical reasons,
people want to measure the angular momentum in kg - m/s. Then the question why
h is as it is does not arise because the value of & is fully defined by the choice of
the units. Analogously, c¢ is the fundamental constant because instead of measuring
velocity in dimensionless units v/c (in which case ¢ = 1 by definition) people measure
it in m/s. One might think that the quantity G can be treated analogously and its
value is as it is simply because we wish to measure masses in kilograms and distances
in meters (in the spirit of Planck units).

However, treating G as a fundamental constant can be justified only if
there are strong reasons to believe that the Lagrangian of GR is the only possible
Lagrangian. A problem discussed in a wide literature is that the most general La-
grangian is not linear in R. and GR is only a low energy approximation of a theory
where equations of motion contain higher order derivatives. Hence there are no solid
reasons to treat G as a fundamental constant.

In quantum theory of gravity constructed by quantizing standard GR, G
is treated as a fundamental constant and A is treated as a quantity which is defined
by the contribution of vacuum diagrams. The existing quantum theory of gravity
cannot calculate A unambiguously since the theory contains strong divergences. With
a reasonable cutoff parameter, the result for A is such that in units h = c =1, GA is
of the order of unity. This result is expected from dimensionful considerations since
in these units, the dimension of G is length? while the dimension of A is 1/length?.
However, this value of A is greater than the observed one by 122 orders of magnitude.
This problem is called the CC problem or dark energy problem.

In summary, in quantum theory the space-time background does not have



a logical foundation and creates fundamental foundational problems. In addition, in
local Lagrangian quantum theories the notion of interaction is also problematic since
introducing interaction makes the theory mathematically inconsistent.

Those problems of QFT have been known for a long time. As noted
above, the goal of AQFT is to solve the problems in the framework of solid (but
continuous) mathematics (see e.g. Ref. [10]). However, here Poincare invariance is
associated with Minkowski space-time background and the theory is constructed in
terms of local operatorial distributions on this background. In view of the above
discussion, on quantum level the meaning of this background is highly problematic.
Another approach is the Heisenberg S-matrix program. Here the theory does not
contain space-time coordinates at all and considers only transitions of systems of free
particles from the infinite past when ¢ — —oo to the distant future when ¢t — +o00.
However, since quantum theory is treated as more general than classical one, in this
theory it is not possible to fully avoid space-time description of real bodies at least
in semiclassical approximation (see Ref. [1] for a more detailed discussion).

4 Symmetry on quantum level

In view of the above discussion, a problem arises whether there is an alternative to
standard approach such that a realistic quantum theory does not involve the notions
of space-time background and interactions. In this section we begin to describe the
alternative where the starting point is based on a non-standard understanding of
symmetry on quantum level.

In relativistic quantum theory the usual approach to symmetry follows.
Since Poincare group is the group of motions of Minkowski space, quantum states
should be described by representations of the Poincare group. In turn, this implies
that the representation generators should commute according to the commutation
relations of the Poincare group Lie algebra:

[PH P =0 [P, M"] = —i(n**P" — 1 P?)
[M#, MP7] = =i MY 4 " MIP — " M — 1P MH7) (2)

where PH are the operators of the four-momentum and M* are the operators of
Lorentz angular momenta. This approach is in the spirit of Klein’s Erlangen program
in mathematics.

However, as argued in Ref. [11] and in the preceding sections, the approach
should be the opposite. In quantum theory one should not start from space-time
which is a pure classical notion (and the empty space-time background does not
have a physical meaning). In quantum theory each system is described by a set
of independent operators. By definition, the rules how these operators commute
with each other define the symmetry algebra. In particular, by definition, Poincare
symmetry on quantum level means that the operators commute according to Eq. (2).
This definition does not involve Minkowski space at all. A discussion of the symmetry
on quantum level can be found in Ref. [11] and references therein.
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Analogously, the definition of dS symmetry on quantum level should not
involve the fact that the dS group is the group of motions of the dS space. Instead, the
definition is that the operators M (a,b = 0,1,2,3,4, M® = —M") describing the
system under consideration satisfy the commutation relations of the dS Lie algebra
so(1,4), i.e

[]\4(1177 Mcd] — _i(,r}achd + nbdMac o ,r]adec . T]bcMzzd) (3)
Where n® is the diagonal metric tensor such that n°° = —p't = —p?2 = 33
—n* = 1. The definition of the AdS symmetry on quantum level is given by the

same equations but n** = 1.

Note that at this stage we are still working in standard quantum theory
over complex numbers. However, as explained in Sec. 7, with the above definition
of symmetry on quantum level a transition from standard quantum theory to that
based on a Galois field is straightforward.

With the above definition of symmetry on quantum level, dS and AdS
symmetries look more natural than Poincare symmetry. In the dS and AdS cases
all the ten representation operators of the symmetry algebra are angular momenta
while in the Poincare case only six of them are angular momenta and the remaining
four operators represent standard energy and momentum. If we define the operators
Pr as P* = M* /R where R is a parameter with the dimension length then in the
formal limit when R — oo, M* — oo but the quantities P* are finite, the relations
(3) become the relations (2). Note that the above definitions of the dS and AdS
symmetries has nothing to do with dS and AdS spaces and their curvatures.

One might say that the relations (3) are written in units ¢ = h = 1.
However, as noted in the preceding section, the dimensionful constants ¢ and & arise
only because, for historical reasons, people prefer to measure angular momenta in
kg - m/s and velocities in m/s and in fundamental theory those constants are not
needed. It is also obvious from Eq. (3) that dS and AdS theories contain only
quantities which are dimensionless in units ¢ = h = 1. For example, those theories
cannot contain quantities with the dimension equal to a power of length. In particular,
if we accept dS or AdS symmetry then neither G nor A can be fundamental physical
quantities. In situations when Poincare symmetry is a good approximation for dS or
AdS symmetry one can introduce a quantity R with the dimension length and work
not with the dimensionless quantities M* but with the dimensionful quantities P*.
In the literature the quantity A is treated as the scalar curvature of the dS or AdS
space and therefore in terms of R it equals A = 3/R?. Then the question why A is as
it is does not arise because the answer is: because we want to measure distances in
meters. There is no guaranty that the quantity defined in such a way will not depend
on time and will have a physical meaning in situations when Poincare symmetry is
not a good approximation for dS or AdS symmetry. In particular, there is no relation
between the quantities A and G.

A fundamental difference between Poincare and AdS symmetries on one
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hand and dS symmetry on the other follows. In the former case, irreducible represen-
tations (IRs) are characterized by a definite sign of the Poincare energy P° or its AdS
analog M%. Then IRs with positive energies are used for describing particles and
IRs with negative energies are used for describing antiparticles. However, each IR of
the dS algebra necessarily contains states with positive and negative dS energies M%
(see e.g. Ref. [12]). As shown in Ref. [12], the only possible interpretation of such
IRs is that they describe particles and antiparticles simultaneously.

More precisely, the very notion of particles and antiparticles becomes only
approximate in situations when R is rather large. As a consequence: a) no neutral
elementary particles can exist; b) the electric charge and the baryon and lepton
quantum numbers can be only approximately conserved (see Ref. [5] for a detailed
discussion). The experimental data that these quantum numbers are conserved reflect
the fact that at present Poincare approximation works with a very high accuracy. As
noted above, the cosmological constant is not a fundamental physical quantity and if
the quantity R is very large now, there is no reason to think that it was large always.
This completely changes the status of the problem known as ”baryon asymmetry
of the World” since at early stages of the World transitions between particles and
antiparticles had a much greater probability than now.

5 Is the notion of interaction physical?

The fact that problems of QFT arise as a result of describing interactions in terms
of local quantum fields poses the following dilemma. One can either modify the
description of interactions or investigate whether the notion of interaction is needed
at all. A reader might immediately conclude that the second option fully contradicts
the existing knowledge and should be rejected right away. In the present section we
discuss a question whether the cosmological acceleration and gravity might be simply
kinematical manifestations of dS symmetry on quantum level.

Let us consider an isolated system of two particles and pose a question
whether they interact or not. In theoretical physics there is no unambiguous criterion
for answering this question. For example, in classical (i.e. non-quantum) nonrel-
ativistic and relativistic mechanics the criterion is clear and simple: if the relative
acceleration of the particles is zero they do not interact, otherwise they interact. How-
ever, those theories are based on Galilei and Poincare symmetries, respectively and
there is no reason to believe that such symmetries are exact symmetries of nature.

For understanding whether the relative two-particle acceleration is zero or
not one has to calculate the two-body mass operator which describes the two-body
dynamics. In nonrelativistic and relativistic quantum mechanics the free two-body
mass operator does not depend on the relative distance and therefore the relative
acceleration is zero. Consider now a system of two free particles in dS theory. One
can consider first a case when the particles are nonrelativistic and the relative distance
operator r has the standard form ih0/0q where q is the relative momentum. Then
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a direct calculation (see e.g. Refs. [12, 5]) shows that in classical approximation the
relative acceleration is a = Ac’r/3.

From the formal point of view, the result is the same as in GR on dS space.
However, the result has been obtained by using only standard quantum-mechanical
notions while dS space, its metric, connection etc. have not been involved at all.
This result shows that the phenomenon of cosmological acceleration can be easily
and naturally explained from first principles of quantum theory without involving
space-time background, dark energy and other artificial notions.

The example with the cosmological acceleration shows that the notion of
interaction depends on symmetry. For example, when we consider a system of two
noninteracting particles in dS theory then from the point of view of our experience
based on Galilei or Poincare symmetries they are not free since their relative acceler-
ation is not zero. This poses a question of whether not only dS antigravity but other
interactions are in fact not interactions but effective interactions emerging when a
higher symmetry is treated in terms of a lower one. In particular, a question arises
whether it is possible that quantum symmetry is such that on classical level the rela-
tive acceleration of two free particles is described by the same expression as that given
by the Newton gravitational law and corrections to it. It is clear that this possibility
is not in mainstream according to which gravity on quantum level is a manifestation
of the graviton exchange.

One of the arguments in favor of the graviton exchange is that data on
binary pulsars are treated by many physicists as a confirmation of the prediction of GR
about the existing of gravitational waves. However, models describing binary pulsars
depend on a considerable number of fitted parameters and additional assumptions
(see e.g. the discussion in Ref. [5]).

Another argument is that in the nonrelativistic approximation Feynman
diagrams for the graviton exchange can recover the Newton gravitational law by anal-
ogy with how Feynman diagrams for the photon exchange can recover the Coulomb
law. However, the Newton gravitational law is known only on macroscopic level
and, as noted in Refs. [1, 5], the conclusion that the photon exchange reproduces
the Coulomb law can be made only if one assumes that coordinate and momentum
representations are related to each other by the Fourier transform. As discussed in
those references, standard position operator contradicts experiments. In addition, as
noted in Ref. [5], even on classical level the Coulomb law for pointlike electric charges
has not been verified with a high accuracy. So on macroscopic level the validity of
the Newton gravitation law has been verified with a much greater accuracy than the
Coulomb law. In view of these remarks, the argument that in quantum theory the
Newton gravitational law should be obtained by analogy with the Coulomb law is not
convincing.

In the mainstream approach gravity is the fourth (and probably the last)
interaction which should be unified with electromagnetic, weak and strong interac-
tions. By analogy with them gravity is supposed to be a manifestation of the graviton
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exchange. However, the notion of the exchange by virtual particles is taken from par-
ticle theory while gravity is known only at macroscopic level. Hence thinking that
gravity can be explained by mechanisms analogous to those in particle theory is a
great extrapolation.

Since any quantum theory of gravity can be tested only on macroscopic
level, the problem is not only to construct quantum theory of gravity but also to
understand a correct structure of the position operator on macroscopic level. However,
in the literature the latter problem is not discussed because it is tacitly assumed that
the position operator on macroscopic level is the same as in standard quantum theory.
This is an additional great extrapolation which should be substantiated.

A strong argument in favor of the possibility that gravity is simply a
kinematical manifestation of dS symmetry follows. In contrast to theories based on
Poincare and AdS symmetries, in the dS case the spectrum of the free two-body mass
operator is not bounded below by (my 4+ my) where m; and my are the masses of the
particles. As a consequence, it is not a problem to indicate states where the mean
value of the mass operator has an additional contribution —Gmyms/r with possible
corrections. A problem is to understand reasons why macroscopic bodies have such
wave functions.

Since gravity is manifested only for macroscopic bodies on classical level,
it is important to understand the conditions of applicability of semiclassical approx-
imation for such bodies. As noted in textbooks om quantum theory, the condition
that a physical quantity is semiclassical is that the magnitude of the mean value of
this quantity is much greater than its uncertainty. In particular, a physical quantity
cannot be semiclassical if it is rather small. As noted in Sec. 4, in dS theories there
can exist only physical quantities which in units ¢ = h = 1 are dimensionless. If one
introduces the quantity R and r is the standard distance between particles then in dS
theory the physical quantity defining the distance is the angular quantity ¢ = r/R. It
is reasonable to expect that R is of the order of cosmological distances. If r is of the
order of cosmological distances then ¢ is not small and, as argued in Ref. [5], in that
case the standard position operator is physical. Therefore the above result for the
cosmological accelerator is physical too. However, in Solar System the quantity ¢ is
very small and a problem arises whether this quantity can be treated semiclassically.

In Ref. [5] it is shown that if relative distances are of the order of the
size of the Solar System or less then for macroscopic bodies the standard relative
distance operator is not semiclassical. It can be modified such that the new operator
is semiclassical. Then the classical nonrelativistic two-body Hamiltonian is

q? mimoRC? 1 1

H(r,q) = — —+ =
( q) 2m12 Q(ml—l—mg)r 51 (52

) (4)
where C' is a constant of the order of unity and 6; and d, are the widths of the dS
momentum wave functions for particles 1 and 2, respectively.

Hence the correction to the standard nonrelativistic Hamiltonian disap-
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pears if the width of the dS momentum distribution for each body becomes very
large. In standard theory (over complex numbers) there is no serious limitation on
the width of the distribution; in semiclassical approximation the only limitation is
that the width of the dS momentum distribution should be much less than the mean
value of this momentum. However, as argued in Ref. [5], in a quantum theory over
a Galois field (GFQT) it is natural that the width of the momentum distribution for
a macroscopic body is inversely proportional to its mass and then one recovers the
Newton gravitational law

H(r,q) = —— -G

2m12 r

(5)

where G is a universal paramer such that 0 is proportional to 1/(mG).

Hence in this approach nonrelativistic gravity is simply a kinematical man-
ifestation of dS symmetry over a Galois field and, as shown in Ref. [5], the same
conclusion can be made in the post-Newtonian approximation.

6 What mathematics is most pertinent for quan-
tum physics?

As noted in Sec. 1, several strong arguments indicate that fundamental quantum
theory should be based on discrete and finite mathematics. In this section we consider
an approach when this theory is based on a Galois field. Since the absolute majority
of physicists are not familiar with Galois fields, our first goal is to convince the reader
that the notion of Galois fields is not only very simple and elegant, but also is a
natural basis for quantum physics. If a reader wishes to learn Galois fields on a more
fundamental level, he or she might start with standard textbooks.

In view of the present situation in modern quantum physics, a natural
question arises why, in spite of great efforts of thousands of highly qualified physicists
for many years, the problem of quantum gravity has not been solved yet. A possible
answer is that they did not use the most pertinent mathematics.

For example, the problem of infinities remains probably the most chal-
lenging one in standard formulation of quantum theory. As noted by Weinberg [13],
"Disappointingly this problem appeared with even greater severity in the early days of
quantum theory, and although greatly ameliorated by subsequent improvements in the
theory, it remains with us to the present day’. The title of Weinberg’s paper [14] is
”Living with infinities”. A desire to have a theory without divergences is probably the
main motivation for developing modern theories extending QFT, e.g. loop quantum
gravity, noncommutative quantum theory, string theory etc. On the other hand, in
theories over Galois fields, infinities cannot exist in principle since any Galois field is
finite.
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The key ingredient of standard mathematics is the notions of infinitely
small and infinitely large. As already noted in Sec. 1, in view of the fact that matter
is discrete, the notions of standard division and infinitely small can have only a limited
applicability. Then we have to acknowledge that fundamental physics cannot be based
on continuity, differentiability, geometry, topology etc.

The notion of infinitely large is based on our belief that in principle we can
operate with any large numbers. In standard mathematics this belief is formalized
in terms of axioms about infinite sets (e.g. Zorn’s lemma or Zermelo’s axiom of
choice) which are accepted without proof. The belief that these axioms are correct
is based on the fact that sciences using standard mathematics (physics, chemistry
etc.) describe nature with a very high accuracy. It is believed that this is much
more important than the fact that, as follows from Godel’s incompleteness theorems,
standard mathematics has foundational problems.

Standard mathematics contains statements which seem to be counterintu-
itive. For example, the function tgx gives a one-to-one relation between the intervals
(—m/2,7/2) and (—o00,00). Therefore one can say that a part has the same number
of elements as a whole. One might think that this contradicts common sense but
in standard mathematics the above facts are not treated as contradicting. Another
striking example of the notion of infinity is the famous Hilbert’s paradox of the Grand
Hotel (see e.g. the description of the paradox in Wikipedia).

While Godel’s works on the incompleteness theorems are written in highly
technical terms of mathematical logics, the fact that standard mathematics has foun-
dational problems is clear from the philosophy of quantum theory. Indeed in this
philosophy there should be no statements accepted without proof (and based only
on belief that they are correct); only those statements should be treated as physical,
which can be experimentally verified, at least in principle. For example, the first
incompleteness theorem says that not all facts about natural numbers can be proved.
However, from the philosophy of quantum theory this seems to be clear because we
cannot verify that a + b = b+ a for any numbers a and b.

Suppose we wish to verify that 100+200=200+4100. In the spirit of quan-
tum theory it is insufficient to just say that 1004+200=300 and 200+100=300. We
should describe an experiment where these relations can be verified. In particular,
we should specify whether we have enough resources to represent the numbers 100,
200 and 300. We believe the following observation is very important: although stan-
dard mathematics is a part of our everyday life, people typically do not realize that
standard mathematics is implicitly based on the assumption that one can have any
desirable amount of resources.

Suppose, however that our world is finite. Then the amount of resources
cannot be infinite. In particular, it is impossible in principle to build a computer
operating with any number of bits. In this scenario it is natural to assume that
there exists a fundamental number p such that all calculations can be performed only
modulo p. Then it is natural to consider a quantum theory over a Galois field with the
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characteristic p. Since any Galois field is finite, the fact that arithmetic in this field
is correct can be verified (at least in principle) by using a finite amount of resources.

Let us look at mathematics from the point of view of the famous Kronecker
expression: ” God made the natural numbers, all else is the work of man”. Indeed, the
natural numbers 0, 1, 2... have a clear physical meaning. However only two operations
are always possible in the set of natural numbers: addition and multiplication. In
order to make addition reversible, we introduce negative integers -1, -2 etc. Then,
instead of the set of natural numbers we can work with the ring of integers where three
operations are always possible: addition, subtraction and multiplication. However,
the negative numbers do not have a direct physical meaning (we cannot say, for
example, "I have minus two apples”). Their only role is to make addition reversible.

The next step is the transition to the field of rational numbers in which
all four operations except division by zero are possible. However, as noted above,
division has only a limited meaning.

In mathematics the notion of linear space is widely used, and such impor-
tant notions as the basis and dimension are meaningful only if the space is considered
over a field or body. Therefore if we start from natural numbers and wish to have a
field, then we have to introduce negative and rational numbers. However, if, instead
of all natural numbers, we consider only p numbers 0, 1, 2, ... p—1 where p is prime,
then we can easily construct a field without adding any new elements. This construc-
tion, called Galois field, contains nothing that could prevent its understanding even
by pupils of elementary schools.

Let us denote the set of numbers 0, 1, 2,...p — 1 as F,. Define addition
and multiplication as usual but take the final result modulo p. For simplicity, let
us consider the case p = 5. Then Fj is the set 0, 1, 2, 3, 4. Then 14+ 2 = 3 and
1+3=4asusual, but 24+3 =0, 3+ 4 = 2 etc. Analogously, 1-2=2,2-2 =4,
but 2-3 =1, 3-4 = 2 etc. By definition, the element y € F}, is called opposite
to x € F, and is denoted as —z if x +y = 0 in F,. For example, in F5 we have
-2=3, -4=1 etc. Analogously y € F), is called inverse to z € F, and is denoted as
1/x if zy = 1 in F,. For example, in F; we have 1/2=3, 1/4=4 etc. It is easy to
see that addition is reversible for any natural p > 0 but for making multiplication
reversible we should choose p to be a prime. Otherwise the product of two nonzero
elements may be zero modulo p. If p is chosen to be a prime then indeed F,, becomes
a field without introducing any new objects (like negative numbers or fractions). For
example, in this field each element can obviously be treated as positive and negative
simultaneously! The above example with division might also be an indication that,
in the spirit of Ref. [15], the ultimate quantum theory will be based even not on a
Galois field but on a finite ring.

One might say: well, this is beautiful but impractical since in physics and
everyday life 2+3 is always 5 but not 0. Let us suppose, however that fundamental
physics is described not by "usual mathematics” but by "mathematics modulo p”
where p is a very large number. Then, operating with numbers which are much less
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than p we will not notice this p, at least if we only add and multiply. We will feel
a difference between ”usual mathematics” and "mathematics modulo p” only while
operating with numbers comparable to p.

The above discussion has a well-known historical analogy. For many years
people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature R. Analogously one might think that the set of numbers describing physics
has a ”curvature” defined by a very large number p but we do not notice it when we
deal only with numbers much less than p.

One might argue that introducing a new fundamental constant is not justi-
fied. However, the history of physics tells us that new theories arise when a parameter,
which in the old theory was treated as infinitely small or infinitely large, becomes fi-
nite. For example, from the point of view of nonrelativistic physics, the velocity of
light ¢ is infinitely large but in relativistic physics it is finite. Analogously, from the
point of view of classical theory, the Planck constant £ is infinitely small but in quan-
tum theory it is finite. Therefore it is natural to think that in the future quantum
physics the quantity p will be not infinitely large but finite.

7 Quantum theory over a (alois field

GFQT can be treated as a version of Heisenberg’s matrix formulation of quantum
theory when complex numbers are replaced by elements of a Galois field. In that case
the columns and matrices are automatically truncated in a certain way, and therefore
the theory becomes finite-dimensional (and even finite since any Galois field is finite).
This approach has been first discussed in Refs. [16, 17].

As noted in Sec. 5, in GFQT gravity is simply a natural kinematical
manifestation of dS symmetry over a Galois field. In this approach the gravitational
constant G is not a parameter taken from the outside (e.g. from the condition that
theory should describe experiment) but a quantity which should be calculated. The
actual calculation is problematic because it requires the knowledge of details of wave
functions for macroscopic bodies. However, reasonable qualitative arguments show [5]
that the de Sitter gravitational constant is proportional to 1/lnp. Therefore gravity
is a consequence of the finiteness of nature and disappears in the continuous limit
p — 0.

As noted in Sec. 4, in standard dS theory (over complex numbers) the very
notion of particles and antiparticles becomes only approximate and, as a consequence,
no neutral elementary particles can exist and the electric charge and the baryon and
lepton quantum numbers can be only approximately conserved. However, in GFQT
the same is true regardless of whether we consider a Galois field analog of dS or AdS
theory. Here the data that these quantum numbers are conserved is a consequence of
the fact that at present the quantity p is very large [5].
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A problem arises whether p is a constant or it is different in different
periods of time. Moreover, in view of the problem of time in quantum theory, an
extremely interesting scenario is that the world time is defined by p. Then the phe-
nomenon of "baryon asymmetry of the World” could be explained such that at earlier
stages of the World the quantity p was much less than now and transitions between
particles and antiparticles had a much greater probability than now.

8 Conclusion

In this paper it is argued that the main reason of crisis in physics is that nature,
which is fundamentally discrete, is described by continuous mathematics. Moreover,
no ultimate physical theory can be based on continuous mathematics because, as
follows from Godel’s incompleteness theorems, that mathematics cannot demonstrate
its own consistency.

One might think that one of the main reasons of the crisis in modern
quantum theory is in its philosophy. One of extremely impressive results of QFT is
that the theory correctly gives eight digits in the electron and muon magnetic mo-
ments. This result was obtained at the end of the 40s. Although it has been obtained
with inconsistent mathematics (by subtracting one infinity from the other), the agree-
ment with experiment was so impressive that the present mainstream philosophy of
physicists is such that agreement with experiment is much more important than solid
mathematics.

Dirac was one of the very few famous physicists who had an opposite
philosophy. His advice given in Ref. [7] is: "I learned to distrust all physical concepts
as a basis for a theory. Instead one should put one’s trust in a mathematical scheme,
even if the scheme does not appear at first sight to be connected with physics. One
should concentrate on getting an interesting mathematics.”

It is obvious that only those approaches can be candidates for ultimate
theory, which are based on solid mathematics and solid physical principles. As argued
in this paper, GFQT satisfies those criteria.
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