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Abstract

In a study of magnetic losses in iron and steel a relativistic longitudinal spin wave was found. The

exceedingly small mass and large scale of the spin wave requires an accurate relativistic description

for a boson. Because of these characteristics it forms a state that is decoupled from property

variations of the substrate and is only weakly dissipated. In the effort to explain the behavior

of this spin wave an elementary quantum representation of a relativistic particle was found to be

provided by a differential equation which produces two solutions: one for boson family and one for

fermions. This local statistical quantum state equation derived from the massless dispersion relation

provides a general mechanism for obtaining a statistical and symmetry description required for the

definition of a quantum particle. The analysis allowed confirmation of the mass of the longitudinal

spin wave from the original experimental measurements. The analysis required introducing a new

frame of reference where the particles properties are generated and this allowed the integration of

relativity into the quantum mechanical description as a consequence.
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I. THE PROBLEM

In a 1932 paper P.A.M. Dirac proposed a form of relativistic quantum mechanics that

operates without the explicit representation of a potential, with a local definition of time, and

it also contained a longitudinal interacting particle [1]. Some of these ideas are very useful

in order to integrate relativity into quantum mechanics. The use of the laboratory frame

of reference alone is not sufficient for this relativistic description of a quantum particle. A

concrete physical example with data from a longitudinal exciton is used to make a connection.

The example that will be used is from solid state physics of ferromagnetism. The scales being

discussed are macroscopic as basic quantum activity is define at all scales and is not isolated

to the atomic regime. The resulting derivation supports the conjecture that a particle can

be realized out of the actions on a massless field that concurrently supplies the statistical

foundation for a quantum particle while being consistent with relativity.

With Maxwell’s mathematical theory of electromagnetism and the introduction of the

toroidal transformer core, Henry Rowland started reporting in 1873 dynamic permeability

measurements [2] [3]. Transformers were an important new technology and had to be char-

acterized. Unfortunately the dynamic measurements on annealed iron behaved in a manner

that could not be explained when compared to the static properties. This was a study of

loss mechanisms and at times there were no losses but the signals appeared to be amplified

was called the anomalous eddy current loss problem. The effort to figure out the basic

physics of the behavior was dropped for almost a century. A recent non Ohmic loss problem

encountered in superconducting niobium [4] used in large linear particle accelerator cavities

had enough similarities that brought our attention back to the ferromagnetic loss problem of

Rowland’s transformer because they are both macroscopic quantum processes [5] on a large

scale. Our initial eddy current calibration measurements on a vacuum annealed high purity

iron cylinder actually produced more questions than answers until a set of experiments were

found that separated the separate processes [6]. The fundamental problem for the annealed

low carbon steel or pure iron can be stated quite simply. In a coupled transformer with a

primary and a secondary separated on a linear inductor, photons at the driven frequency

are injected by the primary and then retrieved at the secondary coil. Those signal which

travel over .1 meters in the inductor from the measurements appear to acquire a very small

mass of 1.3 × 10−9 me, where me is the electron mass. The value of the mass and the
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distribution of the signal in the bar are significant features and not accurately described

either by standard electrodynamics or a simple non-relativistic quantum analysis of the field

alone.

FIG. 1: Source and detector arrangement for generating and detecting the fields and

exciton in a soft ferromagnetic iron alloy. reference [6].

Using a simple inductor in making measurements on steel has some hidden advantages.

The first is that for a linear Ohms law conducting materials there is a complete closed form

analysis of the eddy current response and the fields [7] that has been well tested [8]. This

analysis is accurate for any linear magnetic material that can be described by B = µH .

Even if a power series representation of the magnetic field in the materials is applied the

measured results found in well annealed iron or low carbon steel are still inconsistent with

those solutions and out of the range of any possible solution. The standard calculated

responses from electromagnetic theory for the field will fail when collective coherent quantum

transitions are driven by the applied field, since these transitions are not captured by the

field equations. In a non-magnetic material currents induced by the inductor remain local

to the source and opposed to the source field. Because of that property they limit the

extent of the field beyond the source inductor like a damped dipole field. In a ferromagnetic

conductor the spin system competes against this loss mechanisms and drives an in phase

signal in the material. Finding a synchronous field many material diameters away from the

source inductor is an indication that the source fields are being transformed into modes that

are only weakly dissipative and easily propagate long distances. One of the problems that

complicates the analysis of the measurement is that there are three different induced fields

possible in the material whose character changes as a function of the frequency at which

they are generated.

A demagnetizing and annealed ferrous bar has a refined magnetic domain size distribution
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and that limits significant leakage of the high static internal magnetic field by the domains

geometrical arrangement. The high concentration of magnetic moments associated with

the two electronic bands [9], spin parallel/anti-parallel to the local field, formed from the

valance electrons can interact with the dynamic magnetic moment of the source inductor.

Those spin states that lie within the thermal band at the Fermi surface can be affected

by this weak external moment. The array of orientation of the domain moments which is

at a scale much smaller than the material diameter along with a weak induced dynamic

moment insures that there will be a significant population of moments to interact with the

time dependent source field. Magnetic transitions driven by the source field differs from

the conduction Ohmic losses in that this energy stored in a magnetic transition and can be

reversibly accessed and is not all lost into the thermal energy of the solid in a steady state

experiment. So when the field energy is absorbed into these magnetic transitions it can

be dynamically stored. The situation is further complicated because there are a range of

allowed spin transition energies because of the existence of the magnetic domain boundaries

where the local internal B field changes sign through the magnetic domain boundary. These

lower concentration domain wall moments with their energy state separation extends from

zero to maximum values found within the domains, see figure 2 and equation 14. This

continuum of states along with the thermal reservoir allows a strong connection to be made

from the low energy applied induction field to the higher energy time dependent longitudinal

propagating magnetization that is generated.

FIG. 2: Energy diagram for a low carbon steel

The result is a large scale internal magnetic excitation that is driven by a weak time

dependent field which builds to a steady state value with an oscillating longitudinal mag-
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netization. This response at the driving inductor is strongly temperature dependent and

becomes increasingly large with temperature until quenched at the Curie temperature. The

dispersion curve for the propagating component of this longitudinal magnetic oscillation can

be measured and is found to have a mass of 1.3×10−9me where me is the electron rest mass,

see reference [6] [10]. This low mass and longitudinal oscillating magnetization identified

the exciton as a longitudinal spin wave. A longitudinal spin wave is a completely quantum

feature because the spin is not coupled to the electronic mass via a transverse torque of the

Lorentz force. The transverse spin wave has an effective mass close to that of the electronic

mass and is observed on a micron scale not on the meter scale [11]. The transition from

parallel to anti-parallel is a true transition not a stick and ball model of a spin being rotated

through 108o degrees.

Another feature that confused early researchers was that these spin waves are very in-

sensitive to the materials dimensional variation, surface finish, surface oxides, local decar-

burization (variation in chemistry), local heat treatment histories and variations in local

applied static magnetic fields. The reason these spin waves can be easily detected over large

distances is once they are created they only interact very weakly with material variations.

They will, however, interact with another longitudinal spin wave weakly and this is easily

measured. Their utility for materials inspection is practically nil because of the decoupling

from structural and material variations on a small scale. Small in this case is on the order of

a few centimeters. A good demonstration of this behavior is the response when with a few

centimeters of a the center of the bar for an experiment like shown in figure 1 is heated from

room temperature with a non-electrical heat source through the Curie point, 770 C. There

are affects to the signal transmission but such a drastic change in magnetic properties only

produces relatively modest change in the transmission behavior particularly above 500 kHz,

see reference [6]. This demonstrates the existence of a stable coherent quantum systems

whose wave functions are not easily destroyed by decoherence at room temperature on a

large scale. This makes it almost an ideal system to study the quantum properties of a

bosons in a simply laboratory experiment.

The time dependent magnetization with both a low mass and a density function that

can be measured over a range of energies provides a test for the definition of a quantum

particle. The excitation is a longitudinal spin wave [6] [10] which is an internally generated

exciton with an axial transition that couples to the allowed electronic transitions of the Fe
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spin states close to the Fermi surface. The longitudinal spin wave is a useful probe because

of its low mass unlike the transverse spin wave it can span large volumes of material to find

favorably oriented spins which lie parallel/antiparallel over many domains to the high local

internal B ∼ 2.14T fields. These axial spin state transitions are excited by the small external

variable frequency field driving the source coil in Figure 1 and by coupling to the thermal

phonon fields which can allow the transitions to conserve both energy and momentum. Any

mass measurement of an exciton based on the longitudinal spin wave will be of the field

energy alone stored in the transition that is decoupled from the electron rest mass.

An important feature of iron and some of its alloys are the two spin bands available at

the Fermi surface with opposing orientations [9] and a significant density of states. These

two opposed states permit the axial spin transitions to occur efficiently. The high intrinsic

internal B field within the magnetic domains lifts the degeneracy of the two spin states.

Because the longitudinal spin wave has a structure that can be measured on the order of

> .1 meters and not on the micron scale allows the spin wave’s density function to be

mapped by simply moving a phase sensitive coaxial detector coil away from the source.

Another structure with dynamic features is also detected in the same measurement for

the longitudinal spin wave and that is a stored energy mode that is a stationary Bose-

Einstein condensation of the excitation. The low mass of the longitudinal spin raises the

transition temperature for forming the Bose-Einstein condensation well above the Curie

temperature. Most atomic Bose-Einstein condensations have to be studied in the micro-

Kelvin temperature regime. By making these measurements over a frequency range from

3kHz to 3MHz the individual contributions can be separated and the dispersion curve of

the propagating component can be extracted. It is from the dispersion curve the first mass

determination was made, see reference [6]. Because of the low mass of these spin waves must

be treated as relativistic objects even at low energies. For frequencies greater than a few

hundred kilo Hertz they are fully relativistic particles. At low frequencies below the 20-30

kHz range the propagating field’s velocity falls below the velocity of sound and becomes

coupled to the elastic field of the solid is transformed into a magneto-elastic wave.
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II. LOCAL STATISTICAL QUANTUM STATE EQUATION

To describe the dynamics of a particle with a set of coordinates (x,y,z,t) and some

kind of detector to locate our particle with some accuracy in the laboratory frame tells us

little about the particle itself. Instead of using the laboratory frame of reference a frame of

reference located at the particle’s center of symmetry is selected.

FIG. 3: Self-reference frame compared to the laboratory frame for representing a

particle’s wave function. The self-reference frame is centered on the particle center of

symmetry and there is no coordinate transformation in general that maps this frame

into the laboratory frame. Only particle properties determined in the self-reference

frame are transferred to the laboratory frame for use.

The quantum particle being described occupies a volume and there is significant support

that a minimum volume is required to define a mass starting with the dimension, ǫ required

for a minimum mass from the Compton effect relation, ǫ = ~/mc. W. Heisenberg in 1930

[12], translation [13] used this relation to build an early field theory model of a particle not

as a point mass. The second method to define mass-scale relation is by using the limiting

case solutions of the Schrödinger equation for a weak and vanishing attractive interaction

or a repulsive interaction with a spherically symmetric potential [4] [14]. All three methods

produce the same result, an equation that links the mass of a particle, m, to ǫ, which is the
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linear dimension of the particle’s minimum allowed volume over which a quantum particle

with mass is defined.

ǫ =
~

mc
(1)

This new frame of reference having its origin on the particles center of mass or center

of symmetry is called the self-reference frame for the particle. The mathematics of taking

a field over to a particle description at a minimum only requires the location of the center

of symmetry of a particle as opposed to a function describing a field over all space. If

the particle’s distribution is determined by a random process acting on a field then there

is only one significant spatial coordinate in the self-reference frame and that is the radial

coordinate in a spherical coordinate system. Since the center of symmetry is only defined

in the moment there is in general no simple set of transformations between the laboratory

frame of reference and the self-reference frame [14] [15]. The particles density within this self-

reference frame can then be computed from the resulting statistical description. This type of

calculation will retain the statistical character of a quantum measurement but may also yield

the characteristic that generate the particle properties. Spin is conveniently handled not in

the self-reference frame where the total angular momentum is zero but in the laboratory

frame. For the longitudinal spin wave with zero angular momentum this is not an issue. In

the laboratory frame nothing has changed, where a particle with properties moves on some

trajectory.

In this simple model the many-body effects are included which cannot be isolated by

an observer in a random spatial variable. This statistical picture must also be compatible

with relativity. There are two possible starting points for this derivation. The simplest is

to use the dispersion relationship of a massless field [14], cp = E, and convert it to a linear

differential equation operating on the spatial wave function of a field. This will generate

the spatial differential equation 5. However, since the goal is to define a relativistic particle

behavior it is useful to also include a derivation that begins at an earlier point with the

relativistic energy-momentum relationship and then reduce the mass to zero before recon-

structing the relation with a statistical basis. This allows capturing the time dependence in

the new frame of reference.

The starting point for this derivation in a potential free space has the total energy, E, as
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the sum of the particles kinetic energy and the self-energy due to the particle’s mass. The

relativistic form of this relationship has the parameters [16] [17] mass, m, momentum, p,

and speed of light, c.

c2p2 = E2 −m2c4 (2)

The energy, E, is the total energy made up from the particle’s rest energy and the relativis-

tically corrected kinetic energy. This expression can be factored:

(±cp)(±cp) = (E +mc2)(E −mc2) (3)

The kinetic energy term on the right hand side of the equation E −mc2 represents the

energy in excess of the particles self energy and can be replaced by the energy operator

i~∂/∂t. This is an important point and it is a statement that time is defined by differential

description tracing a single trajectory. This is the time description from dynamics of classical

mechanics in the laboratory frame as well as the one used in the Schrödinger and Dirac

equations. This derivation is for any particle type. However, the excitation being examined

is a boson and there is a previously developed theory for relativistic bosons by W. Pauli and

V. Weisskopf from 1934 [18] tran. [13] that was presented as a challenge to the 1932 paper

of Dirac [1]. In the derivation of the Pauli-Weisskopf model a different substitution was used

for the energy operator to generate the Klein-Gordon equation. The energy operator was

substituted for E and not the kinetic energy, E −mc2. This substitution is not consistent

for a proper definition of time from dynamics for the laboratory frame of reference. If they

had taken the correct form of the energy operator another differential equation is produced

that has a physically correct but has very restricted solution set [15] not at all like the

incorrect version they produced. Using the incorrect form for the energy operator their

harmonic oscillator like solutions had unwanted nonphysical problems with time dependent

probabilities for the stationary states [19]. These defects can be avoided on the quantum

state equation if the the effects of the statistical interaction on a massless field can be first

computed and then mass does not have to be injected artificially as a postulate rather is

generated from the analysis.

To turn equation 3 into an operator relation requires a wave function ψ(x, t). The wave

functions from both the Dirac and the Schrödinger equations are separable as a product of a
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coordinated dependent function u(x) and a time dependent component g(t) in the laboratory

frame. This will also be true as long as the representation remains in the frame of reference

of the particle where the time and space coordinates in self-reference frame cannot be mixed

by a Lorentz transformation. As that is a transformation that can only be used in the

laboratory frame of reference. The total wave function in the self-reference frame is then

ψ(x, τ) = u(x)g(τ) representing the time coordinate in the self-reference frame by τ .

Using the energy operator for E −mc2 in the full energy-momentum relationship does

one very important thing on the right side of equation 3 by requiring an eigenvalue on the

left side of that equation. That then dictates how one of the momentum terms will be

expressed on the left side as ~k where k is the propagation vector. Secondly there is no

operator expression for E +mc2 for the remaining factor on the right side. This term then

has to be an eigenvalue for the action of the remaining momentum operator on the left side

of the equation under a restricted condition on the mass term. The momentum operator

is p̂ = ~

i
∇. Applying the wave function to equation 3 and collecting terms results in the

following expression:

(±cp̂u(x))(±c~kg(t)) = (E +mc2)u(x)(i~
∂g(τ)

∂τ
) (4)

The next step is to factor this equation again into two equations one with a time depen-

dence and one with a space dependence. To factor the equation it is necessary to take the

mass to zero. This yields a pair of equation for the description of a massless field with a

spatial and a time dependent features.

i~c∇u(x) = Eu(x)

−c~kg(τ) = −~ωg(τ) = i~
∂g(τ)

∂τ

(5)

For the positive energy solutions the time dependent portion has the solution g(τ) = e−iωτ

where ω = (E − mc2)/~, however, the space dependent portion is more involved for a

quantum particle.

To incorporate the random action on the massless field the parameter ǫ is introduced into
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the wave function as the mean random coordinate offset from the many-body action on the

massless field. If this parameter is assumed small then the functions can be expanded. Then

the equation that result will describes a particle with mass generated from the massless field.

Going from a massless field to a particle with mass generates another result, and that is

the particle can then support its own self-reference frame. The starting spatial coordinates

x = (x, y, z) are reduced in number for the field as it is locally randomized and all that is

necessary to describe it is a single spatial variable r. The radial coordinate r is the only

required spatial variable in the random walk problem in three dimensions [20]. Analytically

the uncertainty is expressed as a random displacement in the spatial portion of the wave

function to generate mass also establishes a center of symmetry for the particle. This

symmetry is required for particles with charge but that is not a problem for the longitudinal

spin wave. The expansion of the various term become:

u(x + ǫ) → u(r) + ǫ
∂u(r)

∂r
= u(r) + ǫu′(r) (6)

∇u(x + ǫ) →
∂u(r)

∂r
+ ǫ(

∂2u(r)

∂r2
+

2

r

∂u(r)

∂r
) = ǫu′′(r) + (1 +

2ǫ

r
)u′(r) (7)

Introducing the random displacement is a critical feature in this analysis. If the interactions

are weak and sparse then these events can be described by a time ordered series of stochastic

events as is done in quantum electrodynamics. If, however, there is no assurance that

these events are not dense or cannot be time ordered for other reasons then a stochastic

ordered time series cannot be used. Since the description is not of a point particle but of a

probability distribution over space then the consideration from relativity comes into force on

the ambiguity for any observer to decern the order of events that can cause a displacement

in space. This consideration eliminates a stochastic description.

Substituting the Taylor expanded terms into spatial equation 5 yields a second order

differential equation. After the expansion it is convenient to define the parameter κ as

κ = 1/ǫ.

u′′(r) + (
2

r
+ κ{1 − i

E

mc2
})u′(r) − iκ2

E

mc2
u(r) = 0 (8)

Equation 8 is the form of the local statistical quantum state equation where the rest mass
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has been defined and replaced by a parameter κ. The interesting feature of this equation

is that energy enters as a ratio to the self-energy and becomes a unitless parameter that

is valid for the range |E/mc2| ≥ 1. This equation is for a quantum particle description

in the particle’s frame of reference with a relative energy, E, referenced to another object.

The implications for the solutions being in the particle’s own frame of reference is that the

angular momentum is automatically removed as that is a feature generated in the laboratory

frame. Mass no longer appears explicitly as its properties are defined by a scale parameter

in the self-reference frame and it is only realized as an inertial property in the laboratory

frame where dynamics can be computed. The relative self-energy will be represented by

γsr as a symbol that is not to be confused with γ =
√

1 − v2/c2 which requires a dynamic

trajectory and is used in the laboratory frame for the velocity dependent scaling in the

Lorentz transformation of special relativity.

γsr =
E

mc2
(9)

Equation 8 from its inception satisfies the conditions of relativity through the relative

energy term, and it can be transformed into Kummer’s equation which has two solutions

[21]. These two solutions are multiplied by the constants A and B respectively and in three

dimensions are:

u(r, E) = Ae−κrU [
2

1 + iγsr

, 2, (1 + iγsr)κr]

+Be−κrF1[
2

1 + iγsr

, 2, (1 + iγsr)κr]
(10)

Where U[] and F1[] are the confluent hypergeometric function [21]. In the limiting case

where γsr = 1 which is a relative rest state the density of the wave function ψ∗ψr2 at r = 0

for the U[] solution is finite and for the F1[] there is no density at the origin, see Figure 4.

These two solutions are taken respectively as the description of a boson and a fermion. In

the former case the interaction with the vacuum state is attractive, and there is a density

maximum at the origin and in the latter there is a density minimum at the origin due to a

local effective repulsion.

The concept of a boson and fermion being defined independent of an angular momentum
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requirement has its origin in the basic interaction in the particle’s frame of reference between

a massless field and the vacuum state which can either be locally attractive or repulsive [4].

The angular momentum features which we commonly associate with these two classes of

particles are observed in the laboratory frame and are the result of interactions with the

quantized radiation fields. The only particle that can have a finite density at the origin is

one that can be observed in the l = 0 state and that is limited to bosons. The fermion at

all energies has no density at its origin and this reinforced from equation 10 which yields a

particle that has a finite angular momentum in its lowest energy form. The details of the

angular momentum are well described for the particle families in the laboratory frame of

reference where they are measured [22].

Incorporating the statistical features that randomize a field to generate particle like prop-

erties required a reference frame for the particle that differs from a laboratory frame of

reference. The self-reference frame has no classical equivalent. There is no simple coordi-

nate transformations that connects this frame to the laboratory frame. With the particle

wave functions defined in this frame it is possible to extract properties such as mass. This

allows the application of these solutions to the relativistic longitudinal spin wave problem.

The experiments are inherently self referential in that the source field that drives particle

creation can be compared to the displaced detected fields by phase sensitive measurements

referenced to the source. In this case the entire self-reference frame can be mapped and

measured. This allows phase sensitive data to be extracted from both the propagating and

stationary components.

III. FERMION

ψ(r, E, τ) ∼ e−κrF1[
2

1 + iγsr

, 2, (1 + iγsr)κr]e
−iωτ (11)

The density function formed from the fermion functions is very interesting in that for the

relative rest state solution is essentially a constant function and only decreases at the origin,

see figure 4. As the relative energy is increased these functions transform to a localize density

about the origin. They are not identical to the boson functions at high energies because their

individual wave functions are quite different though their density functions appear similar.

The elementary fermion function depending on the relative energy of the observer has both
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particle and wave like properties. There is no wave-particle duality these are characteristics

built into the relativistic state function of the particle and differentiate by an observer under

different conditions.

The self-reference frame fermion solution can be compared to free electron theory in

metals where the plane wave solution from the constant potential form of the Schrödinger

equation is used. In the electron theory of metals as covered by Bethe and Sommerfeld

[23] soon after quantum mechanics became available they used a plane wave representation

for the electrons in metals as a basis. The uniform density behavior of the plane wave is

mirrored in the fermion wave function found in the F1[] term of equation 10, in figure 4

when |γsr| is close to unity and the density is observed away from the origin. The density

minimum at the origin is on the scale of the classical electron radius which generates the

mass of the particle. The density function at γsr = 1 is then a finite constant away from the

origin just as for a plane wave density at finite energy. The local density minimum at the

origin is a feature not captured by the plane wave model of electronic behavior. In the metal

because all comparisons are relative the existence of the uniform constant density solution

of the self-reference frame for the relative rest state of a fermion allows the wave function to

span the entire lattice. The existence of that solution along with the Fermi-Dirac statistics

in the laboratory frame and not a postulated cyclical boundary condition is the source of

the electrons ability to behave as a quasi-free particle in a good conductor.

FIG. 4: Density function for boson and fermion from the the three dimensional local

statistical quantum state equation at γsr of 1 and 100. Note the relative rest state

boson function has a finite value at the origin.

One of A. Einstein’s main research goals was to find a representation where a particle

description could be generated from a massless field [24]. It was a concept he thought
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necessary for quantum mechanics. The particles we know the most about are fermions

and in particular the electron. Finding a representation for the low energy fermion or

electron which can mimic the plane wave model of Bethe-Sommerfeld with the addition of

a local characteristic that is indicative of mass represents a major advance for finding a

quantitative description of a fermion. The requirements of relativity constrains our view

point to the particle’s frame of reference in this new description. The features of relativity

were incorporated into the derivation of the local statistical quantum state equation through

the requirement that the analysis be in the particle’s reference frame with a scaled energy

relative to another object. The relative quantum description can be used in relationship to

any other object. This is the main requirements of relativity that is satisfied with the local

statistical quantum state equation solutions for the description of a particle. The implication

from what was found is that there is only a need for a single description and it is unnecessary

to have two theories: one for relativistic behavior and a second for non-relativistic behavior.

IV. BOSON AND THE LONGITUDINAL SPIN WAVE

ψ(r, E, τ) ∼ e−κrU [
2

1 + iγsr

, 2, (1 + iγsr)κr]e
−iωτ (12)

The boson density function in the relative rest state, γsr = 1, is basically a two sloped

exponential decay. The initial steep slope from the origin is completed by a slower decaying

exponential for large values of r. The particle in the relative rest state is very compact

compared to the parameter, ǫ, as opposed to the fermion. Unlike the fermion functions

near the rest state these functions are localized and can be normalized: see figure 5B where

the plotted functions have been normalized. At higher energies the density at the origin

decreases and the function around the origin begin to look like the fermion functions. There

are major difference in the wave functions between the bosons and fermions that appear in

the argument variation as well as the amplitude variations as a function of radius.

The stable boson we commonly deal with is a photon and on the laboratory scale in

vacuum it is a massless field. However, when it enters a dense material it can take on new

properties. The boson case is easier to study directly because in the case of the longitudinal

spin wave it is possible to pump a steady state Bose-Einstein condensation with a weak

induction field to generate a measurable population and also produce a propagating mode.
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FIG. 5: A) Axial detected magnetic field level measured displaced from the source as a

function of frequency [6] from the signal source in a .0127m diameter low carbon steel

rod. Two separate contributions make up this data: a propagating longitudinal spin

wave that dominates near the source and a BEC of the spin wave that contributes

away from the source at higher frequencies. The displaced peak in the 3MHz data

at .14 meters represents the displaced boson maximum emerging. B) The calculated

density function for boson particle as a function of energy showing the emergence of

the displaced maximum for E/mc2 ≥ 3

The local energy storage provided by the BEC allows a relatively large measurable amplitude

to be produced for both cases. The one major advantage in studying the activity of the
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longitudinal spin wave is that the mass is so low it is possible to study its motion in the

relativistic regime without the complication of building and operating an accelerator and

finding a boson that is long lived enough to accelerate. The results for a longitudinal spin

wave are that for energies from near rest to relativistic values show a measured density

function that mirrors the boson solutions computed from equation 10, see figure 5. Also the

experimental data contains a sum of excitations generated from domain boundary states with

lower field splitting that result in greater characteristic lengths even though the states within

the magnetic domain boundaries will dominate the response. There are two features in the

progression of density functions as a function of energy that identify the boson function. First

is the displaced maximum centered at ǫ = .14 meters and it is calculated to correspond to

γsr ∼ 3 and is well resolved at 3 MHz. The second feature is the increasing amplitude of the

signal away from the signal source with increasing frequency verses the source amplitude.

The large scale of the exciton on the order of a fraction of a meter allows measurement of the

coherently pumped state. The signal detected is proportional to the local time dependent

density of the state that can be accurately monitored over a broad range of amplitudes and

energy. Mass was first determined from the dispersion curve of the propagating mode of

the longitudinal spin wave [6]. Since this quadratic curve fit to this data contains a few

points at higher frequencies where the mass is increasing by the relativistic contribution, the

mass estimate will be slightly higher. The mass can also be extracted from the measured

displaced peak in the dispersion response to determine ǫ at 3 MHz for the BEC component of

the longitudinal spin wave, figure 5, by using equation 1. The speed of light in the material,

cmaterial can be taken from the slope of the dispersion curve, ∼ .63± .1× 106 meters/sec. in

reference [6] as that value is required to compute the mass.

m =
~

ǫcmaterial

=
~κ

cmaterial

(13)

Finally the rest mass of the longitudinal spin wave can be computed from the energy

of the transitions that supports the exciton by relating this energy to the equivalent mass

mc2. This is the energy for the spin parallel to anti-parallel transition and can be computed

within a magnetic domain from:

δE = 2gµSB (14)

17



Table 2 Rest mass of longitudinal spin wave in low carbon steel rod by three

methods, where mass is in terms of the electron mass me

Method Value in me Comments

spin state transition energy 6 × 10−4eV 1.1 × 10−9 m = δE/c2 equivalent mass

displaced maximum, figure 5 for a γsr ∼ 3 1.25 ± .15 × 10−9 equation 13

dispersion curve 1.3 ± .15 × 10−9 [6]

g is the gyromagnetic ratio, µb is the Bohr magneton and S is the spin with a value of

one half. For a low carbon steel the local internal magnetic field is B ∼ 2.16T [25] with

µ = 2.2µb per site has an energy separation δE = 6 × 10−4eV . These values are compared

in tableIV. The mass values are all found to lie close together giving support to the notion

that there is a longitudinal spin wave population that possess a mass close to 10−9me.

V. CONCLUSION

In looking for answers to explain the anomalous properties of induction measurements in

iron and steel we were fortunate to find a description of the two quantum particle families

and a reference frame where the statistical properties of a quantum particle are defined that

allowed the integration of relativity with quantum mechanics.
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