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Figure: Doo-Sabin subdivision of the unit cube defines a surface that encloses a volume of 6241

9920
. The tetrahe-

dron with all edges of length 1 generates a Loop subdivision surface with volume 44192429513855101

6865302375425894400 2
. The 

unperturbed and perturbed control mesh define different Catmull-Clark subdivision surfaces that enclose identi-
cal volume. In the fourth example, the volume of the initial mesh contracts by a factor of 0.677115 to the 
volume enclosed by the Catmull-Clark subdivision surface. †

Abstract

We present a framework to derive the coefficients of trilinear forms that compute the exact volume enclosed by 
subdivision surfaces. The coefficients depend only on the local mesh topology, such as the valence of a vertex, 
and the subdivision rules. The input to the trilinear form are the initial control points of the mesh.

Our framework allows us to explicitly state volume formulas for surfaces generated by the popular subdivision 
algorithms Doo-Sabin, Catmull-Clark, and Loop. The trilinear forms grow in complexity as the vertex valence 
increases. In practice, the explicit formulas are restricted to meshes with a certain maximum valence of a vertex.

The approach extends to higher order momentums such as the center of gravity, and the inertia of the volume 
enclosed by subdivision surfaces.

The first author dedicates this work to the memory of Andrew Ladd, Nik Sperling, and Leif Dickmann. The article and additional 
resources are available at www.hakenberg.de. The first author was partially supported by personal savings accumulated during his 
visit to the Nanyang Technological University as a visiting research scientist in 2012-2013. He’d like to thank everyone who worked 
to make this opportunity available to him.

Introduction
A subdivision scheme is a mesh refinement procedure. Starting with an initial mesh, the repeated application of 
the subdivision scheme results in an increasingly dense mesh. The sequence of meshes converges to a piece-
wise smooth surface. Due to these properties, subdivision is a popular technique to design and represent 
surfaces in computer graphics.

[Doo/Sabin 1978] and [Catmull/Clark 1978] introduced the first subdivision schemes intended for the refinement 
of quad meshes. In the limit, large parts of the surface have piecewise polynomial parameterization. Later, [Loop 
1987] designed a subdivision scheme for triangular meshes. The smoothness characteristics of the limit surface 
produced by the schemes are well-understood, see [Reif 1995].



Figure: Four iterations of the Doo-Sabin subdivision scheme applied to an initial mesh of 4 unit cubes glued 

together. We prove that the limit surface encloses a volume of 10357799098161+2535566756 5

3238292736000
. †

When the surface is generated from a closed, orientable mesh, the enclosed volume is a well-defined concept. 
A simple formula for the enclosed volume by the limit surface was not known previously. [Peters/Nasri 1997] 
only describe an approximation of the volume. Moreover, their framework requires “regular submeshes to have 
a polynomial parametrization”. Volumes defined by the Loop scheme are not covered by their approach.

For the three subdivision schemes mentioned above, our article proves that the exact volume enclosed by the 
limit surface is a trilinear form with the x-, y-, z-vertex coordinates of the initial mesh as input. We provide univer-

sal trilinear forms that apply locally, and add up to the encosed volume globally. The evaluation is computation-
ally efficient.

Possible applications of our new formula are 1) the design of surfaces to enclose a specific volume, 2) deforma-
tion of surfaces subject to volume preservation.

The article is structured as follows: We motivate the general volume formula. The regular and non-regular mesh 
topologies require separate treatment. Then, the volume formulas for Doo-Sabin, Catmull-Clark, and Loop are 
computed. We sketch how our framework applies to two other well-known subdivision schemes. Finally, we 
discuss the extension to moments of higher degree.

Framework
We begin with the well-known formula for the volume of piecewise linear surfaces. Our more complicated for-
mula for volumes enclosed by subdivision surfaces is of identical prototype. The volume enclosed by a closed, 
orientable triangular mesh M is 

volM =tœM
1

6
det

px1 px2 px3

py1 py2 py3

pz1 pz2 pz3

= 1

6
tœM px1py2 pz3 - py3 pz2 + px2py3 pz1 - py1 pz3 + px3py1 pz2 - py2 pz1

 

where pxi denotes the x-coordinate, pyi the y-coordinate, and pzi the z-coordinate of the vertex i œ 1, 2, 3 of 

the oriented triangle t œM in the mesh. The formula is a trilinear form that we write as

volM =fœM i, j,k
mf  Ai, j,k - Ai,k, j pxi py j pzk 

The tensor A has dimensions 3ä3ä3. The facet f œM is an oriented triangle of the mesh. The surface corre-

sponding to the triangle f  is completely determined by mf  = 3 control points. Throughout the article we use the 

abbreviation i, j,k
m X i, j, k :=i=1

m  j=1
m k=1

m X i, j, k.
We show that for stationary subdivision schemes with certain additional properties, the enclosed volume of the 
subdivision surface is also determined by a collection of trilinear forms. We require the subdivision surface to be 
partitioned by facets f œM, where the surface corresponding to a facet f  is completely determined by a set of 

control points pxi, pyi, pzi for i = 1, 2, ..., mf  in the neighborhood of facet f . In other words: The coordinate 

pxi, pyi, pzi is from the set of initial control points.

2     volume_enclosed_by_subdivision_surfaces_20140502.nb



Figure: Shaded in red, a facet in a Doo-Sabin, Catmull-Clark, and Loop subdivision mesh together with the 
control points that define the surface across the facet. †

Example: After two rounds of subdivision with Doo-Sabin’s algorithm, each vertex v has valence 4. We associ-

ate a facet f  to each vertex v: The facet is the quad spanned by the midpoints of the 4 faces adjacent to v. mf  
is the number of vertices in the faces adjacent to v. †

Example: For Catmull-Clark, the facet f  is a quad of the one-time subdivided initial mesh. For Loop, the facet f  

is a triangle of the one-time subdivided initial mesh. mf  is the number of vertices in the one-ring of f . †

For a general mesh M there is not a single trilinear form A that applies to all facets across the mesh. Instead, we 

have to provide a trilinear form Atf  for each possible mesh topology tf  around a facet f œM. An example for 
the characterization tf  is the valence of a non-regular vertex of f .

We state the general formula for the volume defined by subdivision of mesh M as

volM =fœM volf  =fœM i, j,k
mf  Ai, j,k

tf  - Ai,k, j
tf   pxi py j pzk =fœM i, j,k

mf  Yi, j,k
tf  pxi py j pzk  

...

Figure: Different topologies tf  œ 3, 4, 5, 6, 7 around a facet f  in a Catmull-Clark mesh. Each expression 

volf  involves a different trilinear form Yi, j,k
tf  . Green indicates the regular case. †

We show that the coefficients Yi, j,k
tf  := Ai, j,k

tf  - Ai,k, j
tf   depend only on the subdivision rules that determine the 

surface corresponding to the topology tf  of facet f . Atf  are obtained by solving a system of linear equations. 

Once the trilinear forms Y tf  are established for a subdivision scheme, the formula applies to any closed, ori-
entable mesh M.

The guiding principle to obtain the coefficients is that the volume formula has to be invariant under one round of 
subdivision of the mesh

volM = volSM,
since that operation does not change the limit surface. The careful choice of the partition with the facets allows 
to reduce the equation to

volf  =h volfh 
where fh denotes the collection of facets that are the result of subdividing facet f . We define the real valued 

trilinear form that maps a facet as uf  :=i, j,k
mf  Ai, j,k

tf  pxi py j pzk with pxi, pyi, pzi as the points that determine the 

surface over facet f . The transpose of u is defined as u§f  :=i, j,k
mf  Ai,k, j

tf  pxi py j pzk where A has two indices 

swapped. We impose the relation

uf  =h ufh
that implies uM :=fœM uf  = uSM. Therefore, fœM uf  - u§f  is a candidate for the volume enclosed by 
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the subdivision surface defined by mesh M. In fact, the value of volf  = uf  - u§f  is not meaningful unless 

added up globally over all facets f  of a closed, orientable mesh M.

   

Figure: Catmull-Clark subdivision of a facet with a vertex of valence 5 into 3 regular facets, and one facet with a 
valence 5 vertex. †

Remark: One round of subdivision with either of the schemes Doo-Sabin, Catmull-Clark, and Loop partitions a 
facet f  into 4 facets fh for h œ 1, 2, 3, 4. If f  is regular, all fh are regular. If f  has a non-regular one-ring, the new 

partition contains 3 regular facets f1, f2, f3, and one non-regular facet f4 that has the same topology type as f , 

i.e. tf  = tf4. †
A surface subdivision scheme S typically partitions a facet f  into 4 smaller facets Sf Ø f1, f2, f3, f4 in the 

refined mesh, which is what we assume henceforth to keep the notation reasonable.

Subdivision of the control points of facet f  to the control points of fh is a coordinatewise, linear mapping that we 

express as the matrix Sh with dimensions mfhämf  for hœ 1, 2, 3, 4. We write explicitly 

ufh =a,b,c
mfh Aa,b,c

tfh i=1
mf Sa,i

h pxi j=1
mf  Sb, j

h py j k=1
mf  Sc,k

h pzk for h œ 1, 2, 3, 4.
Considering all products pxi py j pzk as a basis, we obtain a total of mf 3 equations from uf  =h ufh,

Ai, j,k
tf  =a,b,c

mf1 Aa,b,c
tf1 Sa,i

1 Sb, j
1 Sc,k

1 +a,b,c
mf2 Aa,b,c

tf2 Sa,i
2 Sb, j

2 Sc,k
2 +a,b,c

mf3 Aa,b,c
tf3 Sa,i

3 Sb, j
3 Sc,k

3 +a,b,c
mf4 Aa,b,c

tf4 Sa,i
4 Sb, j

4 Sc,k
4  

for all i, j, k = 1, 2, ..., mf . The equations help to solve for unknown coefficients Ai, j,k
tf  . We emphasize on two 

scenarios that are relevant to derive the volume forms for Doo-Sabin, Catmull-Clark, as well as Loop subdivision 
surfaces.

To enumerate the triple index i, j, k in a linear fashion, we write Ò i, j, k := i +  j - 1 mf  + k - 1 mf 2.
Corollary 1: Let the facets f , and fh be regular, tf  = tfh for all hœ 1, 2, 3, 4. If the coefficients Ai, j,k

tf   are 

unknown, the equations become the linear system E - I.x = 0 where 

EÒ i, j,k,Ò a,b,c =h=1
4 Sa,i

h Sb, j
h Sc,k

h , 

and I is the identity matrix. x is the vector with xÒ i, j,k = Ai, j,k
tf  . A solution x is an element in the nullspace of the 

matrix E - I. †

Corollary 2: Let the two facets f  and f4 be non-regular, tf  = tf4, the facets f1, f2, f3 regular, and 

Atf1 = Atf2 = Atf3 known. If the coefficients Ai, j,k
tf   are unknown, the equations are the linear system F - I.x = b 

where

FÒ i, j,k,Ò a,b,c =Sa,i
4 Sb, j

4 Sc,k
4 , 

and I is the identity matrix. The vector b contains all known quantities from the rhs

bÒ i, j,k = -a,b,c
mf  Aa,b,c

tf1 Sa,i
1 Sb, j

1 Sc,k
1 +a,b,c

mf  Aa,b,c
tf2 Sa,i

2 Sb, j
2 Sc,k

2 +a,b,c
mf  Aa,b,c

tf3 Sa,i
3 Sb, j

3 Sc,k
3 . 

The vector x with xÒ i, j,k = Ai, j,k
tf   is a solution to the system of linear equations. †

The matrix F in Corollary 2 defines a tensor product subdivision scheme. If the matrix S4 has an eigenvalue 1 

with multiplicity 1, and all other eigenvalues have absolute value < 1, then F also has an eigenvalue 1 with 

multiplicity 1, and all other eigenvalues have absolute value < 1. That means the matrix F - I has 1-dimensional 
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nullspace. Equivalently, rankF - I =mf 3 - 1. For Doo-Sabin, Catmull-Clark, and Loop this is precisely the 
case for all non-regular topologies. We capture an important consequence in a Lemma.

Lemma 1: Let matrix S4 have eigenvalue 1 with multiplicity 1, and all other eigenvalues absolute value < 1. Any 
element w from the nullspace of matrix F - I is mapped to 0 when performing the skew operation 

wÒ i, j,k -wÒ i,k, j for all i, j, k = 1, 2, ..., mf .
Proof: Let v be the right eigenvector to eigenvalue 1 of S4 with v.S4 = v. Then, the eigenvector w to eigenvalue 

1 of F with F.w =w is wÒ a,b,c = va vb vc, since

a,b,c
mf  FÒ i, j,k,Ò a,b,c.wÒ a,b,c =a,b,c

mf  Sa,i
4 Sb, j

4 Sc,k
4 va vb vc

=a=1
mf  va Sa,i

4 ÿb=1
mf  vb Sb, j

4 ÿc=1
mf  vc Sc,k

4 = vi vj vk =wÒ i, j,k

 

Naturally, wÒ i, j,k -wÒ i,k, j = vivj vk - vk vj = 0. †

Because of the 1-dimensional nullspace, Atf  for non-regular tf  are not uniquely determined by Corollary 2. 

However, the Lemma asserts that Yi, j,k
tf  = Ai, j,k

tf  - Ai,k, j
tf   follow uniquely.

A particular solution Atf  exists as an integral expression. We denote this special trilinear form with A
tf 

. The 
concept has been presented before, for instance in [Peters/Nasri 1997]. We put the derivation as follows: The 

divergence theorem in three dimensions states that for a smooth vector field G : R3 Ø R3 and a compact subset 

V ÕR3 with piecewise smooth boundary ∑V  and surface normal n 

V
div G „V = ∑V

G ÿn „ ∑V 
Selecting Gx, y, z = x, 0, 0 results in div G = 1 and

volV = V
1 „V = ∑V

x, 0, 0 ÿn „ ∑V = ∑V
x nx „ ∑V 

We parameterize the subdivision surface corresponding to a facet f  with f : DØR3 as 

fs, t =
i=1

mf  pxi Bis, t
i=1

mf  pyi Bis, t
i=1

mf  pzi Bis, t
 

where D ÕR2, and Bi : DØR denotes the basis function characteristic to the subdivision scheme over the facet 
contributed by control point i = 1, 2, ..., mf .
Example: When the facet f œM is of quad type, we choose the unit square D = 0, 1ä 0, 1 as the domain. 

When f  is triangular, D = s, tœR2 : 0 § s, t  s + t § 1 is the canonic choice. †

We use the substitution as, t := detdfs, tT .dfs, t , where

dfs, t =
i=1

mf  pxi ∑s Bis, t i=1
mf pxi ∑t Bis, t

i=1
mf  pyi ∑s Bis, t i=1

mf pyi ∑t Bis, t
i=1

mf  pzi ∑s Bis, t i=1
mf pzi ∑t Bis, t

 

Let the piecewise smooth boundary ∑V  be the subdivision surface. Then, the integral becomes

∑V
x nx „ ∑V

=fœM Di, j,k
mf  pxi Bis, t py j ∑sBjs,t pzk ∑tBk s,t-pz j ∑sBjs,t pyk ∑tBk s,t

as,t as, t „s „ t

=fœM i, j,k
mf  pxipy j pzk - pyk pz j D

Bis, t ∑s Bjs, t ∑t Bks, t „s „ t

 

By comparison of formulas, the coefficient Ai, j,k
tf 

 substitutes the integral that remains in the expression, and 
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satisfies the relation uf  =h ufh 
Ai, j,k
tf 

= D
Bis, t ∑s Bjs, t ∑t Bks, t „s „ t

= 1

4 2 D
Bi s

2
, t

2
 ∑s Bj  s

2
, t

2
 ∑t Bk  s

2
, t

2
 „s „ t

= 2 D
Bi s

2
, t

2
 ∑s Bj s

2
, t

2
 ∑t Bk s

2
, t

2
 „s „ t

=h=1
4 D

a=1
mfh Sa,i

h Ba s, t b=1
mfhSb, j

h ∑s Bbs, t c=1
mfh Sc,k

h ∑t Bcs, t „s „ t

=h=1
4 a,b,c

mfh D
Bas, t ∑s Bbs, t ∑t Bcs, t „s „ t  Sa,i

h Sb, j
h Sc,k

h

=h=1
4 a,b,c

mfh Aa,b,c
tfh Sa,i

h Sb, j
h Sc,k

h

 

With Y i, j,k
tf 

:= Ai, j,k
tf 

- Ai,k, j
tf 

 the divergence theorem asserts volM =fœM i, j,k
mf  Y i, j,k

tf 
pxi py j pzk.

The choice Gx, y, z = 0, y, 0 results in Y j,k,i
tf 

, and Gx, y, z = 0, 0, z corresponds to Y k,i, j
tf 

. By construction, 

we have -Y i,k, j
tf 

= -Ai,k, j
tf 

+ Ai, j,k
tf 

=Y i, j,k
tf 

, -Y j,i,k
tf 

=Y j,k,i
tf 

, and -Y k, j,i
tf 

= Y k,i, j
tf 

. The average of all 6 permutations of 

the volume formula, results in the alternating trilinear form 

Y
`

i, j,k

tf 
:= 1

6
Y i, j,k

tf 
-Y i,k, j

tf 
+Y j,k,i

tf 
- Y j,i,k

tf 
+Y k,i, j

tf 
-Y k, j,i

tf   for all tf 

that also satisfies volM = 1

6
6 volM =fœM i, j,k

mf  Y
`

i, j,k

tf 
pxi py j pzk. Additionally, any affine combination of volume 

forms also constitutes a valid volume formula. For instance,

Y tf  = 1 - b Y
` tf 

+ bY
tf 

=Y
` tf 

+ bY tf 
-Y
` tf   for any b œR.

When the basis functions Bi for i = 1, 2, ..., mf  are polynomials, the evaluation of the integrals is the straightfor-
ward way to obtain a solution to uf  =h ufh. Generally, the basis functions Bi do not have a closed form 
expression, albeit properties such as smoothness, and boundedness are known [Reif 1995]. Corollaries 1 and 2 
allow us to study the solution space of volume forms regardless of the availability of the basis functions.

Applications
We apply Corollaries 1 and 2 to the Doo-Sabin, Catmull-Clark, and Loop subdivision schemes. We derive the 

solution space of the trilinear forms Atf  that satisfy the equation uf  =h ufh. For each scheme, we treat the 

regular case first. The forms Y tf  for non-regular valences follow uniquely according to Lemma 1. For Doo-

Sabin and Catmull-Clark, we also identify Y
tf 

 for comparison.

Since the number of coefficients Ai, j,k
tf   as well as the size of the matrix F - I grow with the valence of the non-

regular vertex, there is a limit to how many topologies tf  we can cover in practice.

For all three algorithms there is a unique set of volume forms Y
` tf 

 that are also alternating trilinear forms. The 

coefficients Y
`

i, j,k

tf 
 are available for download, see [Hakenberg 2014].

Doo-Sabin

A surface generated by the Doo-Sabin subdivision scheme is parameterized by a partition of quad facets. A 
facet f  is associated to a vertex v of the two-times subdivided initial mesh. To indicate the topology type of f , we 

choose tf  as the number of vertices in the non-regular face adjacent to vertex v, or tf  = 4 in the regular case. 

The surface parameterized by facet f  is determined by mf  = 5 + tf  vertices.

6     volume_enclosed_by_subdivision_surfaces_20140502.nb



...

Figure: Facets of a Doo-Sabin mesh with tf  œ 3, 4, ..., 7, and mf  œ 8, 9, ..., 12, and indexing of the 
control points. †

Regular facet

In the regular case tf  = 4, the surface associated to f  is determined by mf  = 9 control points. We use Corol-

lary 1 to obtain the coefficients Yi, j,k
4 = Ai, j,k

4 - Ai,k, j
4 . Besides the linear system E - I.x = 0 provided for A4, we 

impose the obvious symmetries: Rotational invariance is expressed as Ai, j,k
4 - Ari,r j,rk4 = 0 for all 

i, j, k = 1, 2, ..., 9 where r1 = 3, r2 = 6, r3 = 9, r4 = 2, ..., r9 = 7. Inversion of sign when inverting the 

order of vertices means Ai, j,k
4 + Asi,s j,sk4 = 0 for all i, j, k = 1, 2, ..., 9 where s1 = 3, s2 = 2, s3 = 1, ..., 

s9 = 7 is a mirror operation.

Symbolic computation shows that the nullspace of the combined linear system is 3-dimensional. Of the 3 dimen-

sions, a 1-dimensional subspace is projected to 0 when forming the skew trilinear form Yi, j,k
4 = Ai, j,k

4 - Ai,k, j
4 . We 

use another 1-dimensional subspace to calibrate the form Y4 to match a known volume: For calibration we 
construct a closed quad mesh M with surface invariant under Doo-Sabin subdivision. We begin with a cube with 

all edges of length 1. Initially, the cube mesh has 8 vertices, each with valence 3. We linearly subdivide the 
quads of the mesh 2 times. Then, each vertex of the refined mesh is moved to the position of the cube vertex 
that is closest.

  

Figure: Construction of the degenerate cube mesh M: Linear subdivision followed by vertex collapse. †

The degenerate cube mesh M has the following properties: 1) each of the 8 non-regular vertices are topologi-

cally surrounded by regular vertices, 2) the one-ring of each facet associated to a non-regular vertex is degener-
ated to a single vertex, thus the volume contribution of such a facet is 0 regardless of the choice of coefficients 

Ai, j,k
3 , 3) the subdivision surface defined by Doo-Sabin is the cube of volume 1 that we started with.

  

Figure: 3 rounds of Doo-Sabin subdivision of the degenerate mesh. †

The remaining degree of freedom can be chosen arbitrarily, but affects Atf  when f  is non-regular. The 1-

dimensional solution space is identical to Y
` 4
+ bY 4

-Y
` 4 for b œR. The trilinear form Y

4
 is Y i, j,k

4
= Ai, j,k

4
- Ai,k, j

4
. 

The coefficients Ai, j,k
4

 for all i, j, k = 1, 2, ..., 9 are obtained by evaluating the integral expression. The basis 

functions are the 9 polynomials in s, t œD = 0, 1ä 0, 1 
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B1s, t = 1

4
s - 12 t - 12, B2s, t = 1

2
 1

2
+ s - s2 t - 12, B3s, t = 1

4
s2 t - 12, B4s, t = 1

2
s - 12  1

2
+ t - t2, 

B5s, t =  1

2
+ s - s2  1

2
+ t - t2, B6s, t = 1

2
s2  1

2
+ t - t2, B7s, t = 1

4
s - 12 t2, B8s, t = 1

2
 1

2
+ s - s2 t2, and B9s, t = 1

4
s2 t2.

Example:

A8,1,2
4

= 0,12B8s, t ∑s B1s, t ∑t B2s, t „s „ t

= 0,12
1

2
 1

2
+ s - s2 t2 ÿ 1

2
s - 1 t - 12 ÿ  1

2
+ s - s2 t - 1 „s „ t = 3

3200
,

 

A
`

8,1,2

4
= 11

19200
. †

Non-regular facet

We use Corollary 2 to obtain solutions for Yi, j,k
tf  = Ai, j,k

tf  - Ai,k, j
tf   for valences tf œ 3, 5, 6, ..., 12. For 

tf  œ 3, 5, 6, 8, 10, 12 the Doo-Sabin subdivision weights are rational, or involve a single square root. For 

these topologies we establish Y tf  in symbolic form. The trilinear forms for valences tf  œ 7, 9, 11 are 
obtained numerically.

   

Example: For valence tf  = 3, the facet decomposition is determined by mf  =mf4 = 8 initial control points. 

The matrix Sh maps the control points of facet f  to the control points of fh for h œ 1, 2, 3, 4 during one round of 

subdivision. The matrices are 

S1 = 1

16

9 3 0 3 1 0 0 0

3 9 0 1 3 0 0 0

0 9 3 0 3 1 0 0

3 1 0 9 3 0 0 0

1 3 0 3 9 0 0 0

0 3 1 0 9 3 0 0

0 0 0 9 3 0 3 1

0 0 0 3 9 0 1 3

0 0 0 0
32

3

8

3
0

8

3

 S2 = 1

16

3 9 0 1 3 0 0 0

0 9 3 0 3 1 0 0

0 3 9 0 1 3 0 0

1 3 0 3 9 0 0 0

0 3 1 0 9 3 0 0

0 1 3 0 3 9 0 0

0 0 0 3 9 0 1 3

0 0 0 0
32

3

8

3
0

8

3

0 0 0 0
8

3

32

3
0

8

3

 

S3 = 1

16

3 1 0 9 3 0 0 0

1 3 0 3 9 0 0 0

0 3 1 0 9 3 0 0

0 0 0 9 3 0 3 1

0 0 0 3 9 0 1 3

0 0 0 0
32

3

8

3
0

8

3

0 0 0 3 1 0 9 3

0 0 0 1 3 0 3 9

0 0 0 0
8

3

8

3
0

32

3

S4 = 1

16

1 3 0 3 9 0 0 0

0 3 1 0 9 3 0 0

0 1 3 0 3 9 0 0

0 0 0 3 9 0 1 3

0 0 0 0
32

3

8

3
0

8

3

0 0 0 0
8

3

32

3
0

8

3

0 0 0 1 3 0 3 9

0 0 0 0
8

3

8

3
0

32

3

 

The indexing means S7,8
4 = 9

16
. The eigenvalues of S4 are 1, 1

2
, 1

2
, ..., 1

16
 in descending order. A right eigenvec-

tor to eigenvalue 1 is v = 0, 0, 0, 0, 1, 1, 0, 1. Lemma 1 asserts that Y3 follows uniquely from the choice of A4. 

For instance, Y 8,7,2
3

= 9660923

5782665600
, and Y

`
8,7,2

3
= 3324559

2891332800
. †

8     volume_enclosed_by_subdivision_surfaces_20140502.nb



Figure: Facets of a Doo-Sabin mesh colored based on their volume contribution volf . Left uses the alternating 

forms Y
` tf 

, and right visualizes the difference Y
tf 

-Y
` tf 

. †

Remark: Mirror symmetry implies Ai, j,k
tf  = Asi,sk,s j

tf   for all i, j, k = 1, 2, ..., mf , where s maps the index to the 

counterpart opposite of the diagonal. When tf  = 5 for instance, the map is s1 = 1, s2 = 4, s3 = 7, ..., 
s6 = 8, ..., s10 = 9. Making use of this relation reduces the number of variables approximately by half. More-

over, for an index i, j, k with all i, j, k œ 1, 2, 3, 4, 7, we have Ai, j,k
tf  = Ai, j,k

4  for all tf . †

Catmull-Clark

A surface defined by the Catmull-Clark subdivision scheme is parameterized by a partition of quad facets. A 
facet f  corresponds to a quad of the one-time subdivided initial mesh. We choose tf  as the valence of the non-

regular vertex of the quad, or tf  = 4 for regular f . The number of control points in the one-ring of f  is 

mf  = 8 + 2 tf .

...

Figure: Catmull-Clark facet topologies tf œ 3, 4, 5, 6, and indexing of the control points. †

Regular facet

In the regular case tf  = 4, the surface parameterized by f  is determined by mf  = 16 control points. We use 

Corollary 1 to obtain the coefficients Yi, j,k
4 = Ai, j,k

4 - Ai,k, j
4 . Besides the linear system E - I.x = 0 provided for A4, 

we impose the obvious symmetries: Rotational invariance is expressed as Ai, j,k
4 - Ari,r j,rk4 = 0 for all 

i, j, k = 1, 2, ..., 16 where r1 = 4, r2 = 8, r3 = 12, r4 = 16, ..., r15 = 9, r16 = 13. Inversion of sign when 

inverting the order of vertices means Ai, j,k
4 + Asi,s j,sk4 = 0 for all i, j, k = 1, 2, ..., 16 where s1 = 4, s2 = 3, 

s3 = 2, s4 = 1, ..., s15 = 14, s16 = 13 is a mirror operation.

Symbolic computation shows that the nullspace of the combined linear system is 3-dimensional. Of the 3 dimen-

sions, a 1-dimensional subspace is projected to 0 when forming the skew trilinear form Yi, j,k
4 = Ai, j,k

4 - Ai,k, j
4 . We 

use another 1-dimensional subspace to calibrate the form Y4 to match a known volume: For calibration we 
construct a closed quad mesh M with surface invariant under Catmull-Clark subdivision. We begin with a cube 
with all edges of length 1. Initially, the cube mesh has 8 vertices, each with valence 3. We linearly subdivide the 
quads of the mesh 3 times. Then, each vertex of the refined mesh is moved to the position of the cube vertex 
that is closest.
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  

Figure: Construction of the degenerate cube mesh M: Linear subdivision followed by vertex collapse. †

The degenerate cube mesh M has the following properties: 1) each of the 8 non-regular vertices are topologi-

cally surrounded by regular vertices, 2) the one-ring of each facet adjacent to a non-regular vertex is degener-
ated to a single vertex, thus the volume contribution of such a facet is 0 regardless of the choice of coefficients 

Ai, j,k
3 , 3) the subdivision surface defined by Catmull-Clark is the cube of volume 1 that we started with.

  

Figure: 3 rounds of Catmull-Clark subdivision of the degenerate mesh. †

The remaining degree of freedom can be chosen arbitrarily, but affects Atf  when f  is non-regular. The 1-

dimensional solution space is identical to Y
` 4
+ bY 4

-Y
` 4 for b œR. The trilinear form Y

4
 is Y i, j,k

4
= Ai, j,k

4
- Ai,k, j

4
. 

The coefficients Ai, j,k
4

 for i, j, k = 1, 2, ..., 16 are obtained by evaluating the integral expression. The basis 

functions are the 16 polynomials in s, t œD = 0, 1ä 0, 1 
B1s, t = 1

36
s - 13 t - 13, B2s, t = - 1

36
4 - 6 s2 + 3 s3 t - 13, B3s, t = - 1

36
1 + 3 s + 3 s2 - 3 s3 t - 13, 

B4s, t = - 1

36
s3 t - 13, B5s, t = - 1

36
s - 13 4 - 6 t2 + 3 t3, B6s, t = 1

36
4 - 6 s2 + 3 s3 4 - 6 t2 + 3 t3, 

B7s, t = 1

36
1 + 3 s + 3 s2 - 3 s3 4 - 6 t2 + 3 t3, B8s, t = 1

36
s3 4 - 6 t2 + 3 t3, B9s, t = - 1

36
s - 13 1 + 3 t + 3 t2 - 3 t3, 

B10s, t = 1

36
4 - 6 s2 + 3 s3 1 + 3 t + 3 t2 - 3 t3, B11s, t = 1

36
1 + 3 s + 3 s2 - 3 s3 1 + 3 t + 3 t2 - 3 t3, 

B12s, t = 1

36
s3 1 + 3 t + 3 t2 - 3 t3, B13s, t = - 1

36
s - 13 t3, B14s, t = 1

36
4 - 6 s2 + 3 s3 t3, B15s, t = 1

36
1 + 3 s + 3 s2 - 3 s3 t3, 

and B16s, t = 1

36
s3 t3.

Example: A5,1,6
4

= 3103

48771072
, and A

`
5,1,6

4
= 61595

877879296
. †

Non-regular facet

The forms Y tf  follow uniquely from the choice of A4 by Lemma 1. The subdivision weights are rational. We 

obtain symbolic solutions for Yi, j,k
tf  = Ai, j,k

tf  - Ai,k, j
tf   for valences tf œ 3, 5, 6, 7. Due to the growing size of the 

matrix F - I, and limited computational resources, we establish Y8 only numerically.

   

Example: The facet decomposition for valence tf  = 5 is determined by mf  =mf4 = 18 initial control points. 

The matrices S1, S2, S3 have dimension 16ä18. S4 is a 18ä18 matrix with eigenvalues 1, 0.549 , ..., 0.015  
in descending order. Lemma 1 applies. For instance,
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Y 11,5,3
5

= 555157620972704545156972240729805393939048761580669

981547964721533145894588000817830293184287837041075200
, and

Y
`

11,5,3

5
= 17370080190337845057804377871061038705914533

87765797398722937794631199843811365617667174400
. †

Figure: Facets of a Catmull-Clark mesh colored based on their volume contribution volf . Left uses the alternat-

ing forms Y
` tf 

, and rigtht visualizes the difference Y
tf 

-Y
` tf 

. †

Remark: Mirror symmetry implies Ai, j,k
tf  = Asi,sk,s j

tf   for all i, j, k = 1, 2, ..., mf  where s maps the index to the 

counterpart opposite of the diagonal. When tf  = 5 for instance, the map is s1 = 1, s2 = 5, s3 = 9, 
s4 = 13, ..., s17 = 17, s18 = 16. Making use of this relation reduces the number of variables approximately 

by half. Moreover, for an index i, j, k with all i, j, k œ 1, 2, 3, 4, 5, 9, 13, we have Ai, j,k
tf  = Ai, j,k

4  for all tf . †

Loop

A subdivision surface generated by the Loop algorithm is parameterized by a partition of triangular facets. A 
facet f  corresponds to a triangle of the one-time subdivided initial mesh. As index tf  we choose the valence of 

the non-regular vertex of f , or tf  = 6 when f  is regular. The vertices in the one-ring around f  completely define 

the subdivision surface associated to f . Their cardinality is mf  = 6 + t f .

...

Figure: Indexing of vertices in the one-ring of a triangular facet f  for tf  œ 3, 4, 5, 6, 7. †

Regular facet

In the regular case tf  = 6, the surface associated to f  is determined by mf  = 12 control points. We use Corol-

lary 1 to obtain the coefficients Yi, j,k
6 = Ai, j,k

6 - Ai,k, j
6 . Besides the linear system E - I.x = 0 provided for A6, we 

impose the obvious symmetries: Rotational invariance is expressed as Ai, j,k
6 - Ari,r j,rk6 = 0 for all 

i, j, k = 1, 2, ..., 12 where r1 = 7, r2 = 10, r3 = 12, r4 = 3, ..., r12 = 4. Inversion of sign when inverting 

the order of vertices means Ai, j,k
6 + Asi,s j,sk6 = 0 for all i, j, k = 1, 2, ..., 12 where s1 = 3, s2 = 2, s3 = 1, 

s4 = 7, ..., s12 = 11 is a mirror operation.

Symbolic computation shows that the nullspace of the combined linear system is 3-dimensional. Of the 3 dimen-

sions, a 1-dimensional subspace is projected to 0 when forming the skew trilinear form Yi, j,k
6 = Ai, j,k

6 - Ai,k, j
6 . We 

use another 1-dimensional subspace to calibrate the form Y6 to match a known volume: For calibration we 
construct a closed triangular mesh M with surface invariant under Loop subdivision. We begin with a tetrahe-

dron with all edges of length 1. Initially, the tetrahedron mesh has 4 vertices, each with valence 3. We linearly 
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subdivide the triangles of the mesh 3 times. Then, each vertex of the refined mesh is moved to the position of 
the tetrahedral vertex that is closest.

  

Figure: The construction of the degenerate mesh M: Linear subdivision followed by vertex collapse. †

The degenerate tetrahedron mesh M has the following properties: 1) each of the 4 non-regular vertices are 

topologically surrounded by regular vertices, 2) the one-ring of each facet adjacent to a non-regular vertex is 
degenerated to a single vertex, thus the volume contribution of such a facet is 0 regardless of the choice of 

coefficients Ai, j,k
3 , 3) the subdivision surface defined by Loop is the tetrahedron of volume 1

6 2
 that we started 

with.

  

Figure: 3 rounds of Loop subdivision of the degenerate mesh M. †

The remaining degree of freedom can be chosen arbitrarily, but affects the coefficients Atf  when f  is non-

regular. The 12 basis functions do not have a closed form expression. We are unable to identify A
6
 that corre-

sponds to the integral expression. The trilinear form A
` 6

 that is also alternating is a unique solution.

Example: A
`

5,1,7

6
= 1787

119750400
. †

Non-regular facet

We yield the volume forms Yi, j,k
tf  = Ai, j,k

tf  - Ai,k, j
tf   for non-regular valences tf œ 3, 4, 5, 7, 8, ..., 12 from Corollary 

2. The matrix F - I has dimensions mf 3ämf 3. For instance, for a facet with valence 10, mf  = 6 + 10, and the 

number of coefficients Ai, j,k
10  is 1000. Our specific choice A

` 6
 results in alternating forms Y

` tf 
 for all 3 § tf  § 12. 

Because of limited computational resources, the trilinear forms for tf  œ 7, 9, ..., 12 are derived only 
numerically.

   

Example: Subdivision of a non-regular facet f  with tf  = 4. S4 has eigenvalues 1, 3

8
, 3

8
, 9

64
, 1

8
, ..., 1

16
 in 

descending order. For instance,

Y
`

10,8,9

4
= 22663731969915204014725535462759500947683

18792363864674566857783671734314366207000000
. †
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Figure: Facets in a Loop mesh colored based on their volume contribution volf . Left uses the alternating forms 

Y
` tf 

, and right visualizes the difference Y tf  -Y
` tf 

. †

1 2 3 4
level of subdivision

0.01

0.02

0.05

0.10

0.20

0.50

1.00

relative error

Example: The mesh of a hip bone has vertices with valences tf  œ 3, 4, 5, 6, 7, 8, 9, 12. We plot the approxi-
mation quality of the piecewise linear meshes defined at different levels of subdivision to the exact volume 
obtained by our new formula. 2 rounds of subdivision seem to achieve slightly more than 1 digit of decimal 
precision. Right: Variation of volf  across the mesh. †

Remark: Ai, j,k
tf  = -Ak, j,i

tf   for all i, j, k = 1, 2, ..., mf . And, mirror symmetry implies Ai, j,k
tf  = -Asi,s j,sk

tf   for all 

i, j, k = 1, 2, ..., mf  where s maps the index to the counterpart opposite of the diagonal. When tf  = 5 for 
instance, the map is s1 = 3, s2 = 2, s3 = 1, s4 = 7, ..., s10 = 8, s11 = 11. Making use of this relation 
reduces the number of variables approximately by factor 1/4. Moreover, for an index i, j, k with all 

i, j, k œ 1, 2, 3, 4, 7, we have Ai, j,k
tf  = Ai, j,k

4  for all tf . †

Other schemes

Our framework makes it possible to obtain the trilinear forms that compute the volume enclosed by surfaces 
defined by two other well-known subdivision schemes:

The Butterfly algorithm by [Dyn et al. 1990] is an interpolatory subdivision scheme for triangular meshes. A facet 
is a triangle of the two-times subdivided initial mesh. The surface associated to a facet is determined by the 
control points in the two-ring of the triangle. For instance, a regular facet has mf  = 27 control points.

[Levin/Levin 2003] and [Schaefer/Warren 2005] define subdivision schemes for mixed triangle/quad meshes. 
The facets are the quads and triangles of the two-times subdivided initial mesh. For triangular facets away from 
mixed topologies, the trilinear forms derived for Loop apply. For quad facets away from mixed topologies, the 
trilinear forms derived for Catmull-Clark apply. For facets adjacent or close to tri-quad interfaces, additional 
trilinear forms need to be computed. The surface associated to these facets is determined by control points from 
more than just the one-ring. Different tri-quad configurations around non-regular vertices need to be investi-
gated. Facets adjacent or close to non-regular vertices also have support larger than the one-ring.
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Generalization

Requirements for convergence

We assume that the subdivision scheme S has the following property: For each initial mesh M, there is a con-

stant C that is an upper bound for the coordinates (in absolute value) of the vertices in the sequence of meshes 

SnM at all levels n = 1, 2, 3, ... . This asserts compactness for the application of the divergence theorem. If the 
subdivision weights are non-negative, a valid choice is C =maxi max  pxi , pyi , pzi .
In order to show that the formula corresponds to the exact volume of the subdivision surface, we make following 
argument: By construction, our formula satisfies

volM = volSM = volSnM for all n = 1, 2, 3, ... 

The number of non-regular vertices is constant throughout the iteration. We show that the contribution volf  of 
an non-regular facet f œSnM converges to 0 as the level of subdivision increases nØ¶. We require that the 
subdivision scheme S satisfies

Snf i - Snf  j § ln fi - f j § ln 2 C for all n, and facets f

for some fixed 0 < l < 1 that may depend on the initial mesh M. Here, fi denotes the control point i in the one-

ring of facet f ; same for f j.

volf  =i, j,k
mf  Y i, j,k

tf 
pxi py j pzk =i, j,k

mf  Ai, j,k
tf 

pxi py j pzk - pyk pz j 
The term py j pzk - pyk pz j is a component of a surface normal direction, but the component is not normalized. 

We expand the expression as

py j pzk - pyk pz j = py jpzk - pz j + py j - pyk pzk - pz j + pz jpy j - pyk 
Together we have 

volf  =i, j,k
mf  Ai, j,k

tf 
pxipy jpzk - pz j + py j - pyk pzk - pz j + pz jpy j - pyk, and

volSnf  §i, j,k
mf  Ai, j,k

tf 
px
è

i

§C

py
è

j

§C

pz
è

k - pz
è

j

§ln 2 C

+ py
è

j - py
è

k

§ln 2 C

pz
è

k - pz
è

j

§ln 2 C

+ pz
è

j

§C

py
è

j - py
è

k

§ln 2 C

where px
è

i denotes a coordinate of the one-ring of the facet after n rounds of subdivision. Then, the contribution 

of a non-regular facet f  converges as limnØ¶ volSnf  = 0, and the volume formula is correct asserted by the 

divergence theorem.

Momentum of degree d

We derive the coefficients of the multilinear form that yield the momentum of degree d with respect to the x-axis. 

We choose the vector field G : R3 Ø R3 as Gx, y, z = xd+1, 0, 0. Then, div G = d + 1 xd and

d + 1 V
xd „V = ∑V

xd+1, 0, 0 ÿn „ ∑V = ∑V
xd+1 nx „ ∑V 

Assuming a homogeneous mass distribution, the momentum of degree d = 1 corresponds to the center of 
gravity along the x-coordinate. The momentum of degree d = 2 is the first entry in the inertia tensor.

The momentum of degree d relative to the x-axis, and multiplied by the factor d + 1 is the multilinear form

d + 1 V
xd „V =fœM i1,...,id+1, j,k

mf  Ai1,...,id+1, j,k
tf  - Ai1,...,id+1,k, j

tf   pxi1 ... pxid+1
py j pzk 
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A particular solution is given by

Ai1,...,id+1, j,k
tf 

= D
Bi1s, t ... Bid+1

s, t ∑s Bjs, t ∑t Bks, t „s „ t 

Corollaries 1 and 2 are adapted easily. Matrices E, and F have the entries

EÒ i1,...,id+1, j,k,Ò a1,...,ad+1,b,c =h=1
4 Si1

a1

h

... Sid+1

ad+1

h

Sj
b

h

Sk
c

h

, and

FÒ i1,...,id+1, j,k,Ò a1,...,ad+1,b,c =Si1
a1

4

... Sid+1

ad+1

4

Sj
b

4

Sk
c

4

. 

The coefficients Ai1,...,id+1, j,k
tf   depend only on the subdivision rules for facet topology tf . The number of coeffi-

cients is mf d+3. That is humongous, and our straightforward approach is not practical for 1 § d as of 2014.
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