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Abstract

During the 360 years of Fermat’s last theorem is to be proved, this
proposition was the presence appear full-length novel in ”The Lord of
the Rings”, such as the ”One Ring”. And finally in 1994, it was proved
completely by Andrew Wiles. However interesting proof is Fermat has
been is still unknown. This will be assumed in the category of algebra
probably.

introduction

　 Natural number X,Y and Z solution of 3 or more that this equation holds
Xn + Y n = Zn does not exist. Fermat is proven for the conditions of n = 4.
It is sufficient if n is examining the conditions of prime numbers greater than
or equal to 3 for this.

Theorem 1 Triangle the hypotenuse of Pythagorean theorem is z, can be ex-
pressed by the following relation by using the l and m.

(
l2 −m2

)2
+ 22 (lm)

2
=

(
l2 +m2

)2
x2 =

(
l2 −m2

)2
y2 = 22 (lm)

2

z2 =
(
l2 +m2

)2
(xyz ̸= 0)

To simplify the algebra as a real number M, and N.

M,N ∈ R l2 = M, m2 = N

(M −N)
2
+ 22MN = (M +N)

2
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Put X,Y, Z ∈ N number prime number = p ≥ 3

Xp = (M −N)
2

Y p = 22MN

Zp = (M +N)
2

(XY Z ̸= 0)

Add the following conditions. X,Y, Z ∈ even number

Xp = 2pXp
1

Y p = 2pY p
1

Zp = 2pZp
1

(X1, Y1, Z1 ∈ N)

MN = 2p−2Y p
1 ∈ N

Thus M,N is a rational or irrational both.

1 M ,N is a condition of both rational

Xp = 2pXp
1 , Zp = 2pZp

1

M −N,M +N ∈ evennumber, and it will be a divisor of 2
p+1
2 at least.　

Consequently, Y p
1 ∈ even number so Xp

1 , Zp
1 ∈ even number. (1)

2 M ,N is a condition of both irrational

MN = 2p−2Y p
1

= 2p−2 (Zp
1 −Xp

1 )

= 2p−2

(√
Zp
1 +

√
Xp

1

)(√
Zp
1 −

√
Xp

1

)

Xp = 2pXp
1 , Zp = 2pZp

1

M =

(√
2p−2Zp

1 +
√
2p−2Xp

1

)
N =

(√
2p−2Zp

1 −
√
2p−2Xp

1

)
(M > N)

Put(c, d ∈ odd number l,m ∈ N)
M = 2

l
2 c

1
2 + 2

m
2 d

1
2 N = 2

l
2 c

1
2 − 2

m
2 d

1
2 (I)
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In addition, assuming that there is no difference and sum,

Put(U, V ∈ odd number)

M = 2
l
2U N = 2

m
2 V (II)

MN = 2p−2Y p
1 = 2

l+m
2 UV ∈ N

M, N because irrational both,therefore(l,m ∈ odd number).

2.1 Conditions of (II)

2.1.1 Conditions of (Y p
1 ∈ odd number)

Y p
1 = Zp

1 −Xp
1

Zp
1 , X

p
1 is the relationship of ”odd and even” or ”odd and even”.

Zp
1 and Xp

1 are assumed to be coprime.Common divisor Rp (∈ odd number),
if present in the Zp

1 and Xp
1 , is included as a common divisor of Rp also Y p

1 .

(
Y p
1

Rp ∈ N)
It is possible to remove common divisor, it is sufficient Zp

1 and Xp
1 is examining

the conditions of coprime.

MN = 2p−2Y p
1 = 2

l+m
2 UV (p = l+m

2 + 2 Y p
1 = UV )

Proposition 2 l > m　　 l+m
2 > m (l,m ∈ odd number U, V ∈ odd number)

odd number = 2
l−m

2 +2Xp
1

Xp = (M −N)
2

= M2 +N2 − 2MN

= 2lU2 + 2mV 2 − 2 · 2
l+m

2 UV

= 2m
(
2l−mU2 + V 2 − 2 · 2

l−m
2 UV

)
= 2m (odd number)

Xp = 2m
(
2

l−m
2 +2Xp

1

)
odd number ̸= 2

l−m
2 +2Xp

1 (2)

Lemma 3 l = p−2　　m = p−2 (l,m ∈ odd number U, V ∈ odd number)

Other things being does not hold all applies the infinite descent.
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Xp = (M −N)
2
=

(
2

p−2
2 U − 2

p−2
2 V

)2

= 2p−2 (U − V )
2

22Xp
1 = (U − V )

2
(U > V )

2
√
Xp

1 = U − V ・・・1⃝

Zp = (M +N)
2
=

(
2

p−2
2 U + 2

p−2
2 V

)2

= 2p−2 (U + V )
2

22Zp
1 = (U + V )

2
(U > V )

2
√
Zp
1 = U + V ・・・2⃝

Xp
1 , Z

p
1 is a square number U ± V because it is a natural number.

Xp
1 = (Xp

II)
2

Zp
1 = (Zp

II)
2

(Xp
II , Z

p
II ∈ N)

simultaneous equation: 1⃝± 2⃝

U = Zp
II +Xp

II V = Zp
II −Xp

II

If U,V is not a coprime, and a common divisor r( ∈ odd number).

U = Zp
II +Xp

II = rf ・・・3⃝
V = Zp

II −Xp
II = rg ・・・4⃝

(U, V ∈ odd number f, g ∈ odd number)

simultaneous equation: 3⃝± 4⃝

2Zp
II = r (f + g)

2Xp
II = r (f − g)

Xp
II , Z

p
II comprises a common divisor r. butXp

II , Z
p
IImust also be coprime Xp

1 , Z
p
1

is coprime. Thus U, V is coprime.

Theorem 4 (Y p
1 = UV ) U, V is at a coprime, which is a power of a prime

number.

U = Up
II , V = V p

II Y p
1 = (UIIVII)

p

Substitute Up
II , V

p
II for 3⃝, 4⃝.

Up
II = Zp

II +Xp
II V p

II +Xp
II = Zp

II (3)
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2.1.2 Conditions of (Y p
1 ∈ even number)

(Y p = 22MN) MN because it has a divisor in 22p−2 at least,

l +m

2
≥ 2p− 2 M = 2

l
2U , N = 2

m
2 V (U, V ∈ odd number)

Proposition 5 p > m (l +m ≥ 2 (2p− 2) l > m l,m ∈ odd number)

odd number = 2p−mXp
1

Xp = (M −N)
2

= M2 +N2 − 2MN

= 2lU2 + 2mV 2 − 2 · 2
l+m

2 UV

= 2m
(
2l−mU2 + V 2 − 2 · 2

l−m
2 UV

)
= 2m (odd number)

Xp = 2pXp
1 = 2m

(
2p−mXp

1

)
odd number ̸= 2p−mXp

1 (4)

Proposition 6 p = m (l +m ≥ 2 (2p− 2) l > m l,m ∈ odd number)

V ∈ even number

l + p ≥ 2 (2p− 2)

l ≥ 2 (2p− 2)− p

(l, p ∈ odd number q ∈ even number)

l = 2 (2p− 2)− p+ q

l = 4 (p− 1)− p+ q

Xp = (M −N)
2

= M2 +N2 − 2MN

= 2lU2 + 2mV 2 − 2 · 2
l+m

2 UV

= 24(p−1)−p+qU2 + 2pV 2 − 2 · 22(p−1)+ q
2UV

= 2p
(
24(p−1)−2p+qU2 + V 2 − 2 · 22(p−1)−p+ q

2UV
)

= 2p
((

22(p−1)−p+ q
2U

)2

+ V 2 − 2 · 22(p−1)−p+ q
2UV

)
= 2p

(
2p−2+ q

2U − V
)2

= 2pXp
1

Xp
1 =

(
2p−2+ q

2U − V
)2
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Similarly,

Zp = 2p
(
2p−2+ q

2U + V
)2

= 2pZp
1

Zp
1 =

(
2p−2+ q

2U + V
)2

Xp
1 , Z

p
1 is a square number 2p−2+ q

2U + V because it is a natural number.

Xp
1 = (Xp

II)
2

, Zp
1 = (Zp

II)
2

(Xp
II , Z

p
II ∈ N)

Zp
II = 2p−2+ q

2U + V ・・・5⃝
Xp

II = 2p−2+ q
2U − V ・・・6⃝

simultaneous equation: 5⃝+ 6⃝

Xp
II + Zp

II = 2p−1+ q
2U

Corollary 7 (a+ b)
2
+(a− b)

2
= 2

(
a2 + b2

)
:The sum of the squares of two

(a, b ∈ R a > b)

And multiplied by 2p−2 to both sides.

2p−2 (a+ b)
2
+ 2p−2 (a− b)

2
= 2p−1

(
a2 + b2

)
Zp
II = 2p−2 (a+ b)

2
(Zp

II > Xp
II)

Xp
II = 2p−2 (a− b)

2

2p−1+ q
2U = 2p−1

(
a2 + b2

)
Zp
II = 2p−2

(
a2 + b2 + 2ab

)
Xp

II = 2p−2
(
a2 + b2 − 2ab

)
2

q
2U = a2 + b2

Zp
II = 2p−2

(
2

q
2U + 2ab

)
= 2p−2+ q

2U + 2p−1ab

Xp
II = 2p−2

(
2

q
2U − 2ab

)
= 2p−2+ q

2U − 2p−1ab

In comparison with 5⃝, 6⃝.

2p−1ab = V

ab =
V

2p−1
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{
a = V

2p−1b

b = V
2p−1a

Squaring both sides.{
a2 =

(
V

2p−1b

)2
b2 =

(
V

2p−1a

)2
a2 + b2 = 2

q
2U{(

V
2p−1a

)2
+ a2 = 2

q
2U(

V
2p−1b

)2
+ b2 = 2

q
2U

Corollary 8 (s+ t)
2
+ (s− t)

2
= 2

(
s2 + t2

)
:The sum of the squares of two

(s, t ∈ R s > t)(
V

2p−1b

)2

+ b2 = 2
(
2

q
2−1U

)
・・・7⃝

b = s∓ t V
2p−1b = s± t 2

q
2−1U = s2 + t2

V

2p−1 (s∓ t)
= s± t (s ̸= t)

V

2p−1
= s2 − t2 Was added to 2t2to both sides.

V

2p−1
+ 2t2 = s2 + t2 And multiplied by 2 to both sides.

V

2p−2
+ (2t)

2
= 2

(
2

q
2−1U

)
・・・8⃝

If 2t = s+ t, then t = s. (s ̸= t)

Therefore,

2t = s− t

3t = s

substitute s for 8⃝

(2 · 2t)2 + (2t)
2
= 2

(
2

q
2−1U

)
When you assign a 8⃝ to 7⃝, the following equation is maintained.

ab =
V

2p−1
a2 + b2 = 2

q
2U
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Proof 9

ab = K (K ∈ R){
a = K

b

b = K
a

Squaring both sides.{
a2 =

(
K
b

)2
b2 =

(
K
a

)2
a2 + b2 = L (L ∈ R){(

K
a

)2
+ a2 = L(

K
b

)2
+ b2 = L

Corollary 10 (s+ t)
2
+(s− t)

2
= 2

(
s2 + t2

)
:The sum of the squares of two

(s, t ∈ R s > t)(
K

b

)2

+ b2 = L ・・・9⃝

b = s∓ t K
b = s± t L

2 = s2 + t2

K

(s∓ t)
= s± t (s ̸= t)

K = s2 − t2 Was added to 2t2to both sides.

K + 2t2 = s2 + t2 And multiplied by 2 to both sides.

2K + (2t)
2

= L(
2

1
2K

1
2

)2

+ (2t)
2

= L ・・・10⃝

If b = 2
1
2K

1
2 , then a = K

b = 2−
1
2K

1
2 . Therefore, ab = K.

From continued.

V

2p−1
= s2 − t2

V

2p−1
= (3t)

2 − t2

V

2p−1
= 23t2

V = 2p+2t2 = 4 · 2pt2
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V

2p−2
+ (2t)

2
= 2

(
2

q
2−1U

)
And multiplied by 2p−2to both sides.

V + 2p−2 · 22t2 = 2p−2
(
2

q
2−1U

)
2pt2 = 2p−2

(
2

q
2−1U

)
− V ∈ N (q ∈ evennumber)

V = 4 · 2pt2 V ̸= even number (5)

Proposition 11 p < m (l +m ≥ 2 (2p− 2) l ≥ m l,m ∈ oddnumber)

Xp
1 , Zp

1 ∈ even number.

Xp = (M −N)
2

= M2 +N2 − 2MN

= 2lU2 + 2mV 2 − 2 · 2
l+m

2 UV

= 2m
(
2l−mU2 + V 2 − 2 · 2

l−m
2 UV

)
Similarly,

Zp = (M +N)
2

= 2m
(
2l−mU2 + V 2 + 2 · 2

l−m
2 UV

)
p < m

(
2l−mU2 + V 2 + 2 · 2 l−m

2 UV
)
∈ N

Y p
1 ∈ even number so Xp

1 , Zp
1 ∈ even number. (6)

2.2 Conditions of (I)

M = 2
l
2 c

1
2 + 2

m
2 d

1
2 　N = 2

l
2 c

1
2 − 2

m
2 d

1
2 (c, d ∈ odd number l,m ∈ N)

Xp = 2pXp
1 = (M −N)

2
=

(
2 · 2m

2 d
1
2

)2

= 222md

Zp = 2pZp
1 = (M +N)

2
=

(
2 · 2 l

2 c
1
2

)2

= 222lc

Corollary 12 (a+ b)
2
+ (a− b)

2
= 2

(
a2 + b2

)
:The sum of the squares of two

(a, b ∈ R a > b)
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xp = (a+ b)
2

yp = (a− b)
2

zp = 2
(
a2 + b2

)
(xyz ̸= 0)

Xp = (M −N)
2
= (a+ b)

2

M −N = a+ b(
2 · 2m

2 d
1
2

)2

= (a+ b)
2

222md = a2 + b2 + 2ab And multiplied by 2 to both sides.

2m+3d = 2
(
a2 + b2

)
+ 22ab

(
zp = 2

(
a2 + b2

))
2m+3d = zp + 22ab

2m+3d− 22ab = zp ・・・11⃝

MN = 2p−2Y p
1 =

(
2

l
2 c

1
2 + 2

m
2 d

1
2

)(
2

l
2 c

1
2 − 2

m
2 d

1
2

)
= 2lc− 2md

Y p = 2pY p
1

Y p = 22
(
2lc− 2md

)
= (a− b)

2

22
(
2lc− 2md

)
= a2 + b2 − 2ab And multiplied by 2 to both sides.

23
(
2lc− 2md

)
= 2

(
a2 + b2

)
− 22ab

(
zp = 2

(
a2 + b2

))
2l+3c− 2m+3d = zp − 22ab

2l+3c− 2m+3d+ 22ab = zp ・・・12⃝

simultaneous equation:12⃝−11⃝

2l+3c− 2m+4d+ 23ab = 0

2lc− 2m+1d+ ab = 0

ab = 2m+1d− 2lc

Remark 13 Meanwhile, in an inverse relationship,

Xp = (a− b)
2

2m+3d+ 22ab = zp ・・・13⃝
Y p = (a+ b)

2

2l+3c− 2m+3d− 22ab = zp ・・・14⃝

simultaneous equation:13⃝−14⃝

−2l+3c+ 2m+4d+ 23ab = 0

−2lc+ 2m+1d+ ab = 0

ab = 2lc− 2m+1d
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put 2m+1d− 2lc = e

ab = e{
a = e

b

b = e
a

Squaring both sides.{
a2 =

(
e
b

)2
b2 =

(
e
a

)2
2
(
a2 + b2

)
= zp2

((
e
a

)2
+ a2

)
= zp

2
((

e
b

)2
+ b2

)
= zp And multiplied by 2 to both sides.

Corollary 14 (s+ t)
2
+(s− t)

2
= 2

(
s2 + t2

)
:The sum of the squares of two

(s, t ∈ R s > t)(
2e

b

)2

+ (2b)
2
= 2zp ・・・15⃝

2b = s∓ t 2e
b = s± t zp = s2 + t2

2e

b
= s± t And multiplied by 1

2 to both sides.

2e

2b
=

s± t

2
2e

s∓ t
=

s± t

2
(s ̸= t)

22e = s2 − t2 Was added to 2t2to both sides.

22e+ 2t2 = s2 + t2 And multiplied by 2 to both sides.

23e+ (2t)
2

= 2zp ・・・16⃝

If 2t = s+ t, then t = s. (s ̸= t)

Therefore,

2t = s− t

3t = s

When you assign a 16⃝ to 15⃝, the following equation is maintained.

ab = e a2 + b2 =
zp

2
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22e = s2 − t2

22e = (3t)
2 − t2

22e = 23t2

e = 2t2 ・・・17⃝

23e+ (2t)
2

= 2zp Substitute17⃝.

23e = 2zp − 2e

e = 2m+1d− 2lc

Xp = 2pXp
1 = 222md

Zp = 2pZp
1 = 222lc

2p−2Y p
1 = 2lc− 2md

Proposition 15 l ≥ p− 1 , m ≥ p− 1 (c, d ∈ odd number l,m ∈ N)

Xp
1 , Zp

1 ∈ even number

2 + l ≥ p+ 1

2 +m ≥ p+ 1

Y p
1 ∈ even number so Xp

1 , Zp
1 ∈ even number. (7)

Proposition 16 l = p− 2 , m ≥ p− 2 (c, d ∈ odd number l,m ∈ N)

e = 2p−2 (oddnumber)

e = 2m+1d− 2lc

= 2m+1d− 2p−2c

= 2p−2
(
2m+3−pd− c

)
m+ 3 ≥ p+ 1 2m+3−pd ∈ even number

e = 2p−2 (odd number)

e = 2p−2w (put w∈ odd number)

23e = 2zp − 2e
(
e = 2p−2w

)
2p+1w = 2zp − 2p−1w
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23e = 2p+1w ≡ 0 (mod 2p)

2p−1 because there are 2n± 1(w) ,
2p−1 · 2n± 2p−1 = 2pn± 2p−1

2e = 2p−1w ≡ ±2p−1 (mod 2p)

zp is condition of odd,
2zp ≡ ± (4n+ 2) (mod 2p)
Can not offset the remainder ±2p−1 so multiple of 4.

zp is condition of even,
2zp ≡ 0 (mod 2p)
Can not offset the remainder ±2p−1.

Therefore, e = 2p−2 (oddnumber) is not hold. (8)

Xp = 2pXp
1 = 222md

Zp = 2pZp
1 = 222lc

2p−2Y p
1 = 2lc− 2md

l ≥ p− 1 m = p− 2

Condition p < l < 2p− 2 is not hold. (Zp
1 ∈ even number)

Proposition 17 l ≥ 2p−2 m = p−2 (c, d ∈ odd number l,m ∈ N)

2p+1w = 2zp − 2p−1w　 does not hold. (w ∈ odd number)

l = 2p− 2 + k (k = 0 or N)

e = 2m+1d− 2lc

= 2p−1d− 22p−2+kc

= 2p−1
(
d− 2p−1+kc

)
h = d− 2p−1+kc

e = 2p−1h (h ∈ odd number)

23e = 2zp − 2e (e = 2p−1h , zp = 2pZp
1 )

2p+2h = 2p+1Zp
1 − 2ph By removing the 2p from both sides,

22h = 2Zp
1 − h

This is contradictory to that h is odd. (9)
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3 As a result of the above.

Y p
1 ∈ even number so Xp

1 , Zp
1 ∈ even number;(1),(6),(7)

The contradictory to assumption;(2),(4),(5),(8),(9)

By referring to the (3),

Up
II = Zp

II +Xp
II V p

II +Xp
II = Zp

II

(2UII)
p
= (2ZII)

p
+ (2XII)

p
(2VII)

p
+ (2XII)

p
= (2ZII)

p

(2ZII)
p
< zp = (2ZI)

p
(2XII)

p
< Xp = (2XI)

p

Thus the lemma has been shown.

xn + yn ̸= zn (xyz ̸= 0 n ≥ 3)
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