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Abstract

An analysis of some of the applications of Clifford Space Relativity to the physics
behind the modified black hole entropy-area relations, rainbow metrics, generalized
dispersion and minimal length stringy uncertainty relations is presented.
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1 Introduction : Novel Consequences of Clifford

Space Relativity

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed [1], [2]. The Extended Relativity theory in Clifford-
spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose general-
ized coordinates are Clifford polyvector-valued quantities which incorporate the lines, ar-
eas, volumes, and hyper-volumes degrees of freedom associated with the collective dynam-
ics of particles, strings, membranes, p-branes (closed p-branes) moving in a D-dimensional
target spacetime background. C-space Relativity permits to study the dynamics of all
(closed) p-branes, for different values of p, on a unified footing. Our theory has 2 fun-
damental parameters : the speed of a light c and a length scale which can be set equal
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to the Planck length. The role of “photons” in C-space is played by tensionless branes.
An extensive review of the Extended Relativity Theory in Clifford spaces can be found
in [1]. The polyvector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to the basis
vectors generators γµ, bi-vectors generators γµ∧γν , tri-vectors generators, γµ1 ∧γµ2 ∧γµ3 ,
... of the Clifford algebra, { γa, γb } = 2 gab 1, including the Clifford algebra unit element
(associated to a scalar coordinate). These polyvector valued coordinates can be inter-
preted as the quenched-degrees of freedom of an ensemble of p-loops associated with the
dynamics of closed p-branes, for p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional
spacetime background.

The C-space polyvector-valued momentum is defined as P = dX/dΣ where X is the
Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in four-dimensions, for
example,

X = s 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1.1)

where we have omitted combinatorial numerical factors for convenience in the expansion
(1). It can be generalized to any dimensions, including D = 0. The component s is the
Clifford scalar component of the polyvector-valued coordinate and dΣ is the infinitesimal
C-space proper “time” interval which is invariant under Cl(1, 3) transformations which
are the Clifford-algebra extensions of the SO(1, 3) Lorentz transformations [1]. One should
emphasize that dΣ, which is given by the square root of the quadratic interval in C-space

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (1.2)

is not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. In order to match units in all terms of eqs-(1.1,1.2) suitable powers

of a length scale (say Planck scale) must be introduced. For convenience purposes it
is can be set to unity. For extensive details of the generalized Lorentz transformations
(poly-rotations) in flat C-spaces and references we refer to [1].

Let us now consider a basis in C-space given by

EA = γ, γµ, γµ ∧ γν , γµ ∧ γν ∧ γρ, ... (1.3)

where γ is the unit element of the Clifford algebra that we label as 1 from now on. In (3)
when one writes an r-vector basis γµ1∧γµ2∧...∧γµr we take the indices in ”lexicographical”
order so that µ1 < µ2 < .... < µr. An element of C-space is a Clifford number, called also
Polyvector or Clifford aggregate which we now write in the form

X = XAEA = s1 + xµγµ + xµνγµ ∧ γν + ... (1.4)

A C-space is parametrized not only by 1-vector coordinates xµ but also by the 2-
vector coordinates xµν , 3-vector coordinates xµνα, ..., called also holographic coordinates,
since they describe the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the
coordinate planes . By p-loop we mean a closed p-brane; in particular, a 1-loop is closed
string. In order to avoid using the powers of the Planck scale length parameter Lp in the
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expansion of the polyvector X (in order to match units) we can set it to unity to simplify
matters. In a flat C-space the basis vectors EA, EA are constants. In a curved C-space
this is no longer true. Each EA, EA is a function of the C-space coordinates

XA = { s, xµ, xµ1µ2 , ....., xµ1µ2.....µD } (1.5)

which include scalar, vector, bivector,..., p-vector,... coordinates in the underlying D-dim
base spacetime and whose corresponding C-space is 2D-dimensional since the Clifford
algebra in D-dim is 2D-dimensional.

The C-space metric is chosen to be GAB = 0 when the grade A 6= grade B. For the
same-grade metric components g[a1a2...ak] [b1b2...bk] of GAB, the metric can decomposed into
its irreducible factors as antisymmetrized sums of products of ηab given by the following
determinant [14]

GAB ≡ det


ηa1b1 . . . . . . ηa1bk

ηa2b1 . . . . . . ηa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
ηakb1 . . . . . . ηakbk

 (1.6)

The spacetime signature is chosen to be (−,+,+, ....,+). One still has the freedom to
choose the sign of the scalar-scalar components G∗∗ of the C-space metric GAB. In the
next section we shall see that G∗∗ = −1 < 0 is the right choice.

Recently, novel physical consequences of the Extended Relativity Theory in C-spaces
(Clifford spaces) were explored in [4]. The latter theory provides a very different phys-
ical explanation of the phenomenon of “relativity of locality” than the one described
by the Doubly Special Relativity (DSR) framework. Furthermore, an elegant nonlinear
momentum-addition law was derived in order to tackle the “soccer-ball” problem in DSR.
Neither derivation in C-spaces requires a curved momentum space nor a deformation of
the Lorentz algebra. While the constant (energy-independent) speed of photon propaga-
tion is always compatible with the generalized photon dispersion relations in C-spaces,
another important consequence was that the generalized C-space photon dispersion re-
lations allowed also for energy-dependent speeds of propagation while still retaining the
Lorentz symmetry in ordinary spacetimes, while breaking the extended Lorentz symmetry
in C-spaces. This does not occur in DSR nor in other approaches, like the presence of
quantum spacetime foam.

We learnt from Special Relativity that the concept of simultaneity is also relative. By
the same token, we have shown in [4] that the concept of spacetime locality is relative
due to the mixing of area-bivector coordinates with spacetime vector coordinates under
generalized Lorentz transformations in C-space. In the most general case, there will be
mixing of all polyvector valued coordinates. This was the motivation to build a unified
theory of all extended objects, p-branes, for all values of p subject to the condition p+1 =
D.

In [5] we explored the many novel physical consequences of Born’s Reciprocal Relativ-
ity theory [7], [9], [10] in flat phase-space and generalized the theory to the curved phase-
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space scenario. We provided six specific novel physical results resulting from Born’s Recip-
rocal Relativity and which are not present in Special Relativity. These were : momentum-
dependent time delay in the emission and detection of photons; energy-dependent notion
of locality; superluminal behavior; relative rotation of photon trajectories due to the
aberration of light; invariance of areas-cells in phase-space and modified dispersion rela-
tions. We finalized by constructing a Born reciprocal general relativity theory in curved
phase-spaces which required the introduction of a complex Hermitian metric, torsion and
nonmetricity.

We should emphasize that no spacetime foam was introduced, nor Lorentz invariance
was broken, in order to explain the time delay in the photon emission/arrival. In the con-
ventional approaches of DSR (Double Special Relativity) where there is a Lorentz invari-
ance breakdown [12], a longer wavelength photon (lower energy) experiences a smoother
spacetime than a shorter wavelength photon (higher energy) because the higher energy
photon experiences more of the graininess/foamy structure of spacetime at shorter scales.
Consequently, the less energetic photons will move faster (less impeded) than the higher
energetic ones and will arrive at earlier times.

However, in our case above [5] the time delay is entirely due to the very nature of Born’s
Reciprocal Relativity when one looks at pure acceleration (force) boosts transformations of
the phase space coordinates in flat phase-space. No curved momentum space is required
as it happens in [12]. The time delay condition in Born’s Reciprocal Relativity theory
implied also that higher momentum (higher energy) photons will take longer to arrive
than the lower momentum (lower energy) ones.

Superluminal particles were studied within the framework of the Extended Relativity
theory in Clifford spaces (C-spaces) in [6]. In the simplest scenario, it was found that it is
the contribution of the Clifford scalar component P of the poly-vector-valued momentum
P which is responsible for the superluminal behavior in ordinary spacetime due to the
fact that the effective mass

√
M2 − P 2 can be imaginary (tachyonic). However from

the point of view of C-space there is no superluminal behaviour (tachyonic) because
the true physical mass still obeys M2 > 0. As discussed in detailed by [1], [3] one can
have tachyonic (superluminal) behavior in ordinary spacetime while having non-tachyonic
behavior in C-space. Hence from the C-space point of view there is no violation of
causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

The addition law of areal velocities and a minimal length interpretation L was recently
studied in [4]. The argument relied entirely on the physics behind the extended notion of
Lorentz transformations in C-space, and does not invoke Quantum Gravity arguments nor
quantum group deformations of Lorentz/Poincare algebras. The physics of the Extended
Relativity theory in C-spaces requires the introduction of the speed of light and a minimal
scale. In [2] we have shown how the construction of an Extended Relativity Theory in
Clifford Phase Spaces requires the introduction of a maximal scale which can be identified
with the Hubble scale and leads to Modifications of Gravity at the Planck/Hubble scales.
Born’s Reciprocal Relativity demands that a minimal length corresponds to a minimal
momentum that can be set to be pmin = h̄/RHubble. For full details we refer to [2].

Despite the fact that the length parameter L (which must be introduced in the C-
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space interval in eq-(1.2) in order to match units) has the physical interpretation of a
minimal length, this does not mean that the spatial separation between two events in
C-space cannot be smaller than L. The Planck scale minimal length argument is mainly
associated with Quantum Mechanics and Black Hole Physics. The energy involved in
the physical measurement process to localize a Planck mass particle, within Planck scale
resolutions, becomes very large and such that a black hole forms enclosing the particle
behind the black hole horizon. Since one does not have physical access to the black hole
interior one cannot probe scales beyond the Planck scale. We shall set aside for the
moment the current firewall controversy of black holes.

Recently, we improved our earlier work in [16] and derived the minimal length
string/membrane uncertainty relations by imposing momentum slices in flat Clifford
spaces [24]. The Jacobi identities associated with the modified Weyl-Heisenberg alge-
bra require noncommuting spacetime coordinates, but commuting momenta, and which
is compatible with the notion of curved momentum space. The purpose of this work is
mainly to follow a different approach than the one taken in [24] by noticing that rainbow
metrics [13] are a natural consequence of taking momentum slices in Cspaces. Gener-
alized dispersion and uncertainty relations are found in addition to modified black hole
area-entropy relations.

2 On Rainbow Metrics and Generalized Dispersion

and Uncertainty Relations from Clifford Spaces

2.1 Clifford Space Relativity induces generalized dispersion and
uncertainty relations

In this section we shall provide a different derivation of the generalized uncertainty
relations than the one described in [24]. Our derivation in this work is based on the
concept of rainbow metrics [13].

The generalization of the Weyl-Heisenberg algebra to C-spaces and involv-
ing polyvector-valued coordinates and momenta (in natural units h̄ = 1) is [1]
[XA, PB] = i GAB and does not lead to minimal uncertainty conditions for ∆XA. To
obtain the minimal length stringy uncertainty relations in ordinary spacetimes requires
more work. It involves taking polymomentum slices through C-space. This is the subject
of this section.

The on-shell mass condition for a massive polyparticle moving in the 24-dimensional
flat C-space, corresponding to a Clifford algebra in D = 4, can be written in terms of the
polymomentum (polyvector-valued) components, in natural units L = LP = 1, h̄ = c = 1,
as

π2 + pµ p
µ + pµ1µ2 p

µ1µ2 + pµ1µ2µ3 p
µ1µ2µ3 + pµ1µ2....µ4p

µ1µ2...µ4 = − M2 (2.1)
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Let us break the ordinary Lorentz invariance by imposing the non-Lorentz invariant
conditions on the poly-momenta in C-space

pij p
ij = β1 |~p|4, pijk p

ijk = β2 |~p|6

p0i p
0i = α1 (p0)

2 |~p|2, p0ij p
0ij = α2 (p0)

2 |~p|4, p0ijk p
0ijk = α3 (p0)

2 |~p|6 (2.2)

where the α’s and β’s are numerical parameters. The mass-shell condition in C-space
PAP

A = −M2 becomes after inserting the conditions (2.2) and taking into account the
chosen signature (−,+,+,+)

|~p|2 (
π2

|~p|2
+1 +β1 |~p|2 +β2 |~p|4 ) − (p0)

2 ( 1 +α1 |~p|2 +α2 |~p|4 + α3 |~p|6 ) = −M2 (2.3)

In [24] we interpreted the terms inside the parenthesis in (2.3) as if one had a metric
in momentum space as follows

gij(π
2, |~p|2) pi pj + g00(|~p|2) p0 p0 = gij(π2, |~p|2) pi pj + g00(|~p|2) p0 p0 = − M2 (2.4)

choosing a flat metric

gij(π
2, |~p|2) = δij ⇒

π2

|~p|2
+ 1 + β1 |~p|2 + β2 |~p|4 = 1 (2.5)

leads to a non-Lorentz invariant constraint among π2 and |~p|2. The former π2 is a Lorentz
scalar but not the latter. The flat metric condition for g00 gives

g00(|~p|2) = − 1 ⇒ − ( 1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6 ) = − 1 (2.6)

from which one infers that the parameters α1 = α2 = α3 = 0 are zero because one should
not impose constraints of the values of |~p|2. Hence, having α1 = α2 = α3 = 0 in (2.6)
implies that the polymomentum slice (2.2) in C-space will set the following values to zero
: p0i = p0ij = p0ijk = 0.

We fixed the choice for the sign of the scalar-scalar components G∗∗ of the C-space
metric GAB by having G∗∗ = −1 < 0 so that when one evaluates the mass-shell condition
PAP

A = −M2 one will have the π2 term with the required negative sign G∗∗π
2 = −π2 < 0

so that eq-(2.5) should read instead

− π2

|~p|2
+ 1 + β1 |~p|2 + β2 |~p|4 = 1 (2.7)

leading to the key inequality 1 ≤ 1 + β1 |~p|2 + β2 |~p|4 and consistent with the fact
that β1, β2 > 0. The flat metric gij(π

2, |~p|2) = δij and g00(|~p|2) = −1 does not lead
to modifications of the Weyl-Heisenberg algebra. However, it is upon using the latter
proper key inequality, and treating the coordinates and momenta as self-adjoint quantum
operators, which leads to the following generalized uncertainty relations
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∆xi ∆pj ≥
h̄

2
| < ( 1 + β1 |~p|2 + β2 |~p|4 ) > | δij ≥

h̄

2
δij (2.8)

In this work we will take a very different approach than the one described above [24]
based in having a flat metric and yielding a key inequality, by noticing that the terms
inside the parenthesis behave as if one had a rainbow metric as follows

gij(π2, |~p|2) pi pj + g00(|~p|2) p0 p0 = g2(π2, |~p|2) |~p|2 − f 2(|~p|2) E2 = − M2 (2.9)

A rainbow metric [13] is a one-parameter family of metrics which depends on the energy
(momentum) of the test particles moving in a given spacetime background, and forming
a rainbow of metrics (rainbow geometry). Setting π2 = 0 in (2.3) one has then that the
squared rainbow functions are given by

g2(π2 = 0, |~p|2) ≡ 1 + β1 |~p|2 + β2 |~p|4, β1, β2 > 0 (2.10a)

f 2(|~p|2) ≡ 1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6, α1, α2, α3 > 0 (2.10b)

Given

gij = g2(π2 = 0, |~p|2) δij = ( 1 + β1 |~p|2 + β2 |~p|4 ) δij (2.11a)

g00 = − f 2(|~p|2) δ00 = − ( 1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6 ) (2.11b)

the rainbow metric is then defined as

ds2 = gµν dx
µ dxν =

− ( 1 +α1 |~p|2 +α2 |~p|4 + α3 |~p|6 )−1 (dt)2 + ( 1 + β1 |~p|2 + β2 |~p|4 )−1 (dxi)2 (2.12)

One may notice also that from eqs-(2.9, 2.10, 2.11) one arrives at the modified disper-
sion relations

(1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6) E2 − ( 1 + β1 |~p|2 + β2 |~p|4 ) |~p|2 = M2 ⇒

E2 − 1 + β1 |~p|2 + β2 |~p|4

1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6
|~p|2 =

M2

1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6
(2.13)

setting α3 = 0; α1 = β1;α2 = β2, and after performing a Taylor series expansion, eq-(2.13)
simplifies to

E2 − |~p|2 =
M2

1 + α1 |~p|2 + α2 |~p|4
=

M2
(

1 − (α1 |~p|2 + α2 |~p|4) + (α1 |~p|2 + α2 |~p|4)2 − (α1 |~p|2 + α2 |~p|4)3 + .......
)

(2.14)
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since the constants α1, α2 are proportional to powers of the Planck length as (LP/h̄)2 ∼
E−2P , (LP/h̄)4 ∼ E−4P , respectively, after equatingM = m one can infer that the dispersion
relation obtained in eq-(2.14) has the form

E2 − |~p|2 = m2 +
∞∑
n=1

cn(m2, E2
P ) |~p|2n (2.15)

where the coefficients cn are explicitly given in terms of the Planck energy EP and the
mass m as follows

c1 = − α1 m
2; c2 = ( (α1)

2 − α2 ) m2; c3 = ( 2 α1 α2 − (α1)
3 ) m2; ...... (2.16)

The advantage in using Clifford Space Relativity is that one is able to derive the explicit
expression for all the coefficients cn in terms of the two parameters α1, α2 which, in turn,
are proportional to E−2P , E−4P , respectively. In the low energy limit, one recovers the
standard dispersion relation E2 − |~p|2 = m2. Another salient feature of the generalized
dispersion relation (2.15) , with coefficients given by (2.16), is that in the massless case
m = 0 one still retains the condition E2 − |~p|2 = 0 (massless particles still propagate at
the speed of light). This is not case with the generalized dispersion relation proposed in
the literature [25] because these numerical coefficients depend on a running mass scale
and EP .

Another physical consequence is that the rainbow metric (2.11) when α3 = 0; α1 =
β1;α2 = β2 yields modifications of the Weyl-Heisenberg algebra

[xµ, pν ] = i h̄ gµν(|~p|2) (2.17)

resulting from the momentum-dependent metric (2.11), and which in turn leads to the
following uncertainty relations

∆xµ ∆pν ≥ h̄

2
| < ( 1 + α1 |~p|2 + α2 |~p|4 ) > ηµν | (2.18)

where < .... > denote the QM expectation values < Ψ|......|Ψ >. See [23] for rigorous
mathematical details. However, there is a caveat : if one recurs to the rainbow metrics
and begins with the modified Weyl-Heisenberg algebra [xµ, pν ] = ih̄gµν(~p), a lowering of
indices with the rainbow metric leads to

[xµ, pν ] = ih̄ gµν(~p) + ....... 6= ih̄ gµν(~p) = ih̄ ( 1 + α1 |~p|2 + α2 |~p|4 )−1 ηµν (2.19)

thus there is an asymmetry in the functional forms of the modified Weyl-Heisenberg
algebra due to the commutators

[xµ, pν ] = [gµρ(~p) x
ρ, gνη (~p) pη] = ih̄ gµν(~p) + gµρ(~p) [xρ, gνη(~p)] p

η (2.20)

and

[pµ, pν ] = 0; [xµ, xν ] 6= 0; [xρ, gνη(~p)] = ih̄ gρτ (~p)
∂gνη(~p)

∂pτ
(2.21)
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In order to have [xµ, pν ] = ih̄gµν(~p) and [xµ, pν ] = ih̄gµν(~p), simultaneously, one must
restrict the rainbow metric to obey the conditions

gµρ(~p) [xρ, gνη(~p)] p
η = ih̄ gµρ(~p) g

ρτ (~p)
∂gνη(~p)

∂pτ
pη = ih̄

∂gνη(~p)

∂pµ
pη = 0 (2.22)

besides the trivial solutions gνη = ηµν so that ∂gνη(~p)
∂pµ

= 0, there is the nontrivial solution

to eq-(2.22) when
g00 = − 1, g0k = gk0 = 0 (2.23a)

and
∂gkl(~p)

∂pi
= pi δkl −

pi pk pl
|~p|2

(2.23b)

leading to a zero contraction with pl : ∂gkl(~p)
∂pi

pl = 0. After integrating (2.23b) and intro-

ducing the parameter α whose units are (LP )2, gives for the spatial metric components

gkl = α
∫

( pi δkl −
pi pk pl
|~p|2

) dpi =
α

2

∫
( δkl −

pk pl
|~p|2

) d|~p|2; pi ≡ δijpj (2.23c)

Therefore, a metric given by eqs-(2.23) yields the generalized uncertainty relations for
the spatial components of the coordinates and momenta

∆xk ∆pl ≥
h̄

2
| < gkl > |, ∆xk ∆pl ≥ h̄

2
| < gkl > |. (2.24)

and which is a modification of the stringy uncertainty relations

∆xk ∆pl ≥
h̄

2
| < ( 1 + β |~p|2) > δkl | ≥

h̄

2
( 1 + β |∆~p|2) δkl (2.25)

due to the presence of the second terms of the nontrivial integral in (2.23c). The constant
of integration in (2.23c) can be chosen to generate the constant term δkl of (2.25). Keeping
the leading terms in powers of LP in eqs-(2.25), gives for example

∆x ∆px ≥
h̄

2
| < ( 1 +β |~p|2) > | ≥ h̄

2
| < ( 1 +β p2x) > | ≥ h̄

2
( 1 +β (∆px)

2) (2.26)

where we have used the identities < p2x >= (∆px)
2+ < px >

2 in last inequality of (2.26),
and taken β > 0 which allows to remove the absolute sign since all quantities are now
positive definite.

From (2.26) one arrives at the minimal length stringy uncertainty relations

∆x ∆px ≥
h̄

2
( 1 + β (∆px)

2) ⇒ ∆x ≥ h̄

2∆px
+ (

h̄β

2
) ∆px (2.27)
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Minimizing the expression in (2.27) and inserting the Planck scale LP which was set to
unity one has for the minimum position uncertainty a quantity of the order of the Planck
scale

(∆x)min = LP
√
β, β > 0 (2.28)

In [24] we remarked that the higher order corrections to the stringy uncertainty re-
lations in eq-(2.8) stem from the higher grade polymomentum variables in C-space and
correspond, physically, to the membrane contributions to the modified uncertainty rela-
tions. Hence, the stringy and membrane corrections to the uncertainty relations in D = 4
are of the form (similar equations follow for the other spatial coordinates)

∆x ∆px ≥
h̄

2
[ 1 + β1 (∆px)

2 + β2 (∆px)
4 ] (2.29)

leading to

∆x ≥ h̄

2
[

1

∆px
+ β1 (∆px) + β2 (∆px)

3 ] (2.30)

the extremization problem of (2.30) is more complicated but there is a local minimum
when β1 > 0, β2 > 0. The value of ∆px which yields the local minimum for ∆x is

(∆px)o =

 − β1 +
√

(β1)2 + 12β2

6β2


1
2

, β1 > 0, β2 > 0 (2.31)

If one sets the above value of (∆px)o and minimal length uncertainty to coincide with
the Planck momentum and Planck scale, respectively, one can fix the numerical values
of β1, β2. In higher dimensions than D = 4 one will capture the p-brane contributions
beyond the membrane case due to the contributions of the higher grade polymomenta
components. The dimensions (units) of the parameters in eqs-(2.29, 2.30) are [β1] =
(L/h̄)2, [β2] = (L/h̄)4.

2.2 Jacobi Identities and Noncommutative Spacetime

To continue we study the Jacobi identities that are linked to noncommuting spacetime
coordinates. Let us start with a modified Weyl-Heisenberg algebra in a flat spacetime
given by

[xi, pj] = i h̄ Θ(|~p|2) δij, [xi, pj] = i h̄ Θ(|~p|2) δij, [xi, pj] = i h̄ Θ(|~p|2) δij, (2.32)

The Jacobi identities are

[ xi, [xj, pk] ] + [ xj, [pk, x
i] ] + [ pk, [xi, xj] ] = 0 (2.33a)

[ xi, [xj, xk] ] + [ xj, [xk, xi] ] + [ xk, [xi, xj] ] = 0, (2.33b)
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etc, .... Let us try the ansatz

[xi, xj] = i h̄ f ijl(~p) x
l, [pj, pk] = 0 (2.34)

due to the noncommutativity of xi, pj one could have written instead of (2.34) the following
more symmetric form for the commutators

[xi, xj] =
ih̄

2
{f ijl(~p), xl} =

ih̄

2
f ijl(~p) x

l +
ih̄

2
xl f ijl(~p) (2.35)

For simplicity, we will just use the commutators displayed in eq-(2.34) instead of those
in eq-(2.35). It will not affect the final results. After some straightforward algebra one
learns from the Jacobi identities (2.33) that the structure functions f ijl(~p) are given in
terms of the function Θ(|~p|2) as follows

δjk
∂Θ(|~p|2)
∂pi

− δik
∂Θ(|~p|2)
∂pj

= f ijk(~p) (2.36)

it is explicitly antisymmetric in ij as expected. Using the second set of Jacobi
identities for the noncommutative spacetime coordinates, the relations [xi, F (~p)] =
ih̄eff (|~p|2) (∂F (~p)/∂pi), the Liebnitz law [xi, AB] = A[xi, B] + [xi, A]B, and the solu-
tions obtained for f ijk(~p) given in (2.36), one can verify, after some algebra, that indeed
one has

( f jkl f
il
m + fkil f

jl
m + f ijl f

kl
m ) xm = 0 (2.37)

(
∂f jkl
∂pi

+
∂fkil
∂pj

+
∂f ijl
∂pk

) xl = 0 (2.38)

and the Jacobi identities (2.33) are satisfied. It is important to emphasize that the terms
inside the parenthesis in eqs-(2.37, 2.38) are not zero. What is zero is the net summation
after the full contraction with the xm, xl terms is performed.

Therefore, to satisfy the Jacobi identities one must have a Noncommutative spacetime.
Kempf and Mangano [23] used the commutator [xi, pj] = ih̄Θij(~p), where Θij is a more
general rotationally invariant function of the momenta coordinates, and for commutator
[xi, xj] they have the more symmetric expression described by (2.35). After studying the
Jacobi identities they arrived at

[xi, xj] = ih̄ { xa, Θ−1ar Θs[i Θj]r,s }, Θjr,s ≡
∂Θjr

∂ps
(2.39)

where {, } denotes the anti-commutator. See [23] for further details.

11



2.3 Lorentz Invariant Case

Let us write again the on-shell mass condition for a massive polyparticle moving in the
24-dimensional flat C-space, corresponding to a Clifford algebra in D = 4, in terms of the
polymomentum (polyvector-valued) components, in natural units L = LP = 1, h̄ = c = 1,
as

π2 + pµ p
µ + pµ1µ2 p

µ1µ2 + pµ1µ2µ3 p
µ1µ2µ3 + pµ1µ2....µ4p

µ1µ2...µ4 = − M2 (2.40)

A particular Lorentz invariant slice through the flat C-space can be taken by imposing
the set of algebraic conditions on the polymomenta coordinates

pµ1µ2 p
µ1µ2 = λ1 (pµp

µ)2 = λ1 p
4, pµ1µ2µ3 p

µ1µ2µ3 = λ2 (pµp
µ)3 = λ2 p

6

pµ1µ2µ3µ4 p
µ1µ2µ3µ4 = λ3 (pµp

µ)4 = λ3 p
8

p2 ≡ pµ p
µ = |~p|2 − (p0)

2 = (px)
2 + (py)

2 + (pz)
2 − E2 (2.41)

where the λ’s are numerical parameters. π is the Clifford scalar part of the momentum
polyvector and is invariant under C-space transformations. The slice conditions in eqs-
(2.41) will break the generalized (extended) Lorentz symmetry in C-space because these
conditions are not preserved under the most general C-space transformations as described
in [4]. Nevertheless, the residual standard Lorentz symmetry (in ordinary spacetime) will
still remain intact because the conditions/constraints in eqs-(2.41) are explicitly Lorentz
invariant.

Inserting the conditions of eqs-(2.41) into eq-(2.40) yields

π2 + p2 ( 1 + λ1 p
2 + λ2 p

4 + λ3 p
6 ) = π2 + f 2(p2) p2 = − M2 (2.42)

The last expression (2.42) is a generalization of the “gravity rainbow” metric where the
function f 2(p2) in our case is the analog of the rainbow function squared. It is important
to emphasize that in C-space one has PAP

A = −M2 but p2 = |~p|2 − E2 is no longer a
constant equal to−m2. This fact is also consistent with the generalized dispersion relation
(2.15). What is a constant is the polymomentum squared involving all the polyvector
components in addition to the vector components pµ.

Therefore, the rainbow metric corresponding to (2.42) involves now the Clifford scalar
coordinate σ, which is the canonical conjugate variable to the Clifford scalar momentum
π, and the xµ coordinates (canonical to the momentum pµ). The rainbow metric is now
given by an effective D + 1-dim metric

dσ2 + gµν dx
µ dxν = dσ2 + ( 1 + λ1 p

2 + λ2 p
4 + λ3 p

6 )−1 ηµν (2.43)

a modified Weyl-Heisenberg algebra can defined as follows
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[σ, π] = ih̄, [xµ, pν ] = i h̄ gµν(p2) = i h̄ f 2(p2) ηµν (2.45)

and which emerged from taking a slice in C-space displayed by eqs-(2.41).
If one were to set π = 0 in (2.40) it leads to a quartic algebraic equation for p2

and that will fix the numerical values of p2 given by the four roots of the algebraic
equation. The four roots are themselves functions of M2 and the parameters λ1, λ2, λ3.
The rainbow function squared f 2(p2) will have fixed numerical values instead of being
a variable function and hence the rainbow metric gµν will be just trivially proportional
to the Minkowski metric ηµν and will not modify the Weyl-Heisenberg algebra since one
could reabsorb the constant of proportionality into h̄. For this reason one must retain π
and σ in eqs-(2.40, 2.42).

However, as it occurred in the previous section there is a caveat : by lowering indices
one ends up with [xµ, pν ] = ih̄ gµν(p

2) + ..... 6= ih̄gµν(p
2) leading to an asymmetry in the

functional form of the modified Weyl-Heisenberg algebra unless the metric is restricted to
obey similar conditions to eq-(2.2) . In this Lorentz covariant case the nontrivial metric
must be restricted to be of the form

gµν = α
∫

( pρ ηµν −
pρ pµ pν
p2

) dpρ =
α

2

∫
( ηµν −

pµ pν
p2

) dp2; p2 ≡ ηρσ p
ρ pσ (2.46)

The constant of integration (which can be set to 2
α

) in (2.46) is what generates the constant
terms in the expression for gµν = ηµν( 1 + α

2
p2) + ......., so that the modified Weyl-

Heisenberg algebra will have a symmetric functional form [xµ, pν ] = ih̄gµν ; [xµ, pν ] = ih̄gµν
and furnish the generalized uncertainty relations for all the components of the coordinates
and momenta

∆xµ ∆pν ≥
h̄

2
| < gµν > |, ∆xµ ∆pν ≥ h̄

2
| < gµν > |. (2.47)

To sum up, one may argue that because (i) one should not restrict the form of the met-
ric like one does in eqs-(2.46), and (ii) since the metric in eqs-(2.5, 2.6) is flat there are no
problems with raising and lowering indices inside commutators, therefore we find it more
appealing to follow the approach taken in [24] rather than the rainbow metric approach in
order to derive the generalized stringy uncertainty relations. A curved momentum space
was also studied within the context of DSR by [12]. Finsler geometry is the proper arena
to study metrics which depend on both coordinates and velocities/momenta. The role of
Clifford algebras in Finsler geometry and Noncommutative geometry has been studied by
[15].

To finalize, we may add that in the most general case one must recur to a (curved)
phase space and a matrix-valued Planck “constant” h̄µν(xρ, pρ) which is a function of
both coordinates and momenta. The most general Weyl-Heisenberg algebra is then given
by

[xµ, pν ] = i h̄µν(xρ, pρ) = ih̄ Θµν(xρ, pρ) (2.48)

However, since one must obey the Jacobi identities among the commutators, one must
have in the most general case that the coordinates and momenta must be noncommutative
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[xµ, xν ] 6= 0, [pµ, pν ] 6= 0 (2.49)

To simplify matters we may chose Θµν = g(p2)ηµν ; [pµ, pν ] = 0 but [xµ, xν ] 6= 0
and whose physical motivation lies in the fact that the tangent space to a curved-
momentum space can be identified with spacetime. A flat spacetime (zero curvature)
is compatible with commuting momentum [pµ, pν ] = [ih̄∇xµ , ih̄∇xν ] = 0. Whereas
[xµ, xν ] = [ih̄∇pµ , ih̄∇pν ] 6= 0 is consistent with a non-zero curvature in momentum space.

3 Modified Black Hole Entropy-Area Relation

Let us begin with the first law of black hole thermodynamics

dS =
dM

T
⇒ S =

∫ dM

T
=

∫ dM

dE

dE

T
(3.1)

and write the rainbow metric modifications of the Schwarzchild metric as follows

ds2 = − 1

f 2(E/EP )
(1− 2GM

r
) dt2 + (1− 2GM

r
)−1

dr2

g2(E/EP )
+

r2dΩ2

g2(E/EP )
(3.2)

such that the modified Hawking temperature becomes [26]

T =
1

2π

√
− 1

4
grr gtt (

dgtt
dr

)2 (r = 2GM) =
g(E/EP )

f(E/EP ) 8πGM
(3.3)

In natural units h̄ = c = kB = 1, the standard uncertainty relation is ∆x ∆p ≥ 1
2
.

We shall follow now the arguments of [27]. If one sets the position uncertainty ∆x of
a massless particle (photon) to be given by a quantity of the order of the Schwarzschild
horizon radius ∆x = λ(2GM), and equates the momentum uncertainty ∆p of the massless
quantum particle near the horizon of a black hole to be equal to the black hole temperature
T = E (since at thermodynamic equilibrium the temperature of the particle is equal to the
black hole temperature) one has then the mass-temperature-energy relation λ(2GM) =
(1/2T ) = (1/2E), so that dM/dE = −(1/4λGE2) and the integral (3.1) becomes, after
writing 8πGM = (4π/2λE),

S = −
∫ 4π

(2λ)2
f(E/EP )

2G g(E/EP )

dE

E3
(3.4)

The above expression is the modified black-hole entropy relation due to the contribution of
the rainbow functions to the Schwarzschild metric. When the rainbow functions obey the
condition f(E/EP ) = g(E/EP ), after recurring to the mass-temperature-energy relation
λ(2GM) = (1/2T ) = (1/2E), the integral (3.4) reduces to

S =
4π

4G

1

(2λ)2E2
=

4π

4G
(2GM)2 =

A

4L2
P

(3.5)
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and which is the Bekenstein-Hawking entropy given by one quarter of the area of the
spherical horizon in Planck scale units G = L2

P = (1/E2
P ) (when h̄ = c = 1). If, and only

if, the proportionality constant is λ = 2π the relation λ(2GM) = 4πGM = (1/2T ) ⇒
8πGM = 1/T , coincides with the Hawking temperature expression.

For example, the author [26] chose the rainbow functions

f(E/EP ) = 1, g(E/EP ) =

√
1 − ξ (

E

EP
)n, ξ = constant (3.6)

and in the case n = 4, the rainbow modified entropy is [26]

S = π

√
16M4 − ξ E4

P

E2
P

(3.7)

which reduces to the Bekenstein-Hawking entropy (3.5) when the numerical parameter
ξ = 0. The physical relevance of the rainbow modified entropy is that it is zero at a
nonzero value of M and which represents the information contained in the black hole
remnant. There is no total and catastrophic evaporation of the black hole since the black
hole reaches a zero temperature at a nonzero mass value (the remnant), and a maximum
finite temperature at a finite value of the mass, see [26] for details.

The stringy uncertainty relation approach to the modifications of the black hole area-
entropy relation [27] starts from the modified uncertainty relation (in natural units h̄ =
c = kB = 1)

∆x ∆p ≥ 1

2
( 1 + β (∆p)2 ) (3.8)

after equating ∆p = T = E and setting ∆x = λ(2GM), it leads to the mass-energy
relation

M ≥ 1

4λG
(

1

E
+ β E ) (3.9a)

so that
dM

dE
=

1

4λG
(β − 1

E2
) (3.9b)

the entropy integral (3.1) becomes, after setting T = E, λ = 2π and including the
integration constant as a term proportional to the logarithm of EP ,

S =
∫ 1

4λG
(βE2 − 1)

dE

E3
=

1

8πG
( β |ln(

E

EP
)| +

1

2E2
) (3.10)

After expressing E in terms of M obtained from solving the quadratic equation in (3.9),
and inserting E = E(M) into eq-(3.10) , one recovers the logarithmic corrections to the
entropy-area relation [27] S(A) = A

4L2
P

+ ........., upon equating A = 4π(2GM)2.

One may notice that the functional expression (3.4) for the rainbow modified black
hole entropy is not the same as the stringy-uncertainty-inspired black hole entropy (3.10).
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If one equates the integrands (3.4, 3.10), and sets 2λ = 4π, it gives

f(E/Ep)

g(E/EP )
= 1 − βE2 (3.11)

as mentioned earlier, the parameter β is proportional to (EP )−2 : β = b(EP )−2 so that
the equality (3.11) becomes

f(E/Ep)

g(E/EP )
= 1 − βE2 = 1 − b (

E

EP
)2 (3.12)

and it will constrain the functional form of the ratio of the two rainbow functions. This
will clearly restrict considerably the infinity of choices for the two rainbow functions. In
the low energy limit the rainbow functions obey f(E/EP ) → 1; g(E/EP ) → 1 , and
combined with ( E

EP
)2 → 0, one does find a clear agreement among the left and right hand

side of eq-(3.12). More general uncertainty relations like those given by eqs-(2.29, 2.30)
will lead to more complicated integrals than (3.10) and more complicated expressions for

the ratios f(E/Ep)
g(E/EP )

in (3.12).
We conclude with some final remarks. The theory of Scale Relativity proposed by

Nottale [11] is based on a minimal observational length-scale, the Planck scale, as there is
in Special Relativity a maximum speed, the speed of light, and deserves to be looked within
the Clifford algebraic perspective. In the quantization program of gravity a key role must
be played by quantum Clifford-Hopf algebras since the latter q-Clifford algebras naturally
contain the κ-deformed Poincare algebras [18], [19], which are essential ingredients in
the formulation of DSR within the context of Noncommutative spaces. The Minkowski
spacetime quantum Clifford algebra structure associated with the conformal group and the
Clifford-Hopf alternative κ-deformed quantum Poincare algebra was investigated [17]. The
resulting algebra is equivalent to the deformed anti-de Sitter algebra Uq(so(3, 2)), when
the associated Clifford-Hopf algebra is taken into account, together with the associated
quantum Clifford algebra and a (not braided) deformation of the periodicity Atiyah-Bott-
Shapiro theorem [21].
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