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Used notations.

0.1 Reminder about the notations used.

For the purpose of this study, we utilise the usual mathemati
al notations and

symbols. However it is suitable to de�ne pre
isely some of them.

In propositional 
al
ulus, a proposition P is either true or false by de�ni-

tion. As the purpose of mathemati
s is to logi
ally link propositions from one

to another to derive a 
on
lusion, itself fromulated as a proposition, we will need

the logi
al 
onne
tors

� negation symbol ¬

� 
onjon
tion symbol "and" ∧

� disjon
tion "in
lusive or" symbol ∨

as well as the relation symbols

� impli
ation symbol =⇒

� equivalen
e symbol ⇐⇒

We will also resort to utilise the following logi
al quanti�ers

� universal "For all..." ∀

� existential "There exists at least one..." ∃

� existential "There exists one and only one..." ∃!

Usual notations used in Set Theory will be utilised. The membership symbol,

and its negation, of an element a 
ontained in a set A are respe
tively denoted

∈ and 6∈. Also, the in
lusion symbol of a set A in a set B and its negation are

respe
tively denoted ⊂ and 6⊂. Lastly, depending on our needs, we denote the

interse
tion and union operators of sets respe
tively

�

⋂

or ∩

�

⋃

or ∪.

iii



iv USED NOTATIONS.

Let A and B be two sets, not ne
essarily distin
t, and let a ∈ A and b ∈ B any

two elements of these two sets, the ordered pair (a, b) belongs to the set A× B,

usually 
alled the Cartesian produ
t of the set A by the set B. This notion

of Cartesian produ
t 
an be of 
ourse extended to a produ
t of more than two

sets.

In a subset Aj×Bk of the Cartesian produ
t A×B, we 
an de�ne the binary

relation R

(∀a ∈ A) (∀b ∈ B) ((aRb) ⇐⇒ ((a, b) ∈ Aj × Bk))

This de�nition leads rather naturally to the notion of equivalen
e relation.

A binary relation R on a set A is an equivalen
e relation if and only if

(∀a ∈ A) (aRa)
(

∀(a, b) ∈ A2
)

((aRb) ⇐⇒ (bRa))
(

∀(a, b, c) ∈ A3
)

((aRb) ∧ (bRc) =⇒ (aRc))

The de�nition of the equivalen
e relations leads in its turn to the one of equiv-

alen
e 
lass. The equivalen
e 
lass of an element a ∈ A generated by the

equivalen
e relation R is the set, whi
h we denote R (a)

((∀b ∈ A) (b ∈ R (a))) ⇐⇒ (aRb)

and we have

R (a) ⊂ A

The set of equivalen
e 
lasses R (aj) generated by the equivalen
e relation R
on the set A est son quotient set, whi
h is denoted A/R.

The set A has a number of elements, �nite or in�nite, and in this last 
ase,


ountable or un
ountable. This number is de�ned as the 
ardinal of the set

and denoted |A|.
We will be interested more spe
i�
ally in the following sets

� N Set of the natural integers.

� Z Set of the rational integers.

� Q Set of the rationnal numbers.

� R Set of the real numbers.

In the sets Z, Q et R, the elements, in other word numbers, other than the null

element 
an be positive or negative. Ea
h set A 
hosen among these sets 
ontains

the subset of its negative numbers, whi
h we denote A−
, the null element, whi
h

we denote 0 and the subset of its positive numbers, whi
h we denote A+
. We

have

A = A− ∪ {0} ∪A+



0.1. REMINDER ABOUT THE NOTATIONS USED. v

The notion of absolute value follows naturally

(

∀a ∈ A−
)

(|a| = −a)
(

∀a ∈ A+
)

(|a| = a)

As well, for ea
h set A, 
hosen among any of the here-above mentioned sets, we

will denote the set of its non zero A∗

(a ∈ A∗) ⇐⇒ (a 6= 0)

and

A = A∗ ∪ {0}

We will use the internal binary operations usually applied to the elements of

these sets, the numbers. These operations are denoted

� + for the addition

� × for the multipli
ation.

However, we will most of the time omit this symbol, as is 
ustomary.

We will also use the notations

� − for the soustra
tion

� / for the division.

After reminding the de�nition of the Eu
lidean division in the set Z

(∀a ∈ Z) (∀b ∈ Z) (∃q ∈ Z) (∃r ∈ Z) (a = bq + r)

we are using, whenever r = 0, the symbol | for the exa
t division in this same

set and we denote

((∀a ∈ Z∗) (∀b ∈ Z∗) (b|a)) ⇐⇒ ((∃!c ∈ N∗) (a = bc))

The Eu
lidean division by a given prime number pn in Z leads to the de�nition

of the equivalen
e relation, whi
h we denote R = pn

(∀a ∈ Z) (∀b ∈ Z) (apnb) ⇐⇒ pn| (a− b)

This equivalen
e relation generates in its turn pn equivalen
e 
lasses, as the

remainder r of Eu
lidean division by the prime number pn 
an take pn values

among the integers 0, 1, 2, · · · , pn−2 et pn−1. These pn equivalen
e 
lasses are

the elements of the quotient set, whi
h we denote

Z/pnZ = {0, 1, 2, · · · , pn−2, pn−1}

We utilise the usual notations of the 
ongruen
e theory

(a ∈ Z) (b ∈ Z) (c ∈ Z∗) (a ≡ b [c] ⇐⇒ c|a− b)

The interval, with the two elements a et b of a set K as endpoints are denoted



vi USED NOTATIONS.

� ]a, b[ for an open

� [a, b] for a 
losed

� ]a, b] et [a, b[ for the semi-open.

We will make use of fun
tions in their usual de�nition. Let K and K′
be two

sets and F the set of fun
tions f , whi
h map an element k of K to an element

k′ of K′
. We denote

fK −→ K′

k 7−→ k′ = f(k)

In what follows, the sets K and K′
will be most of the time the set R itself, or

one of its subsets.



Introdu
tion and preliminary

remarks.

Prime numbers appear to be distributed randomly within the set of natural

numbers. It was proved long ago that, given an interval [0, pk[ in the set of real

numbers R, where pk and pk+1 are two 
onse
utive prime numbers, every natural

integer belonging to the interval [pk, p
2
k+1[ taken in R is either prime or a multiple

of at least one of the prime numbers belonging to the interval [0, pk[. Besides,

a theorem, postulated by Joseph Bertrand and proved by Pafnuty T
heby
hev

[1℄ [2℄ states that

Theorem 1 of Bertrand T
heby
hev For all natural integer n > 1, there
exists at least a prime integer that belongs to the interval ]n, 2n].

Also, the de�nition of the 
ongruen
e between two numbers a and b, the two
of them being non zero, modulo a third natural integer c, non zero itself, whi
h

we usually write as follows

(a ∈ N∗) (b ∈ N∗) (c ∈ N∗) ((a ≡ b [c]) ⇐⇒ (c|a− b))

leads us to 
onsider that a fun
tion Fc 
ould exist su
h as

Fc : R −→ R

x 7−→ Fc(x)

for whi
h

(a ∈ N∗) (b ∈ N∗) (c ∈ N∗) (Fc(a) = Fc(b) ⇐⇒ c|a− b)

Su
h a fun
tion is evidently periodi
, with period C. We endeavour in the fol-

lowing pages to 
reate one possible of these fun
tions Fc and to study some of

its property, emphasizing on symetry properties in parti
ular.

Then, in the following 
hapters, we will �rst 
onsider the strong Goldba
h 
on-

je
ture

Conje
ture 1 strong of Goldba
h Every even natural integer n > 4 is the

sum of two prime numbers.

vii



viii INTRODUCTION AND PRELIMINARY REMARKS.

We will also try and prove the following theorem, by utilising some properties

of the periodi
 fun
tions Spn−1
and Spn

, whi
h we will introdu
e later and the

periods of whi
h will be respe
tively denoted TSpn
and TSpn−1

Theorem 2 For all prime integer pn and its asso
iated fun
tion Spn
, let the

set of the intervals

[kpn, (k + 1) pn[

where k is any natural integer, and let M1 be the natural integer

M1 =
1

4
TSpn−1

then, for all k < M1, there exists at least one natural integer

a ∈ [kpn, (k + 1) pn[

su
h that

Spn
(a) 6= 0

whi
h 
an be otherwise formulated

(∀k ∈ N) (k < M1) (∃a ∈ ([kpn, (k + 1) pn[∩N)) (Spn
(a) 6= 0)

One 
onsequen
e of this theorem is another theorem that we enun
iate here-

under

Theorem 3 of Bertrand-T
heby
hev extended Given a prime number pn,
there exists at least one prime number in ea
h interval

[kpn, (k + 1) pn[

for ea
h non zero natural integer k su
h that

(k + 1) pn < p2n+1

This theorem is somewhat similar to the Bertrand-Chebyshev theorem.

These results will enable us, to �nish with, to draw some 
on
lusions on two


onje
tures, one due to Adrien-Marie Legendre [3℄.

Conje
ture 2 of Legendre For all natural integer n > 2, there exists at least

a prime integer that belongs to the interval [n2, (n+ 1)2].

the other to Henri Bro
ard [4℄.

Conje
ture 3 of Bro
ard For all prime integer pn > 2, there exists at least

four prime integers that belong to the interval [p2n, p
2
(n+1)].



De�nitions.

0.2 De�nitions.

We de�ne some sets and some fun
tions that we will have to use.

0.2.1 Finite sets πpn
of prime numbers

let πpn
be the set that 
ontains all the prime numbers pj (distin
t from 1) and

less than or equal to a given prime number pn

πpn
= {pj| (c|pj ⇐⇒ c ∈ {1, pj}) ∧ (pj 6 pn)}

The set πpn
is totally ordered, within the de�nition of the relation <.We note

that it is also a well ordered set, as it has a least element denoted p1 = 2. So

we have

p1 = 2

p2 = 3

p3 = 5

p4 = 7

. . .

pn = supπpn

We pose |(πpn
)| = n

0.2.2 The elementary fun
tions

We need to de�ne some fun
tions, some properties of whi
h will be put forward

in our study.

The fun
tions sa,pj
et sa,pj

.

For ea
h prime number pj ∈ πpn
, we de�ne here-under the fun
tions sa,pj

and

sa,pj
, where a ∈ N

sa,pj
: R −→ [−1, 1]

x 7−→ sa,pj
(x)

ix



x DEFINITIONS.

with

sa,pj
(x) = sin

π

pj
(a+ x)

This fun
tion vanishes for ea
h and every (a+ x) multiple of pj.

sa,pj
: R −→ [−1, 1]

x 7−→ sa,pj
(x)

with

sa,pj
(x) = sin

π

pj
(a− x)

This fun
tion vanishes for ea
h and every (a− x) multiple of pj.

The periods of these two fun
tions, whi
h we respe
tively denote Tsa,pj
and

Tsa,pj
are both equal to 2pj.

We will denote for a = 0

s0,pj
(x) = spj

(x) = sin
π

pj
(x)

and for a = 2m

s2m,pj
(x) = sin

π

pj
(2m− x)

The fun
tions ca,pj
and ca,pj

.

Similarly, we de�ne the fun
tions ca,pj
et ca,pj

respe
tively as

ca,pj
: R −→ [−1, 1]

x 7−→ ca,pj
(x)

with

ca,pj
(x) = cos

π

pj
(a+ x)

This fun
tion vanishes for ea
h and every (a+ x) odd multiple of

1
2pj .

ca,pj
: R −→ [−1, 1]

x 7−→ ca,pj
(x)

with

ca,pj
(x) = cos

π

pj
(a+ x)

This fun
tion vanishes for ea
h and every (a− x) odd multiple of

1
2pj .

The periods of these two fun
tions, whi
h we respe
tively denote Tca,pj
and

Tca,pj
are both equal to 2pj.



0.2. DEFINITIONS. xi

We will denote for a = 0

c0,pj
(x) = cpj

(x) = cos
π

pj
(x)

and for a = 2m

c2m,pj
(x) = cos

π

pj
(2m− x)

It might be useful to re
all that the sin and 
os fun
tions are respe
tively odd

and even.

0.2.3 The produ
t fun
tions.

We need to de�ne the produ
t fun
tions of a �nite number of fun
tions sa,pj
.

We so de�ne

Spn
: R −→ [−1, 1]

x 7−→ Spn
(x)

(1)

with

Spn
(x) =

j=n
∏

j=1

sin
π

pj
(x) =

j=n
∏

j=1

spj
(x)

where the prime number pj belongs to the set πpn
, whi
h we de�ne as as the

referen
e set of the fun
tion Spn
.

Similarly, let S2m,pn
be the fun
tion

S2m,pn
: R −→ [−1, 1]

x 7−→ S2m,pn
(x)

with

S2m,pn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

s2m,pj
(x)

We note that

(2m− x = X) ⇐⇒


S2m,pn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

sin
π

pj
(x) = Spn

(X)





and hen
e

TS2m,pn
= TSpn
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These two fun
tions are sharing interesting properties of symmetry.

Finally, we 
onstru
t a third fun
tion Gm,pn

Gm,pn
: R −→ [−1, 1]

x 7−→ Gm,pn
(x)

with

Gm,pn
(x) = Spn

(x)× S2m,pn
(x)

=





j=n
∏

j=1

spj
(x)









j=n
∏

j=1

sin
π

pj
(2m− x)





=

j=n
∏

j=1

spj
(x) s2m,pj

(x)

We will utilise as well the produ
t fun
tions of a �nite number of fun
tions

ca,pj
. We so de�ne

Cpn
: R −→ [−1, 1]

x 7−→ Cpn
(x)

with

Cpn
(x) =

j=n
∏

j=1

cos
π

pj
(x) =

j=n
∏

j=1

cpj
(x)

where the prime number pj belongs to the set πpn
, whi
h we de�ne as as the

referen
e set of the fun
tion Cpn
.

We are now going to study these various fun
tions.



Chapter 1

Some properties of the

fun
tion Spn.

1.1 Purpose of the 
hapter

Study of some properties of the fun
tion Spn
. A spe
ial property of fun
tions Spn

when n ≤ 5. A simple explanation of the distribution of some prime numbers

less than 49.

1.2 Some properties of the fun
tion Spn

We re
all the de�nition of the fum
tion Spn

Spn
: R −→ [−1, 1]

x 7−→ Spn
(x)

with

Spn
(x) =

j=n
∏

j=1

spj
(x)

and

spj
(x) = sin

π

pj
(x)

1.2.1 Period and parity

The period of the fun
tion Spn
, whi
h we denote TSpn

, is two times the produ
t

of the periods Tspj
, where pj are all the elements of the set πpn

. We then have

TSpn
= 2×

j=n
∏

j=1

pj

1



2 CHAPTER 1. SOME PROPERTIES OF THE FUNCTION SPN
.

The fun
tion Spn
is the produ
t of fun
tions sin and is odd when n is odd and

even when n is even. Inside the interval [0, TSpn
[, we note that the fun
tion Spn

vanishes when x equals all the non-prime integer, as well as all the elements of

πpn
. In parti
ular

Spn
(0) = Spn

(
TSpn

4
)

= Spn
(
TSpn

2
)

= Spn
(
3TSpn

4
)

= Spn
(TSpn

)

= 0

For instan
e, we show the respe
tive graphs of the fun
tions S3 (see �gure-1.1

page-9)

S3 (x) = sin
(π

2
x
)

sin
(π

3
x
)

whi
h is an even fun
tion, and the fun
tion S5 (see �gure-1.2 page-9),

S5 (x) = sin
(π

2
x
)

sin
(π

3
x
)

sin
(π

5
x
)

whi
h is an odd fun
tion.

1.2.2 Some symmetry properties

We now propose to study some properties some simple symmetry properties of

the fun
tion S(pn) in the interval [0, TSpn
[. We will limit ourselves to study

these properties in the neighbourhood of the natural integers

TSpn

4 and

TSpn

2 .

Let xp and xq be two real numbers su
h that

(

1

2
(xp + xq) = lTSpn

)(

l ∈ {
1

4
,
1

2
}

)

⇐⇒ (xp + xq = kTSpn
)

(

k ∈ {
1

2
, 1}

)

We have

Spn
(xq) = Spn

(kTSpn
− xp)

=

j=n
∏

j=1

(

sin
π

pj
(kTSpn

− xp)

)

=

j=n
∏

j=1

(

sin

(

k
π

pj
TSpn

−
π

pj
xp

))

Let us pose for all pj > 2

2hj + 1 =
1

4pj
TSpn
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3

with

hj ∈ N∗

then

sin

(

k
π

pj
TSpn

−
π

pj
xp

)

= sin

(

4k (2hj + 1)π −
π

pj
xp

)

Besides, when pj = 2

sin

(

k
π

pj
TSpn

−
π

pj
xp

)

= sin
(

k
π

2
TSpn

−
π

2
xp

)

= sin
(

2k (2h+ 1)π −
π

2
xp

)

with h ∈ N∗
We then obtain the following results

Cas k = 1
2

sin

(

4k (2hj + 1)π −
π

pj
xp

)

= sin

(

2 (2hj + 1)π
π

pj
− xp

)

= sin

(

−
π

pj
xp

)

sin
(

2k (2h+ 1)π −
π

2
xp

)

= sin
(

(2h+ 1)π −
π

2
xp

)

= sin
(π

2
xp

)

hen
e

Spn
(xq) = Spn

(kTSpn
− xp)

= sin
(

xp

π

2

)

j=n
∏

j=2

(

sin

(

−
π

pj
xp

))

= (−1)
n−1

j=n
∏

j=1

(

sin
π

pj
xp

)

Cas k = 1

sin

(

4k (2hj + 1)π −
π

pj
xp

)

= sin

(

4 (2hj + 1)π
π

pj
− xp

)

= sin

(

−
π

pj
xp

)
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sin
(

2k (2h+ 1)π −
π

2
xp

)

= sin
(

2 (2h+ 1)π −
π

2
xp

)

= sin
(

−
π

2
xp

)

hen
e

Spn
(xq) = Spn

(kTSpn
− xp)

= sin
(

−xp

π

2

)

j=n
∏

j=2

(

sin

(

−
π

pj
xp

))

= (−1)
n

j=n
∏

j=1

(

sin
π

pj
xp

)

Con
lusion

Inside the interval [0, TSpn
[, we 
an write

(

xp + xq =
1

4
TSpn

)

=⇒



Spn
(xq) = (−1)

n−1
j=n
∏

j=1

(

sin
π

pj
xp

)





or, formulated otherwise

(

xp + xq =
1

4
TSpn

)

=⇒
(

Spn
(xq) = (−1)

n−1
Spn

(xp)
)

(1.1)

and likewise

(

xp + xq =
1

2
TSpn

)

=⇒



Spn
(xq) = (−1)n

j=n
∏

j=1

(

sin
π

pj
xp

)





whi
h we 
an also write

(

xp + xq =
1

2
TSpn

)

=⇒ (Spn
(xq) = (−1)

n
Spn

(xp)) (1.2)

1.2.3 A spe
ial property of the fon
tion Spn
when n ≤ 5.

Let sαj ,pj
be a fun
tion su
h that

sαj ,pj
(x) = sin

(

π

pj
(x− αj)

)

= spj
(x− αj)

where αj is a natural integer that belongs to the interval [0, 2pj[. We now de�ne

the fun
tions Upn

Upn
: R −→ [−1, 1]

x 7−→ Upn
(x)
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where

Upn
(x) = s2 (x) spn

(x)

j=n−1
∏

j=2

sαj ,pj
(x)

Let us �rst 
onsider the 
ase where n = 5 ⇐⇒ pn = 11. Let us look for a

fun
tion U11 that vanishes for ea
h natural integer in the interval [0, 11[ and let

us write

(∀x ∈ {0, 1, 2, · · · , 9, 10})



U11 = s2 (x) s11 (x)

j=4
∏

j=2

sαj ,pj
(x) = 0





We note that

s11 (0) = 0

(∀x ∈ {0, 2, 4, 6, 8, 10}) (s2 (x) = 0)

(∀x ∈ {1, 3, 5, 7, 9}) (s2 (x) 6= 0)

(∀x ∈ {1, 3, 5, 7, 9}) ((s11 (x) 6= 0))

At least one fun
tion sαj ,pj
must vanish when x is equal to one of the odd natural

integer in the interval [0, 11[. There are three su
h fun
tions, with pj ∈ {3, 5, 7}.
We must have

(∀x ∈ {1, 3, 5, 7, 9}) (∃!j ∈ {2, 3, 4})
(

sαj ,pj
(x) = spj

(x− αj) = 0
)

We then have a produ
t of three fun
tions sαj ,pj
,whi
h must vanish for �ve

distin
t natural integer. But the di�eren
e between any two of these natural

integers is a power of 2, with the ex
eption of the pairs (1, 7) et (3, 9), for whi
h
only the fun
tions s1,3 et s3 are respe
tively 
an
elled out. The fun
tions sα3,5

et sα4,7, as for them, are only 
an
elled out respe
tively by one and only one

natural integer remaining in the set {1, 3, 5, 7, 9}.
Su
h fun
tion U11, whi
h must vanish for every integer in the interval [0, 11[,

therefore 
annot exist.

Consequently, there exists ne
essarily in ea
h interval [11k, 11 (k + 1) [, k ∈
N , at least one natural integer for whi
h the fun
tion S11 does not vanish. These

integers are prime number for ea
h interval, the upper endpoint 11 (k + 1) of
whi
h is ≤ 132.

We show in the same manner that for ea
h and every pn < 11, there is at

least one natural integer in ea
h interval [kpn, (k + 1) pn[, k ∈ N, for whi
h the

fun
tion Spn
does not vanish. These natural integers are prime integers for ea
h

interval the upper endpoint (k + 1) pn of whi
h is ≤ p2n+1.

When pn ≤ 5, we have
j=n
∏

j=1

pj < p2n+1

In the spe
ial 
ase where n = 3, pn = 5, then

TS5 = 2 (2× 3× 5)



6 CHAPTER 1. SOME PROPERTIES OF THE FUNCTION SPN
.

and

TS5

2
< 72 ⇐⇒ (2× 3× 5) < 72

In the interval [0, TS5

2 [

(

xp + xq =
TS5

2

)

⇐⇒



S5 (xq) =
(

−13
)

j=3
∏

j=1

(

sin
π

pj
xp

)





whi
h implies

((

xp + xq =
TS5

2

)

∧ (xp 6= 0)

)

⇐⇒ (xq 6= 0)

but xp and xq are ne
essarily prime numbers, as they are no multiple of 2, 3
and 5, and at the same time less than 72. In this simple 
ase, if xp is prime

number stri
tly greater than 5, then xq = 30− xp is also a prime number.

1.2.4 Number of natural integers for whi
h the fun
tion

Spn
does not vanish in the interval [0, TSpn

[

Let us 
onsider an odd prime integer pn and its asso
iated fun
tion Spn
. Let in

the interval

[0, TSpn[

be the set Bpn
of the natural integers, the least divisor of whi
h is greater

than pn. In this manner, Bp4
= B7 is the set of the natural integers less than

TSp4
= 420 that are not divisible by any of the prime integers that are stri
tly

less than p4, to name them 2, 3 and 5.

Let us 
onsider the set B2 of the natural integers non multiple of 2 (i.e. all

the odd numbers), in
luding 1, in the interval [0, TSpn
[; Its 
ardinal |B2| is equal

to

|B2| =

(

1−
1

2

)

TSpn

In the same way, the set B3 of the integers non multiple of 3, in
luding 1, subset
of the set B2, has his 
ardinal equal to

|B3| =

(

1−
1

3

)

|B2|

=

(

1−
1

3

)[(

1−
1

2

)

TSpn

]

=

(

1−
1

2

)(

1−
1

3

)

TSpn
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Step by step, we 
an 
al
ulate the number |Bpn
| of natural integers non multiple

of pn, in
luding 1
- 
hosen in the set of natural integers non multiple of pn−1, pn−1 being the larger

prime number less than pn
- themselves 
hosen in the set of the natural integers non multiple of pn−2, pn−2

being the larger prime number less than pn−1

- · · ·
- themselves 
hosen in the set of the natural integers non multiple of pn−(j−1),

pn−(j−1) being the larger prime number less than pn−j

- themselves 
hosen in the set of the natural integers non multiple of 2 that is

|Bpn
| =

(

1−
1

pn

)

∣

∣Bpn−1

∣

∣TSpn

=

(

1−
1

2

)(

1−
1

3

)

....

(

1−
1

pn

)

TSpn

=

j=n
∏

j=1

(

1−
1

pj

)

TSpn

Now, let us re
all that

TSpn
= 2

j=n
∏

j=1

pj

we �nd

|Bpn
| =





j=n
∏

j=1

(

1−
1

pj

)







2

j=n
∏

j=1

pj





= 2

j=n
∏

j=1

(pj − 1)

By analogy with the usual de�nition of the Euler produ
t, we de�ne the �nite

Euler produ
t of rank n
j=n
∏

j=1

(

1−
1

pj

)

Remark

The proportion of natural integers, whi
h we denote δn, for whi
h the fun
tion

Spn
does not vanish in the interval [0, TSpn

[ is naturally

δn =
TSpn

|Bpn
|

=

j=n
∏

j=1

1
(

1− 1
pj

)
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but

lim
l→+∞

k=l
∑

k=0

(

1

pkj

)

=
1

(

1− 1
pj

)

and therefore

δn =

j=n
∏

j=1

1
(

1− 1
pj

) =

j=n
∏

j=1

lim
l→+∞

k=l
∑

k=0

(

1

pkj

)

If now n approa
hes ∞, then



 lim
n→+∞

δn = lim
n→+∞

j=n
∏

j=1

lim
l→+∞

k=l
∑

k=0

(

1

pkj

)



⇐⇒



 lim
n→+∞

δn =

+∞
∑

j=1

(

1

j

)

= ∞




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Figure 1.1: Graph of the fun
tion S3
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1
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Figure 1.2: Graph of the fun
tion S5
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Chapter 2

Some properties of the

fun
tion Gm,pn.

It is a
knowledged that Christian Goldba
h stated the following 
onje
ture

Conje
ture 4 strong of Goldba
h For all natural integer m > 2, the even

natural integer 2m is the sum of two prime numbers.

For this 
onje
ture, we develop an approa
h in the two following 
hapters that


ould lead to a rigorous proof. The 
hosen path for our study is based on the

idea that it is possible to 
onstru
t a fun
tion de�ned on R, whi
h would be

symmetri
 with respe
t to a given natural integer m, the properties of whi
h

should enable us to better understand the reasons why this 
onje
ture is likely

to be true. On
e we have built this fun
tion, we will study some of its prop-

erties. In parti
ular, we will try to show that this fun
tion does not vanish at

some natural and relative integers in its domain.

Let

πpn
= {pj| (c|pj ⇐⇒ c ∈ {1, pj}) ∧ (pj ≤ pn)}

be the set that 
ontains all the prime numbers pj less than or equal to pn and the

fun
tion Spn
, whi
h we already de�ned (see formula 1 page-xi). Spn

is a periodi


fun
tion with period TSpn
(see formula 1.2.1 page-1). In a way similar to the

one used to 
onstru
t the fun
tion Spn
, we will 
onstru
t the new fun
tions

gm,pj
and Gm,pn

. Let us begin with the fun
tion gm,pj

gm,pj
: R −→ [−1, 1]

x 7−→ gm,pj
(x)

with

gm,pj
(x) = sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

11
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where m ∈ N∗
Using the notations already introdu
ed, this fun
tion 
an also be

written

gm,pj
(x) = spj

(x) spj
(2m− x)

= spj
(x) s2m,pj

(x)

Then, let us de�ne the fun
tion Gm,pn

Gm,pn
: R −→ [−1, 1]

x 7−→ Gm,pn
(x)

with

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

where m ∈ N∗
This fun
tion 
an also be written

Gm,pn
(x) = Spn

(x)Spn
(2m− x)

= Spn
(x)S2m,pn

(x)

and also

Gm,pn
(x) =

j=n
∏

j=1

gm,pj
(x)

We expe
t that the study of this fun
tion will provide us with some insight on

the strong Goldba
h 
onje
ture and its likelihood.

2.1 About some properties of fun
tions gm,pj et

Gm,pn

Fun
tions gm,pj
and Gm,pn

display properties of symmetry and periodi
ity that

we will look into here-under.

2.1.1 The fun
tions gm,pj

Periodi
ity

Let us re
all that

Tspj
= 2pj

We have

spj
(x) = (−1) spj

(

x+
1

2
Tspj

)

= (−1) spj

(

x−
1

2
Tspj

)
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and so

spj
(2m− x) = (−1) spj

(

(2m− x) +
1

2
Tspj

)

and

spj
(2m− x) = (−1) spj

(

(2m− x)−
1

2
Tspj

)

Let us 
onsider the fun
tion gm,pj

gm,pj
(x) = spj

(x) spj
(2m− x)

then

gm,pj
(x) = (−1)

2
spj

(

x+
1

2
Tspj

)

spj

(

(2m− x) +
1

2
Tspj

)

and

gm,pj

(

x+
1

2
T spj

)

= spj

(

x+
1

2
Tspj

)

spj

(

2m−

(

x+
1

2
Tspj

))

We have then established that

gm,pj
(x) = gm,pj

(

x+
1

2
Tspj

)

and therefore, the fun
tion gm,pj
is periodi
 with period

1

2
Tspj

= Tgpj,m = pj

Symmetry

Let us begin with the de�nition of the fun
tion gm,pj

gm,pj
(x) = spj

(x) spj
(2m− x)

we write

gm,pj
(2m− x) = spj

(2m− x) spj
(2m− (2m− x))

hen
e

gm, pj (2m− x) = spj
(2m− x) spj

(x)

Commutativity of the produ
t of fun
tions spj
(2m− x) and spj

(x) allows us
to write

gm,pj
(x) = gm,pj

(2m− x)

In parti
ular, when x = 2m

gm,pj
(2m− 2m) = gm,pj

(2m) = gm,pj
(0)

and

spj
(2m− 2m) = spj

(0) = 0
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Zeros

For ea
h and every number x that 
an
els out the fun
tion gm,pj
, we verify

(

gm,pj
(x) = 0

)

⇐⇒
(

spj
(x) spj

(2m− x) = 0
)

and then, these numbers are either of the form hpj or of the form 2m − lpj,
where h et l are natural integers. If the two fun
tions spj

et s2m,pj
vanish

simultaneously at the same natural integer, then m is ne
essarily a multiple of

pj . These two fun
tions are then non-distin
t. In parti
ular, we note that these

two fun
tions vanish when x = 0, x = m and x = 2m in the interval [0, 2m].
If, on the other hand, only x is multiple of pj , then, only the fun
tion spj

vanishes.

This fun
tion is distin
t from the fun
tion s2m,pj
. In parti
ular, in the interval

[0, 2m], the fun
tion s2m,pj
does not vanish when x = 0, x = m and x = 2m.

Let us now 
onsider the fun
tion gm,pj
on one of the intervals

[kpj , kpj + Tgm,pj
[

It vanishes when x = hpj. Also, assuming

m ≡ mj [pj ]

we get

(

sin

(

π

pj
(2m− x)

)

= sin (hπ) = 0

)

⇐⇒ (x = 2mj − lpj)

and then, on the 
onsidered interval

[kpj, kpj + Tgm,pj
[= [kpj, (k + 1) pj [

we have two natural integers, kpj et (k + 1) pj − 2mj , for whi
h the fun
tion

gm,pj
vanishes.

Example

We present, as an example for pj = 5 and m = 13,the graph of the fun
tion

g5,13 with period Tg5,13 = 5 in the interval [0, 26[ (see �gure-2.1 page-15) In

parti
ular, this graph shows the property of symmetry of this fun
tion in the

interval [0, 26[ et [−2, 28[, as already established in the previous pages.

2.1.2 The fun
tion Gm,pn

Periodi
ity

We already showed

Spn
(x) = (−1)Spn

(

x+
1

2
TSpn

)

= (−1)Spn

(

x−
1

2
TSpn

)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28-1-2

1

-1

x

y

Figure 2.1: Graph of the fun
tion g5,13

and thus

Spn
(2m− x) = (−1)Spn

(

(2m− x) +
1

2
TSpn

)

and also

Spn
(2m− x) = (−1)Spn

(

(2m− x)−
1

2
TSpn

)

Therefore, we 
an write

Gm,pn
(x) = Spn

(x)Spn
(2m− x)

and

Gm,pn
(x) = (−1)2Spn

(

x+
1

2
TSpn

)

Spn

(

(2m− x) +
1

2
TSpn

)

)

and also

Gm,pn

(

x+
1

2
TSpn

)

= Spn

(

x+
1

2
TSpn

)

Spn

(

2m− (x+
1

2
TSpn

)

)

and lastly

Gm,pn
(x) = Gm,pn

(x +
1

2
TSpn

)

We note that the fun
tion Gm,pn
is periodi
, with period

1
2TSpn

and we write

TGm,pn
=

1

2
TSpn
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This period is always even for all n.

Symmetry

We 
an also verify that in the interval [0, 2m[

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

whi
h 
an also be expressed

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
(2m− x)

)

sin

(

π

pj
x

)

and thus

(Gm,pn
(x) = Gm,pn

(2m− x)) ⇐⇒ (Gm,pn
(m− x) = Gm,pn

(m+ x))

In parti
ular

(Gm,pn
(m− x) 6= 0) ⇐⇒ ((Spn

(m− x) 6= 0) ∧ (Spn
(m+ x) 6= 0))

Likewise

(Gm,pn
(m− x) = 0) ⇐⇒ ((Spn

(m− x) = 0) ∧ (Spn
(m+ x) = 0))

By 
onstru
tion, the natural integerm is the 
entre of symmetry for the fun
tion

Gm,pn
in the interval [0, 2m[. In addition, we have

Gm,pn

(

m−
1

2
TGm,pn

)

= Gm,pn

(

m+
1

2
TGm,pn

)

and so, m is also the 
entre of symmetry for the fun
tion Gm,pn
in the interval

[m−
1

2
TGm,pn

,m+
1

2
TGm,pn

[

We �nally note that

Gm,pn
(−x) =

j=n
∏

j=1

sin

(

π

pj
(−x)

)

sin

(

π

pj
(2m+ x)

)

= (−1)
n

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m+ x)

)

and

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
(x)

)

sin

(

π

pj
(2m− x)

)
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Should there exist non zero natural integers as values taken on by x

|Gm,pn
(−x)| = |Gm,pn

(x)|

then, we should have

(∀pj ∈ πpn
)

(

sin

(

π

pj
(2m+ x)

)

= sin

(

π

pj
(2m− x)

))

but

sin

(

π

pj
(2m+ x)

)

=

sin

(

π

pj
(2m− x)

)

cos

(

π

pj
(2x)

)

+ cos

(

π

pj
(2m− x)

)

sin

(

π

pj
(2x)

)

and so

(

sin

(

π

pj
(2m+ x)

)

= sin

(

π

pj
(2m− x)

))

⇐⇒

(

cos

(

π

pj
(2x)

)

= 1 ⇐⇒ sin

(

π

pj
(2x)

)

= 0

)

This ne
essarily implies

(∃h0 ∈ Z∗)



x = h0

j=n
∏

j=1

pj





and we verify

(∀pk ∈ πpn
) (∃h1 ∈ Z∗)



sin





π

pk
h0

j=n
∏

j=1

pj



 = sin (h1π) = 0





whi
h implies

Gm,pn



h0

j=n
∏

j=1

pj



 = Gm,pn



−h0

j=n
∏

j=1

pj



 = 0

On the other hand, when

(h0 ∈ Z∗)



x 6= h0

j=n
∏

j=1

pj





then

Gm,pn
(x) 6= Gm,pn

(−x)

Hen
e, 0 is not a 
entre of symmmetry for the fun
tion Gm,pn
.
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Figure 2.2: Graph of the fun
tion G5,13 on the interval [−2, 58[

Examples

We present, as an example for pj = 5 and m = 13,the graph of the fun
tion

G5,13 with period TG5,13 = 5 in the interval [−2, 28[ (see �gure-2.1 page-15) In
parti
ular, this graph shows the property of symmetry of this fun
tion in the

interval [0, 26[ et [−2, 28[, as already established in the previous pages.

Other properties

Up to now, we have not made any hypothesis as regards the parameter m,

the value of whi
h has evidently some in�uen
e in the behaviour of the fun
-

tion Gm,pn
and spe
ially in the way this fun
tion vanishes in its domain. By


onstru
tion, the fun
tion vanishes at x when

Spn
(x) = 0

or else

Spn
(2m− x) = S2m,pn

(x) = 0

Case 1: m ≤ pn The interval [0,m[ is in
luded in the interval [0, pn[. We

know that the fun
tion Spn
vanishes at all the natural integers in the interval

[0, pn[, save for 1. Therefore, by symmetry, the fun
tion Gm,pn
a priori vanishes

at all the natural integers in the interval [0, 2m[, save for 1 and 2m− 1, whi
h
this fun
tion does not ne
essarily vanishes at. However, if 2m − 1 is divisible
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by at least one of the prime integers less than or equal to pn, then the fun
tion

Gm,pn
vanishes at all the natural integers in the interval [0, 2m[. We illustrate

0 1 2 3 4 5 x

y

Figure 2.3: Graph of the fun
tion G5,3 on the interval [−2, 30[

this 
ase with the graphs of the fun
tions G5,3 et G5,4 on the respe
tive intervals

[0, 6[, [0, 8[ and [0, 10[ (see �gures 2.3 and 2.4 pages 19 and 20).

Case 2: m > pn The interval [0, pn[ is in
luded in the interval [0,m[. There-
fore, the fun
tion Gm,pn

a priori may not vanish at all the natural integers in

the interval [0, 2m[. We illustrate this 
ase with the graphs of the fun
tions

G7,6 et G7,7 on the respe
tive intervals [0, 12[ and [0, 14[ (see �gures 2.5 and 2.6

pages 21 and 22). This latter 
ase, where the natural integerm is stri
tly greater

than the prime integer pn, will be the obje
t of the deeper study that follows.

We will show that for all prime integer Pn > 11, there exists at least one

natural integer in ea
h interval

[kpn, (k + 1) pn[

whi
h the fun
tion Spn
does not vanish at, when k is less than some integers,

the value of whi
h depends on pn. Moreover, when

(k + 1) pn < p2n+1

su
h integer is prime. We also note that every natural integer whi
h the fun
tion

Spn
vanishes at, 
an
els out the fun
tion Gm,pn

. The 
onverse is not true.
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0 1 2 3 4 5 6 7 8 9 x

y

Figure 2.4: Graph of the fun
tion G5,4 on the interval [−2, 30[

Indeed, this fun
tion also vanishes when we have

sin

(

π

pj
(2m− x)

)

= 0

for at least one of the prime integers pj .

The natural integers whi
h do not 
an
el out the fun
tion Gm,pn
.

We pair ea
h natural integer m with the fun
tion

Gm,pn
(x) =

j=µ
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

and we 
hoose the prime integers pn and pn+1, 
onse
utive in the set of the

prime numbers, su
h that

p2n < 2m < p2n+1

then we look at the way the fun
tion Gm,pn
vanishes in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

This interval is 
entred on the natural integer m and 
ontains TGm,pn
natural

integers, with

TGm,pn
=

j=n
∏

j=1

pj
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-1 x

y

Figure 2.5: Graph of the fun
tion G7,6 on the interval [−2, 30[

Let us 
onsider the natural integers ak in this interval, and for all these natural

integers, their respe
tive remainders αk,j modulo ea
h of the prime integers pj
in the set πpn

. For ea
h of these natural integers, we have for ea
h index j

ak ≡ αk,j [pj ]

with

αk,j ∈ Z/pjZ

Let us write down ea
h of these natural integers ak in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

and there respe
tive remainders modulo pj in ea
h of the

∏j=n

j=1 pj rows of the

following table
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-1 x

y

Figure 2.6: Graph of the fun
tion G7,7 on the interval [−2, 30[

≡ [p1] ≡ [p2] ≡ [pj ] ≡ [pn]
α1,1 α1,2 . . . α1,j . . . α1,n

α2,1 α2,2 . . . α2,j . . . α2,n

α3,1 α3,2 . . . α3,j . . . α3,n

. . . . . . . . . . . . . . . . . .
αk,1 αk,2 . . . αk,j . . . αk,n

. . . . . . . . . . . . . . . . . .
α∏j=n

j=1
pj−2,1 α∏j=n

j=1
pj−2,2 . . . α∏j=n

j=1
pj−2,i . . . α∏j=n

j=1
pj−2,n

α∏j=n

j=1
pj−1,1 α∏j=n

j=1
pj−1,2 . . . α∏j=n

j=1
pj−1,i . . . α∏j=n

j=1
pj−1,n

α∏j=n

j=1
pj ,1

α∏j=n

j=1
pj ,2

. . . α∏j=n

j=1
pj ,i

. . . α∏j=n

j=1
pj ,n

Ea
h of the remainders αk,j 
an take pj distin
t values in the set

{0, 1, 2, · · · , j, · · · , pj − 1}

Hen
e, ea
h row of the table 
an be written in

∏j=n

j=1 pj di�erent ways. In

addition, we note that two distin
t rows 
ontaining exa
tly the same remainders

αk,j , for ea
h value taken by the index j, ne
essarily 
orrespond to two distin
t

natural integers ak1
and ak2

that are su
h that

(∀pj ∈ πpn
) [(ak1

≡ ak2
[pj]) ⇐⇒ ((ak1

− ak2
) ≡ 0 [pj ])]
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We then 
on
lude that there 
an only be one of su
h numbers in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

Consequently, in this interval, two rows taken among the

∏j=n
j=1 pj possible rows

of the table 
annot be identi
al and the set of these rows 
ontain all the possible

rows that 
an be 
onstru
ted with the remainders αk,j . Let us 
onsider now the

natural integers aκ in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

whi
h the fun
tion Gm,pn
does not vanish at. For ea
h of them, none of the

remainders αk,j modulo pj is zero and ea
h of them 
annot take more than pj−1
di�erent values. The number of natural integers ak 
ontained in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

is therefore equl to

∏j=n
j=1 (pj − 1). Besides, it is 
lear that we must verify

(∀aκ) (∀pj ∈ πpn
) (aκ − (2m− aκ) ≡ 2m [pj ])

Let

{

p
(m)
j

}

et

{

p
q(m)
j

}

be the sets of the odd prime numbers that respe
tively

divide and do not divide m, and then 2m. We have

{

p
(m)
j

}

∪
{

p
q(m)
j

}

= πpn
− {2}

The set

{

p
(m)
j

}

is empty if m is itself a prime number or a multiple of prime

numbers that do not belong to πpn
. We have

(

∀p
(m)
j ∈

{

p
(m)
j

})(

2m ≡ 0 [p
(m)
j ]

)

Similarly

(

∀p
q(m)
j ∈

{

p
q(m)
j

})(

∃µj ∈ Z∗/p
q(m)
j

)(

2m ≡ µj [p
q(m)
j ]

)

We pose

∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = ρ

whi
h implies

∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = (n− 1)− ρ

Let us assume that there exists at least one prime integer pk ∈ πpn
that divides

2m− aκ. Then

(∃pk ∈ πpn
) ((aκ ≡ 2m [pk]) ⇔ ((2m− aκ) ≡ 0 [pk]))
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and in this 
ase

Gm,pn
(ak) = Gm,pn

(2m− ak) = 0

Conversely, the natural integers ak su
h that

(∀pj ∈ πpn
) (aκ 6≡ 2m [pj])

satisfy

Gm,pn
(ak) = Gm,pn

(2m− ak) 6= 0

For ea
h of these natural integers ak, none of its remainders αk,j modulo pj is

zero. Two 
ases then present themselves

Case 1

({

p
(m)
j

}

= ∅
)

⇔
(∣

∣

∣

{

p
q(m)
j

}∣

∣

∣
= |πpn

− {2}| = n− 1
)

Besides, none of its remainders αk,j is equal to the remainder µj modulo pj of

2m. There are therefore only pj − 2 possible values for ea
h of its remainders

αk,j . The number of su
h natural integers ak 
ontained in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

whi
h the fun
tion Gm,pn
does not vanish at in the same interval is then equal

to

ΓGm,pn
=

j=n
∏

j=2

(

p
q(m)
j − 2

)

(2.1)

As an illustration, the prime number pn and the parameterm being respe
tively


hosen equal to 7 an 31, the period of the fun
tion G31,7 is equal to

TG31,7 = 210

We verify that 72 < 62 < 112. As well, 31 /∈ π7. The 
ontemplated interval is

[−
1

2
210 + 31 = −74,

1

2
210 + 31 = 136[

This interval 
ontains

{

p
(m)
j

}

= ∅

and

{

p
q(m)
j

}

= π7 − {2} = {3, 5, 7}

Therefore,

∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = 0 et

∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = 3. The set of the natural integers that

do not 
an
el out the fun
tion G31,7 in the interval [−74, 136[ is the set

{−59,−47,−41,−17,−11, 1, 19, 31, 43, 61, 73, 79, 103, 109, 121}

It 
ontains 15 natural integers and one 
an verify that

ΓG31,7
=

j=3
∏

j=2

(

p
(m)
j − 2

)

= (3− 2) (5− 2) (7− 2) = 15
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Case 2

({

p
(m)
j

}

6= ∅
)

⇔
(∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = ρ
)

⇔
(∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = (n− 1)− ρ
)

Besides, none of its remainders αk,j is equal to the remainder µj modulo p
q(m)
j

of 2m. Ea
h of its remainders αk,j 
an only take one value among pj−1 natural

integers for ea
h prime integer pj ∈
{

p
(m)
j

}

.

Likewise, None of its remainders αk,j is equal to the remainder µj modulo

p
q(m)
j of 2m. Ea
h of its remainders αk,j 
an only take one value among pj − 2

natural integers for ea
h prime integer pj ∈
{

p
q(m)
j

}

.

The number of natural integers ak 
ontained in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

whi
h the fun
tion Gm,pn
does not vanish at in the same interval is then equal

to

ΓGm,pn
=

k=ρ
∏

k=1

(

p
(m)
k − 1

)

l=n−ρ
∏

l=2

(

p
q(m)
l − 2

)

(2.2)

It is 
lear that the pre
eding 
ase is in fa
t a parti
ular 
ase of this present 
ase

where ρ = 0, and we 
an write

(∀n ∈ N∗)





j=n
∏

j=2

(pj − 2) ≤ ΓGm,pn
<

j=n
∏

j=2

(pj − 1)





the sets

{

p
(m)
j

}

and

{

p
q(m)
j

}

being the sets of the odd prime integers that

respe
tively divide and do not divide m. As an illustration, the prime number

pn and the parameter m being respe
tively 
hosen equal to 7 an 30, the period
of the fun
tion G30,7 is equal to

TG30,7 = 210

We verify that 72 < 62 < 112. Besides

30 ≡ 0 [3]

and

30 ≡ 0 [5]

The 
ontemplated interval is

[−
1

2
210 + 30 = −75,

1

2
210 + 30 = 135[

This interval 
ontains 210 natural integers. We have

{

p
(m)
j

}

= {3, 5}
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and

{

p
q(m)
j

}

= π5 − {2, 3, 5} = {7}

Therefore,

∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = 2 and

∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = 1. The set of natural integers that


an
el out the fun
tion G30,7 in the interval [−75, 135[ is the set

{−71,−67,−61,−53,−47, 107, 113, 121, 127, 131}

∪ {−43,−41,−37,−29,−23, 83, 89, 97, 101, 103}

∪ {−19,−13,−11,−1, 1, 59, 61, 71, 73, 79}

∪ {13, 17, 19, 23, 29, 31, 37, 41, 43, 47}

We purposely divided this set into four subsets 
ontaing ea
h 10 natural integers
for the sake of 
larity. This set then 
ontains 40 natural integers and we verify

that

ΓG30,7
=

k=2
∏

k=1

(

p
(m)
k − 1

)

l=1
∏

l=1

(

p
q(m)
l − 2

)

= (3− 1) (5− 1) (7− 2) = 40

2.2 Study on the interval [0, 2m[

The result we just obtained shows that the fun
tion Gm,pn
does not vanish at

a signi�
ant number of natural integers in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

These natural integers are ne
essarily either prime integers that do not belong

to πpn
, or natural integers that are multiple of prime integers that do not belong

to πpn
. There exists as well two prime integers pν and pν+1, with ν ∈ N∗

, su
h

that for the 
orresponding fun
tions Gm,pν
and Gm,pν+1

, we should have

TGm,pν
< 2m < TGm,pν+1

The fun
tion Gm,pν
does not vanish either at a signi�
ant number of natural

integers in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m[

2.2.1 Zeros

let us now 
onsider these two fun
tions Gm,pn
and Gm,pν

in the 
losed interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

where pν is su
h that

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m] ⊂ [0, 2m[
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We already showed that

TGm,pν
=

j=ν
∏

j=1

pj

One 
an noti
e that the endpoints of the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

whi
h we denote respe
tively Aν et Bν are of same parity. For these two end-

points, we have

(∀pj ≤ pν) (Aν ≡ Bν [pj])

We will assume also that the natural integer m is not prime. Let us now re
all

Gm,pn
(x) = Spn

(x)S2m,pn
(x)

with

Spn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

spj
(x)

S2m,pn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

s2m,pj
(x)

The fun
tion Spn
vanishes at an natural integers belonging to the interval

[−
1

2
TGm,pν

+m,m[

and at bn natural integers belonging to the interval

]m,
1

2
TGm,pν

+m]

Symmetri
ally, the fun
tion S2m,pn
vanishes at an = bn natural integers belong-

ing to the interval

[−
1

2
TGm,pν

+m,m[

and at bn = an natural integers belonging to the interval

]m,
1

2
TGm,pν

+m]

Therefore, the number of natural integers whi
h the fun
tion Gm,pn
vanishes at

in the interval

[−
1

2
TGm,pν

+m,m[

is less than or equal to an + bn� when the number of natural integers whi
h the

fun
tion Spn
vanishes at in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]
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is itself equal to an + bn + 1.
The set of natural integers whi
h the fun
tion Spn

vanishes at in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

is also the set of natural integers the least prime divisor is less than or equal to

pn. We denote this set Cpn
and we have

|Cpn
| = an + bn + 1 (2.3)

From the foregoing, it follows that

� the number of natural integers whi
h the fun
tion Gm,pn
vanishes at in

the interval

[−
1

2
TGm,pν

+m,m[

is less than or equal to (an + bn). These natural integers are the elements

of the set whi
h we denote Dpn
and we have

|Dpn
| ≤ an + bn (2.4)

� the number of natural integers whi
h the fun
tion Gm,pn
does not vanish

at in the interval

[−
1

2
TGm,pν

+m,m[

is greater than

1
2TGm,pν

− (an + bn). These integers are the elements of

the set whi
h we denote Epn
and we have

|Epn
| >

1

2
TGm,pν

− (an + bn) (2.5)

We now de�ne in the interval [− 1
2TGm,pν

+m, 1
2TGm,pν

+m]

- the set A2 of the natural integers the least prime divisor of whi
h is 2, and its


omplement B2 in this interval. The 
ardinals of these two sets are respe
tively

denoted |A2| and |B2|. We have the stri
t equalities

|A2| =
1

2
TGm,pν

|B2| =

(

1−
1

2

)

TGm,pν

B2 is the set of the natural integers the least prime divisor is greater than 2.
- the set A3 of the natural integers the least prime divisor of whi
h is 3, and its
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omplement B3 in the set B2. The 
ardinals of these two sets are respe
tively

denoted |A3| and |B3| and we have yet again the stri
t equalities

|A3| =
1

3

(

1−
1

2

)

TGm,pν

|B3| =

(

1−
1

3

)(

1−
1

2

)

TGm,pν

B3 is the set of the natural integers the least prime divisor is greater than 3.
For the sets of natural integers the least prime divisor of whi
h is 5 ≤ pj ≤ pν ,
there are no longer stri
t equalities, ex
ept when

m ≡ 0 [pj ]

In that manner, the set A5 is the set of the natural integers the least prime

divisor of whi
h is 5, and its 
omplement B5 in the set B3. The 
ardinals of

these two sets are respe
tively denoted |A5| and |B5| and we have the inequalities

|A5| ≤
1

5

(

1−
1

2

)(

1−
1

3

)

TGm,pν

|B5| ≥

(

1−
1

5

)(

1−
1

2

)(

1−
1

3

)

TGm,pν

B5 is the set of the natural integers the least prime divisor is greater than 5.
In general, the set Apj

is the set of the natural integers the least prime divisor

of whi
h is pj , and its 
omplement Bpj
in the set Bpj−1

. The 
ardinals of these

two sets are respe
tively denoted

∣

∣Apj

∣

∣

and

∣

∣Bpj

∣

∣

and we have the inequalities

∣

∣Apj

∣

∣ ≤
1

pj

k=j−1
∏

k=1

(

1−
1

pk

)

TGm,pν
(2.6)

∣

∣Bpj

∣

∣ ≥

k=j
∏

k=1

(

1−
1

pk

)

TGm,pν
(2.7)

For all j, Bpj
is the set of the natural integers the least prime divisor is greater

than pj . Moreover, we have

TGm,pν
= Ap1

∪ Bp1

Bp1
= Ap2

∪ Bp2

Bp2
= Ap3

∪ Bp3

· · ·

Bpj−2
= Apj−1

∪ Bpj−1

Bpj−1
= Apj

∪ Bpj
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· · ·

Bpn−1
= Apj

∪ Bpn

and thus

Bp1
= Ap2

∪Ap3
∪ Bp3

and following this path from one value of j to the next

(∀j ∈ N∗) (j ≤ n)

(

Bp1
=

k=j−1
⋃

k=2

Apk
∪ Bpj

)

Furthermore, it is 
lear that the sets Apj
are pairwise distin
t and disjoint and

that the set Cpn
of the natural integers the least prime divisor of whi
h is less

than or equal to pn, with 1 < j ≤ n, in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m[

is equal to

Cpn
=

j=n
⋃

j=1

Apj

with its 
ardinal equal to

|Cpn
| =

j=n
∑

j=1

∣

∣Apj

∣

∣

(2.8)

Lastly, the set Bpn
of the natural integers the least prime divisor of whi
h is

greater than pn is the 
omplement of the set Cpn
of the natural the integers the

least prime divisor of whi
h is less than or equal to pn in the set of the natural

integers belonging in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

and hen
e

|Bpn
| = TGm,pν

− (an + bn) (2.9)

let us now pose

u1 =
1

2

v1 =

(

1−
1

2

)

u2 =
1

3

(

1−
1

2

)

v2 =

(

1−
1

3

)(

1−
1

2

)
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u3 =
1

5

(

1−
1

3

)(

1−
1

2

)

=
1

p3

k=2
∏

k=1

(

1−
1

pk

)

v3 =

(

1−
1

5

)(

1−
1

3

)(

1−
1

2

)

=

k=3
∏

k=1

(

1−
1

pk

)

· · ·

uj =
1

pj

k=j−1
∏

k=1

(

1−
1

pk

)

vj =

k=j
∏

k=1

(

1−
1

pk

)

The quantities uj et vj are the terms of two sequen
es

uj =
1

pj

k=j−1
∏

k=1

(

1−
1

pk

)

(2.10)

et

vj =

k=j
∏

k=1

(

1−
1

pk

)

(2.11)

and we have

(∀j ∈ N∗) (uj + vj = vj−1)

and

(∀j ∈ N∗)

(

uj =
1

pj
vj−1

)

We also pose u0 = 0 et v0 = 1 by 
onvention. Moreover

uj+1 =
1

pj+1

k=j
∏

k=1

(

1−
1

pk

)

=
1

pj+1

(

1−
1

pj

) k=j−1
∏

k=1

(

1−
1

pk

)

hen
e

(

uj+1 =
pj

pj+1

(

1−
1

pj

)

uj

)

⇐⇒

(

uj+1

uj

=
pj − 1

pj+1
<

pj
pj+1

< 1

)

whi
h shows that the sequen
e uj is de
reasing. Now

(∀j ∈ N)

(

uj =
1

pj
vj−1

)

and thus

j=n
∑

j=1

uj =

j=n
∑

j=1

1

pj
vj−1

We 
an now pro
eed to the next 
hapter where we will present a path that 
ould

lead to a proof of the Goldba
h's strong 
onje
ture [5℄. We will make use of

results already widely known.
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Chapter 3

About the Goldba
h's strong


onje
ture

As already hinted at the end of 
hapter 2, let us begin with establishing some

results with the help of Franz Mertens's works [6℄

3.1 A lower bound of the sum of the inverses of

the �rst n prime numbers

Let us 
onsider the sum S of the inverses of the prime numbers. We have

S =
∞
∑

j=1

1

pj

and for ea
h prime number pj

1

1− 1
pj

=

∞
∑

k=1

1

pkj

Let pn be the nth prime number and let us 
hoose the integer P su
h that

pn ≤ P < pn+1

then

j=n
∏

j=1

∞
∑

k=0

(

1

pj

)k

=
∑

n∈Npn

1

n

where Npn
is the set of the natural integers the greatest prime divisor is pn.

Clearly

j=P
∑

j=1

1

j
<

j=n
∏

j=1

∞
∑

k=0

(

1

pj

)k

33
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yet

1

1− 1
pj

=

∞
∑

k=1

1

pkj
= 1 +

1

pj
+

1

p2j
+ · · · = 1 +

1

pj
+

1

p2j

(

1 +
1

pj
+ · · ·

)

and

1

p2j

(

1 +
1

pj
+ · · ·

)

=
1

p2j

∞
∑

k=0

1

pkj
=

1

p2j

1

1− 1
pj

=
1

pj (pj − 1)

and thus

j=P
∑

j=1

1

j
<

j=n
∏

j=1

(

1 +
1

pj
+

1

pj (pj − 1)

)

but

1 >

∫ x=2

x=1

dx

x
∫ x=2

x=1

dx

x
>

1

2
>

∫ x=3

x=2

dx

x
· · ·

∫ x=j

x=j−1

dx

x
>

1

j
>

∫ x=j+1

x=j

dx

x
· · ·

∫ x=pn

x=pn−1

dx

x
>

1

pn
>

∫ x=pn+1

x=pn

dx

x
· · ·

∫ x=P

x=P−1

dx

x
>

1

P
>

∫ x=P+1

x=P

dx

x

and thus



1 +

∫ x=pn

x=1

dx

x
>

j=P
∑

j=1

1

j
>

∫ x=P+1

x=1

dx

x





⇐⇒


1 + [lnx]x=P
x=1 >

j=P
∑

j=1

1

j
> [lnx]x=P+1

x=1





and et



1 + ln (P ) >

j=P
∑

j=1

1

j
> ln (pn + 1)





=⇒


1 + ln (P ) >

j=P
∑

j=1

1

j
> ln (P )




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It follows

ln ln (P ) < ln

j=n
∏

j=1

(

1 +
1

pj
+

1

pj (pj − 1)

)

and we have

ln

j=n
∏

j=1

(

1 +
1

pj
+

1

pj (pj − 1)

)

=

j=n
∑

j=1

ln

(

1 +
1

pj
+

1

pj (pj − 1)

)

Let us now re
all that

(∀x ∈ R)







exp (x) =
∞
∑

j=1

xj

j!



 =⇒ (exp (x) ≥ 1 + x)





and thus

exp

(

1

pj
+

1

pj (pj − 1)

)

≥ 1 +
1

pj
+

1

pj (pj − 1)

and therefore

ln ln (P ) ≤

j=n
∑

j=1

ln exp

(

1

pj
+

1

pj (pj − 1)

)

or else

ln ln (P ) ≤

j=n
∑

j=1

(

1

pj
+

1

pj (pj − 1)

)

but

j=n
∑

j=1

1

pj (pj − 1)
<

j=n
∑

j=1

1

p2j
<

∞
∑

j=1

1

p2j
< 1

and �nally



ln ln (P ) ≤ 1 +

j=n
∑

j=1

(

1

pj

)



⇐⇒



ln ln (P )− 1 ≤

j=n
∑

j=1

(

1

pj

)





(3.1)

3.2 An upper bound of the sum of the inverses

of the n �rst prime numbers

Let us pose, for 1 ≤ j ≤ n

aj =
1

ln pj

bj =
ln pj
pj
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Bj =

k=j
∑

k=1

bk

First of all, let us 
onsider

Bj =

k=j
∑

k=1

ln pk
pk

=

k=j
∑

k=1

ln p
1
pk

k = ln

k=j
∏

k=1

p
1
pk

k

We noti
e that the fun
tion

y = x
1
x = exp

(

1

x
lnx

)

is di�erentiable and its derivative is

d

dx
y =

d

dx

(

1

x
lnx

)

exp

(

1

x
ln x

)

=

(

1

x2
(1− lnx)

)

x
1
x

and this derivative is negative when x > e. Therefore, for all k > 2

ln pk
pk

<
ln k

k

and thus

k=m
∑

k=2

ln pk
pk

<

k=m
∑

k=2

ln k

k

but

∫ x=k

x=k−1

lnx

x
dx <

ln k

k
<

∫ x=k+1

x=k

lnx

x
dx

and hen
e

k=m
∑

k=2

ln k

k
<

∫ x=m+1

x=2

lnx

x
dx

and �nally

k=m
∑

k=2

ln pk
pk

<
k=m
∑

k=2

ln k

k
< [

1

2
(lnx)2]m+1

2

and

k=m
∑

k=1

ln pk
pk

<
ln 2

2
+

j=m
∑

k=2

ln k

k
<

1

2

(

(ln (m+ 1))
2 − ln 2 (ln 2− 1)

)

We numeri
ally 
he
k that

Bj =

k=j
∑

k=1

ln pk
pk

< ln pj
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when j ≤ 10. Let us assume that this relationship holds for m, then

Bm+1 =
k=m+1
∑

k=2

ln pk
pk

= Bm +
ln pm+1

pm+1
< ln pm +

ln pm+1

pm+1

and

Bm+1 =

k=m+1
∑

k=2

ln pk
pk

< ln pm + ln p
1

pm+1

m+1

and

Bm+1 =

k=m+1
∑

k=2

ln pk
pk

< ln pmp
1

pm+1

m+1

Let us also assume

(

p
pm

pm+1

m+1 < pm

)

⇐⇒
(

ppm

m+1 < ppm+1

m

)

or stated otherwise

pm ln pm+1 < pm+1 ln pm

yet the Identity fun
tion in
reases faster than the ln fun
tion. Consequently,

there exists a prime number pn su
h that

(

(∀pj > pn)

(

pj < p

pj

pj+1

j+1

))

=⇒

(

pjp
1

pj+1

j+1 < p

pj+1

pj+1

j+1 < pj+1

)

We 
he
k in this instan
e that pn = p3 = 5. We thus showed that

(∀j)

(

Bj =

k=j
∑

k=1

ln pk
pk

< ln pj

)

Let now pn be the nth prime integer and let us 
hoose the natural integer P
su
h that

pn ≤ P < pn+1

Let us 
onsider the sequen
e

(aj−1 − aj)Bj−1

and for ea
h of its terms, let us develop. Then

(a1 − a2)B1 =

(

1

ln p1
−

1

ln p2

)

ln p1
p1

=
1

ln p1

ln p1
p1

−
1

ln p2

ln p1
p1

=
1

p1
−

1

ln p2

ln p1
p1
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(a2 − a3)B2 =

(

1

ln p2
−

1

ln p3

)(

ln p1
p1

+
ln p2
p2

)

=
1

ln p2

(

ln p1
p1

+
ln p2
p2

)

−
1

ln p3

(

ln p1
p1

+
ln p2
p2

)

=
1

p2
+

ln p1
p1

1

ln p2
−

(

ln p1
p1

1

ln p3
+

ln p2
p2

1

ln p3

)

(a3 − a4)B3 =

(

1

ln p3
−

1

ln p4

)(

ln p1
p1

+
ln p2
p2

+
ln p3
p3

)

=
1

ln p3

(

ln p1
p1

+
ln p2
p2

++
ln p3
p3

)

−
1

ln p4

(

ln p1
p1

+
ln p2
p2

+
ln p3
p3

)

=
1

p3
+

(

ln p1
p1

1

ln p3
+

ln p2
p2

1

ln p3

)

−

(

ln p1
p1

1

ln p4
+

ln p2
p2

1

ln p4
+

ln p3
p3

1

ln p4

)

· · ·

(aj−1 − aj)Bj−1 =

(

1

ln pj−1
−

1

ln pj

) k=j−1
∑

k=1

ln pk
pk

=
1

ln pj−1

k=j−1
∑

k=1

ln pk
pk

−
1

ln pj

k=j−1
∑

k=1

ln pk
pk

=
1

pj−1
+

1

ln pj−1

k=j−2
∑

k=1

ln pk
pk

−
1

ln pj

k=j−1
∑

k=1

ln pk
pk

(aj − aj+1)Bj =

(

1

ln pj
−

1

ln pj+1

) k=j
∑

k=1

ln pk
pk

=
1

ln pj

k=j
∑

k=1

ln pk
pk

−
1

ln pj+1

k=j
∑

k=1

ln pk
pk

=
1

pj
+

1

ln pj

k=j−1
∑

k=1

ln pk
pk

−
1

ln pj+1

k=j
∑

k=1

ln pk
pk

· · ·

(an−1 − an)Bn−1 =

(

1

ln pn−1
−

1

ln pn

) k=n−1
∑

k=1

ln pk
pk

=
1

ln pn−1

k=n−1
∑

k=1

ln pk
pk

−
1

ln pn

k=n−1
∑

k=1

ln pk
pk

=
1

pn−1
+

1

ln pn−1

k=n−2
∑

k=1

ln pk
pk

−
1

ln pn

k=n−1
∑

k=1

ln pk
pk
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(

an −
1

lnP

)

Bn =

(

1

ln pn
−

1

lnP

) k=n
∑

k=1

ln pk
pk

=
1

ln pn

k=n
∑

k=1

ln pk
pk

−
1

lnP

k=n
∑

k=1

ln pk
pk

=
1

pn
+

1

ln pn

k=n−1
∑

k=1

ln pk
pk

−
1

lnP

k=n
∑

k=1

ln pk
pk

Let us make the summation

j=n−1
∑

j=1

(aj − aj+1)Bj +

(

an −
1

lnP

) k=n
∑

k=1

ln pk
pk

+
1

lnP

k=n
∑

k=1

ln pk
pk

with

k=n
∑

k=1

ln pk
pk

= Bn

and, further to what we already showed

(∀j ∈ N∗) (Bj < ln pj)

we get





j=n−1
∑

j=1

(aj − aj+1)Bj +

(

an −
1

lnP

)

Bn =

j=n
∑

j=1

1

pj
−

1

lnP
Bn





⇐⇒




j=n
∑

j=1

1

pj
=

j=n−1
∑

j=1

(aj − aj+1)Bj +

(

an −
1

lnP

)

Bn +
1

lnP
Bn





and by writing the terms expli
itly

j=n
∑

j=1

1

pj
=

j=n−1
∑

j=1

(

1

ln pj
−

1

ln pj+1

)

Bj +

(

1

ln pn
−

1

lnP

)

Bn +
1

lnP
Bn

or likewise

j=n
∑

j=1

1

pj
=

j=n−1
∑

j=1

1

ln pj ln pj+1
(ln pj+1 − ln pj)Bj+

1

ln pn lnP
(lnP − ln pn)Bn+

1

lnP
Bn

and thus

j=n
∑

j=1

1

pj
<

j=n−1
∑

j=1

1

ln pj+1
(ln pj+1 − ln pj) +

1

lnP
(lnP − ln pn) +

1

lnP
Bn
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We have

1

ln pj+1
(ln pj+1 − ln pj) <

∫ x=pj+1

x=pj

1

ln x
d lnx <

1

ln pj
(ln pj+1 − ln pj)

and

1

ln pj+1

j=n−1
∑

j=1

(ln pj+1 − ln pj) <

j=n−1
∑

j=1

∫ x=pj+1

x=pj

1

lnx
d lnx

but

j=n−1
∑

j=1

∫ x=pj+1

x=pj

1

lnx
d lnx =

∫ x=pn

x=p1

1

lnx
d lnx = ln ln pn − ln ln 2

similarly

1

lnP
(lnP − ln pn) <

∫ x=P

x=pn

1

lnx
d lnx <

1

ln pn
(lnP − ln pn)

with

∫ x=P

x=pn

1

lnx
d lnx = ln lnP − ln ln pn

We �nally obtain the inequality

j=n
∑

j=1

1

pj
< ln lnP − ln ln 2 +

ln pn
lnP

(3.2)

3.3 An approximation of the value of the �nite

Euler produ
t of rank n

We have in general

(

∀a ∈ R+
) (

∀b ∈ R+
)

(a < b)

(

1

b
<

∫ x=b

x=a

1

x
dx <

1

a

)

and

∫ x=b

x=a

1

x
dx = ln b− ln a = ln

b

a

Let us pose

b

a
=

pj
pj − 1

=

(

1−
1

pj

)−1

we get

∀pj ∈ N
1

pj
<

∫ x=pj

x=pj−1

1

x
dx <

1

pj − 1
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or likewise

∀pj ∈ N
1

pj
< ln

pj
pj − 1

<
1

pj − 1

but

ln
pj

pj − 1
= − ln

pj − 1

pj
= − ln

(

1−
1

pj

)

and thus

∀pj ∈ N
1

pj
< − ln

(

1−
1

pj

)

<
1

pj − 1

Now let us pose

− ln

(

1−
1

pj

)

=
1

pj
+ ǫj

Clearly

0 < ǫj <
1

pj − 1
−

1

pj
<

1

(pj − 1)
2 <

1

j2

We have

−

j=n
∑

j=1

ln

(

1−
1

pj

)

=

j=n
∑

j=1

1

pj
+

j=n
∑

j=1

ǫj

but

j=n
∑

j=1

ǫj <

j=n
∑

j=1

1

j2
< 2

and hen
e

j=n
∑

j=1

1

pj
< −

j=n
∑

j=1

ln

(

1−
1

pj

)

<

j=n
∑

j=1

1

pj
+ 2

Yet

j=n
∑

j=1

ln

(

1−
1

pj

)

= ln

j=n
∏

j=1

(

1−
1

pj

)

and we 
an write

j=n
∑

j=1

1

pj
< − ln

j=n
∏

j=1

(

1−
1

pj

)

<

j=n
∑

j=1

1

pj
+ 2

or likewise, with pn ≤ P < pn+1

ln lnP − 1 < − ln

j=n
∏

j=1

(

1−
1

pj

)

< ln lnP − ln ln 2 +
ln pn
lnP

+ 2

and, by posing e = exp(1)

ln

(

lnP

e

)

< − ln

j=n
∏

j=1

(

1−
1

pj

)

< ln

(

lnP

e

)

− ln ln 2 +
ln pn
lnP

+ 3
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There exists thus a number µn su
h that

(

0 < lnµn < 3− ln ln 2 +
ln pn
lnP

)

⇐⇒

(

1 < µn < exp

(

3− ln ln 2 +
ln pn
lnP

))

and su
h that

− ln

j=n
∏

j=1

(

1−
1

pj

)

= ln

(

lnP

e

)

+ lnµn = ln
(µn

e
lnP

)

Let us pose

(µn

e
= mn

)

⇐⇒

(

1

e
< mn < exp

(

2− ln ln 2 +
ln pn
lnP

))

we get

j=n
∏

j=1

(

1−
1

pj

)

=
1

mn lnP
= vn > 0 (3.3)

3.4 A possible way to a proof

Let us now revert to the Goldba
h's strong 
onje
ture and more spe
i�
ally in

light with what we developped in the previous paragraph. Let us 
hoose the

natural non prime integer m, and the two 
onse
utive prime integers pn and

pn+1, su
h that

p2n < 2m < p2n+1

and the fum
tion Gm,pn

Gm,pn
: R −→ [−1, 1]

x 7−→ Gm,pn
(x)

with

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

This fun
tion is periodi
 with period

TGm,pn
=

j=n
∏

j=1

pj

The divisors of m, whi
h we assumed to be 
omposite, belongs to the set πpn

and thus

Gm,pn
(m) = 0
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Furthermore, we know that there exists two 
onse
utive prime integers pν and

pν+1, for whi
h the respe
tive periods TGm,pν
et TGm,pν+1

of the 
orresponding

fun
tions Gm.pν
and Gm,pν+1

are su
h that

TGm,pν
< 2m < TGm,pν+1

Let uk (see the equation 2.10 page 31) et vk (see the equation 2.11 page 31) be

the two sequen
es we already introdu
ed

uk =
1

pk

k−1
∏

h=1

(

1−
1

ph

)

vk =
k
∏

h=1

(

1−
1

ph

)

We have

uk =
1

pk
vk−1

and thus

k=n
∑

k=1

uk =
k=n
∑

k=1

1

pk
vk−1

Now, in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm.pν

+m] ⊂ [0, 2m]

let us 
onsider on the one hand the sets we already de�ned in the previous


hapter

� Apk
the set of the natural integers the least prime divisor of whi
h is

pk. The 
ardinal of this set is |Apk
|, and satis�es the inequality (see the

equation 2.6 page 29)

|Apk
| ≤

1

pk

j=k−1
∏

j=1

(

1−
1

pj

)

TGm,pν

� Bpn
the set of the natural integers the least prime divisor of whi
h is greater

than pk. The 
ardinal of this set is |Bpk
| and satis�es the inequality (see

the equation 2.7 page 29)

|Bpn
| ≥

j=n
∏

j=1

(

1−
1

pj

)

TGm,pν
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� Cpn
the set of the natural integers the least prime divisor of whi
h is less

than pn. The 
ardinal of this set is |Cpn
| (see the equation 2.3 page 30)

|Cpn
| =

k=n
∑

k=1

|Apk
|

and satis�es the inequality

|Cpn
| ≤ TGm,pν

n
∑

k=1

uk (3.4)

and on the other hand, in the interval

[−
1

2
TGm,pν

+m,m[

let us 
onsider the sets

� Dpn
the set of the natural integers whi
h the fun
tion Gm,pn

vanishes

at. The 
ardinal of this set is |Dpn
| and satis�es the inequality (see the

equation 2.4 page 28)

|Dpn
| ≤ an + bn

� Epn
the set of the natural integers whi
h the fun
tion Gm,pn

does not

vanish at. The 
ardinal of this set is |Epn
| and satis�es the inequality (see

the equation 2.5 page 28)

|Epn
| ≥

1

2
TGm,pν

− (an + bn)

The Goldba
h's strong 
onje
ture would be proved if we 
ould verify

(

|Dpn
| <

1

2
TGm,pν

)

⇐⇒ (|Epn
| > 0)

3.4.1 Considerations on the set Bpn

Let us 
onsider Bpn
the set of the natural integers belonging to the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[
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the least prime divisor of whi
h is greater than pn We have

|Bpn
| ≥

j=n
∏

j=1

(

1−
1

pj

)

TGm,pν

with

TGm,pν
=

j=ν
∏

j=1

pj

Furthermore, we showed that (see the equation 3.3 page 42)

j=n
∏

j=1

(

1−
1

pj

)

=
1

mn lnP
= vn > 0

with

(µn

e
= mn

)

⇐⇒

(

1

e
< mn < exp

(

2− ln ln 2 +
ln pn
lnP

))

⇐⇒

(

e >
1

mn

> exp

(

−2 + ln ln 2−
ln pn
lnP

))

and

pn ≤ P < pn+1

and thus

(

|Bpn
| ≥

1

mn lnP
TGm,pν

)

=⇒



|Bpn
| ≥

exp
(

−2 + ln ln 2− ln pn

lnP

)

lnP
TGm,pν





Now, we noti
e that

(TGm,pν
⊂ [0, 2m]) ⇐⇒ ((∃λ ∈ Q∗) (1 ≤ λ < pν+1) (λTGm,pν

= 2m))

with p2n < 2m < p2n+1 and thus

(

p2n < λTGm,pν
< p2n+1 ⇐⇒

p2n
λ

< TGm,pν
<

p2n+1

λ

)

=⇒

(

p2n
pν+1

< TGm,pν
< p2n+1

)

and thus

|Bpn
| >

p2n
pν+1 lnP

exp

(

−2 + ln ln 2−
ln pn
lnP

)

Yet, P 
an take any arbitrary value between pn and pn+1. Let us 
hoose P = pn
and we �nally get

|Bpn
| >

p2n
pν+1 ln pn

exp (−3 + ln ln 2)
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or more expli
itly

|Bpn
| >

p2n
29pν+1 ln pn

>
pn

29 lnpn

One 
an then see that the 
ardinal |Bpn
| of the set Bpn

of the natural integers

the least prime divisor is greater than pn numeri
ally satis�es

(|Bpn
| > 1) ⇐⇒ (pn ≥ p35 = 149)

whi
h seems to eviden
e that this set is not empty as soon as pn ≥ 149.

3.4.2 Considerations on the set Cpn

Let us 
onsider the set Cpn
. Its 
ardinal satis�es the following relations

|Cpn
| = an + bn

(see the equation 2.3 page 28) and

|Cpn
| ≤ TGm,pν

k=n
∑

k=1

uk

(see the equation 3.4 page 44)

Let us fo
us �rst on the equation 3.4, we get

k=n
∑

k=1

uk =

k=n
∑

k=1

1

pk
vk−1 =

1

2
+

k=n
∑

k=2

1

pk
vk−1

We 
an also write (see the equations 2.10 et 3.3, pages 31 and 42)

k=n
∑

k=2

uk <

k=n
∑

k=1

1

mk−1pk ln pk−1

or otherwise

k=n
∑

k=2

uk <
1

e

k=n
∑

k=2

1

pk ln pk−1
<

1

e

k=n
∑

k=2

1

pk ln pk
<

1

2e

k=n
∑

k=2

pk − pk−1

pk ln pk

now

pk − pk−1

pk ln pk
<

∫ x=pk

x=pk−1

dx

x ln x
<

pk − pk−1

pk−1 ln pk−1

and

∫ x=pk

x=pk−1

dx

x lnx
=

∫ x=pk

x=pk−1

d lnx

lnx

and hen
e

k=n
∑

k=2

pk − pk−1

pk ln pk
<

k=n
∑

k=2

∫ x=pk

x=pk−1

d lnx

lnx
<

k=n
∑

k=2

pk − pk−1

pk−1 ln pk−1
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or else

k=n
∑

k=2

pk − pk−1

pk ln pk
<

∫ x=pn

x=p1

d lnx

lnx
<

k=n
∑

k=2

pk − pk−1

pk−1 ln pk−1

and �nally

k=n
∑

k=2

pk − pk−1

pk ln pk
< [ln lnx]x=pn

x=p1
<

k=n
∑

k=2

pk − pk−1

pk−1 ln pk−1

therefore

k=n
∑

k=2

uk <
1

2e
(ln ln pn − ln ln 2)

In the interval [− 1
2TGm,pν

+ m,m[, the number of natural integers whi
h the

fun
tion Gm,pn
vanishes at is less than or equal to an + bn. These numbers are

either even natural integers, in whi
h 
ase we have

(∀k < m)

(

2k ∈ [−
1

2
TGm,pν

+m,m[

)

(Spn
(2k) = Spn

(2m− 2k) = 0)

or odd natural integers. The 
ardinal of the set of these odd natural integers in

the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m[

is equal to

1
2TGm,pν

and the following inequalities are satis�ed

(

1

2
(an + bn) ≤

1

2
TGm,pν

k=n
∑

k=2

uk

)

⇐⇒

(

1

2
(an + bn) <

1

4e
(ln ln pn − ln ln 2)TGm,pν

)

Now, the 
ardinal of the set of the odd natural integers whi
h the fun
tion

Gm,pn
vanishes at in the interval [− 1

2TGm,pν
+m,m[ is also less than or equal

to

1
2 (an + bn). The 
ardinal of the set of the odd natural integers in the same

interval is

1
4TGm,pν

. Let us try and �ne the values of pn for whi
h

(

1

4e
(ln ln pn − ln ln 2)TGm,pν

≤
1

4
TGm,pν

)

⇐⇒ ((ln ln pn − ln ln 2) ≤ e)

We get

((ln ln pn − ln ln 2) ≤ e) ⇐⇒ (ln ln pn ≤ e + ln ln 2)

⇐⇒
(

ln pn ≤ ee+ln ln 2
)

⇐⇒
(

pn ≤ ee
e+ln ln 2

)

and we 
an numeri
ally verify

ee
e+ln ln 2

= 36 465,95
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Therefore, the 
ardinal of the set of the odd natural integers whi
h the fun
tion

Gm,pn
vanishes at in the interval

[−
1

2
TGm,pν

+m,m[

is less than

1
4TGm,pν

for all prime integer pn < 36 466. Finally, we noti
e that

((

1

2
p2n < m <

1

2
p2n+1

)

∧ (pn = 36 466)

)

=⇒
(

1

2
1 329 765 293< m < 2 (1 329 765 293)

)

3.4.3 A likely 
on
lusion

Based on the previous results, we 
an now state that on the one hand, the fun
-

tion Gm.pn

annot vanish for all the natural integers belonging to the interval

[− 1
2TGm,pν +m, 12TGm,pν +m[ when pn < 36 466. On the other hand, in the

same interval, there exists at least a prime integer greater than pn as soon as

pn > p35 = 149. The Goldba
h's strong 
onje
ture seems to be partially proved,

at least for ea
h natural integer m ≤ 1
21 329 765 293 and we 
an fromulate the

following theorem

Theorem 4 Goldba
h's partial For ea
h natural integer 2 ≤ m < 1
21 329 765 293,

the even natural integer 2m is the sum of two prime numbers.



Chapter 4

On an extension of the Joseph

Bertrand's 
onje
ture

4.1 Obje
t of the 
hapter

Joseph Bertand proposed a 
onje
ture later proved by Panufty T
heby
hev,

whi
h we already mentioned in our introdu
tion

Theorem 5 of Bertrand T
heby
hev For ea
h n > 1, there exists at least

one prime integer that belongs to the interval ]n, 2n].

In a similar spirit, and based on numeri
al results obtained with a 
omputer,

we suggest the following 
onje
ture

Conje
ture 5 Let pn be a prime number, there exists at least one prime number

in ea
h and every interval [kpn, (k + 1) pn[ for ea
h and every non zero natural

integer k su
h that (k + 1) pn < p2n+1.

We will try over this 
hapter to prove this 
onje
ture.

4.2 Our tools.

We re
all �rst the de�nition of the set πpn
that 
ontains ea
h and every prime

number pj less than or equal to a given prime number pn

πpn
= {pj| ((c|pj) ⇐⇒ (c ∈ {1, pj}) ∧ (pj ≤ pn))}

Let us 
onsider the fun
tion

Spn
: R −→ [−1, 1]

x 7−→ Spn
(x)

49
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with

Spn
(x) =

j=n
∏

j=1

spj
(x)

This fun
tion vanishes if and only if x is equal to one element , or the produ
t

of several elements, of πpn
. Its period is

TSpn
= 2

j=n
∏

j=1

pj

As the fun
tion Spn
is the produ
t of sin fun
tions, it is

� odd when n is odd

� even when n is even

In the interval [0, TSpn
[, we have

Spn
(TSpn

) = Spn
(
TSpn

4
) = Spn

(
TSpn

2
) = Spn

(
3TSpn

4
) = 0

We also re
all that, for two natural integers xp and xq 
hosen in the interval

[0, TSpn
[, we have (see the equations 1.1 et 1.2 page 4)

(

xp + xq =
1

4
TSpn

)

=⇒
(

Spn
(xq) = (−1)

n−1
Spn

(xp)
)

(

xp + xq =
1

2
TSpn

)

=⇒ (Spn
(xq) = (−1)n Spn

(xp))

4.3 Towards an extension of Bertrand T
heby-


hev's theorem.

4.3.1 The fun
tions Spn
et Spn−1

on the interval [0, 1

2
TSpn

[

We noti
e that

[0,
1

2
TSpn

[= [0,
1

4
TSpn

[∪[
1

4
TSpn

,
1

2
TSpn

[

Let now

[
l

4
TSpn−1

,
l + 1

4
TSpn−1

] (l ∈ N)

be the sequen
e of the under-intervals in
luded in the interval [0, 12TSpn
]. There

are 2pn of these under-intervals in the interval [0, 1
2TSpn

[. Let us denote the

endpoints of these under-intervals

M0 = O0 = 0
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M1 =
1

4
TSpn−1

M2 =
2

4
TSpn−1

M3 =
3

4
TSpn−1

· · ·

Ml =
l

4
TSpn−1

· · ·

Mpn
=

pn
4
TSpn−1

· · ·

M2pn
=

2pn
4

TSpn−1

All the endpoints Ml are natural integers multiple of pn−1, and we have

[M0,M2pn
[=

l=2pn−1
⋃

l=0

[Ml,Ml+1[

and

(∀l 6≡ 0 [pn]) (Ml 6≡ 0 [pn])

The �gure 4.1 (see page 52) shows the endpoints Ml of ea
h under-intervals

in the 
ir
ular representation of the interval [0, 12TSpn[ in the 
ase where

(n = 6) ⇐⇒ ((pn = 13) ∧ (pn−1 = 11))

Let us 
onsider now the fun
tion Spn−1
in the interval [0, 1

2TSpn
] and let us

assume that there exists an under-interval ]At, Bt = At + pn[, in whi
h this

fun
tion Spn−1
vanishes at ea
h and every natural odd integer. At is a natural

integer assumed to be non zero and is not ne
essarily a multiple of pn. This

under-interval ]At, Bt[ 
ontains pn − 1 natural integers. The divisors of ea
h of

these natural integers belong ex
lusively to the set πpn−1
. We are then fa
ed

with two possibilities

� This under-interval ]At, Bt[ 
ontains a natural integer Ml. Be
ause of the

properties of symmetry of the fun
tion Spn−1
, ea
h natural integer Ml in

the interval [M0,M2pn−1
[ belongs to one of the under-intervals ]At, Bt[.

In parti
ular, the natural integer M0 = 0 belongs to one of the under-

intervals ]At, Bt[. But we know that Spn−1
(1) 6= 0. This possibility must

therefore be ruled out.

� This under-interval ]At, Bt[ does not 
ontain any of the natural integers

Ml. Be
ause of the properties of symmetry of the fun
tion Spn−1
, ea
h

under-interval 
ontains an under-interval ]At, Bt[.
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O0

Or

M1
M2

M3

M4

M5

M6

M7

M8

M9

M10

M11
M12 M13 M14

M15

M16

M17

M18

M19

M20

M21

M22

M23

M24
M25

Figure 4.1: The under intervals [Ml,Ml+1[ on the 
ir
ular representation of the

interval

[

0, 1
2TSpn

[

Be
ause of the properties of symmetry of the fun
tion Spn−1
, ea
h and every of

the 2pn under-intervals [Ml,Ml+1[ in
luded in the interval [0, 1
2TSpn

[ 
ontains
itself an under-interval ]At, Bt[. There are therefore 2pn under-intervals ]At, Bt[
in the interval [0, 12TSpn

[. We denote them

]A0, B0[

]A1, B1[

· · ·

]At, Bt[

]At+1, Bt+1[

· · ·

]A2pn−2, B2pn−2[

]A2pn−1, B2pn−1[

and we have

(∀t ∈ {0, 1, 2, · · · , 2pn − 2, 2pn − 1}) (At ∈ [Mt,Mt+1[⇐⇒ Mt < At < Mt+1)

We shall say that the set of the under-intervals ]At, Bt[ is generated by the

under-interval ]A0, B0[ and we will de�ne this set as the indexed family of the
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under-intervals {]At, Bt[}. We should note that the under-interval [M0,M1[ may


ontain several under-intervals pairwise distin
t, whi
h we will denote ]A0, B0[u,
where the index u ∈ N 
an take several di�erent values. Hen
e, ea
h under-

interval ]A0, B0[u generates the family {]At, Bt[u}. In all that follows, we will


hoose one of these families {]At, Bt[u}, that we will denote {]At, Bt[} for the

sake of simpli
ity. For ea
h t ∈ N su
h that 0 ≤ t ≤ 2pn − 1, we have, be
ause
of the properties of symmetry of the fun
tion Spn−1

At + At+1

2
= Mt+1 =

t+ 1

4
TSpn−1

In general, for two natural integers t1 et t2, of distin
t parity, where

0 ≤ t1 < t2 ≤ 2pn − 1

we have

At1 +At2

2
= M t1+t2

2
+ 1

2

Hen
e

At+1 +At+2

2
= Mt+2

and thus

At+2 −At

2
= Mt+2 −Mt+1 =

1

4
TSpn−1

and �nally

At+2 −At =
1

2
TSpn−1

and more generally, for q ∈ N

At+2q −At =
q

2
TSpn−1

Similarly, for ea
h t su
h that 0 ≤ t ≤ pn−1, we have, be
ause of the properties
of symmetry of the fun
tion Spn

(

1

2
(At +A2pn−1−t) =

1

4
TSpn

)

⇐⇒

(

A2pn−1−t +At =
1

2
TSpn

)

We 
an therefore write

(∀pj ∈ πpn
) (A2pn−1−t ≡ −At [pj ]) (4.1)

In parti
ular, for the natural integer αt 
hosen in the set Z/pnZ = {0, 1, pn− 1}

(At ≡ αt [pn]) ⇐⇒ (A2pn−1−t ≡ −αt [pn])

The �gure 4.2 shows the position of the under-intervals ]At, Bt[ in the 
ir
ular

representation of the interval [M0,M2pn−1[= [0, 12TSpn
[ and in the same manner

as in the �gure 4.1, where

(pn = 13) ⇐⇒ (n = 6)
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O0

Or

A0A1A2

A3
A4

A5

A6

A7

A8

A9A10

A11 A12 A13 A14

A15A16

A17

A18

A19

A20

A21
A22

A23A24A25

Figure 4.2: The under intervals ]At, Bt[ on the 
ir
ular representation of the

interval

[

0, 1
2TSpn

[

For the sake of 
larity, the �gure only shows the endpoint At of ea
h under-

interval ]At, Bt[.
Furthermore, the set of the under-intervals ]At, Bt[ 
ontains itself two sub-

sets the elements of whi
h are respe
tively the under-intervals ]A2τ , B2τ [ and
]A2τ+1, B2τ+1[, and we have for q ∈ N et 0 ≤ q ≤ τ ≤ pn − 1

(∀τ) (∀q)
(

A2τ+2q −A2τ =
q

2
TSpn−1

)

(∀τ) (∀q)
(

A2τ+1+2q −A2τ+1 =
q

2
TSpn−1

)

These two relations show that for two natural integers t1 et t2 with the same

parity, where

0 ≤ t1 < t2 ≤ pn − 1

At2 6≡ At1 [pn]

Let us then 
onsider the subset of the under-intervals ]At, Bt[ inside the interval
[0, 12TSpn

[, where t is 
hosen even. This set 
ontains pn under-intervals. The

same goes for the other subset of the under-intervals ]At, Bt[, where t is 
hosen
odd. There exists then pn natural integers At with a given parity. Lastly, we

note

((∀τ ∈ Z/pnZ) (∀q ∈ Z/pnZ) (q ≤ τ))
(

A2τ+2q = A2τ +
q

2
TSpn−1

)
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((∀τ ∈ Z/pnZ) (∀q ∈ Z/pnZ) (q ≤ τ))
(

A2pn−1−2τ+2q = A2pn−1−2τ +
q

2
TSpn−1

)

and thus

((∀τ ∈ Z/pnZ) (∀q ∈ Z/pnZ) (q ≤ τ))
(

∀pj ∈ πpn−1

)

(A2τ+2q ≡ −A2pn−1−2τ+2q [pj ])

We 
an now enun
iate the following lemma

Lemme 1 Let [0, 1
2TSpn

[ be the interval Let the interval [0, 12TSpn
[, where pn ≥

13 is the prime number of rank n in the set of the prime numbers. Let in this

interval the set of the 2pn under-intervals [ l4TSpn−1,
l+1
4 TSpn−1[= [Ml,Ml+1[

and let us assume that there exists at least one under-interval ]At, Bt[, where
Bt = At + pn, in whi
h the fun
tion Spn−1

vanishes at all the natural integers

it 
ontains, then

� this under-interval is entirely in
luded in the under-interval [Mt,Mt+1[
with Mt < At

� there exists one under-interval ]At, Bt[ in ea
h of the 2pn under-interval

[ l4TSpn−1,
l+1
4 TSpn−1[= [Ml,Ml+1[. We number these under-intervals

]A0, B0[, ]A1, B1[,..., ]At, Bt[,..., ]A2pn−2
, B2pn−2

[ , ]A2pn−1
, B2pn−1

[, with

(∀t ∈ {0, 1, 2, · · · , 2pn − 2, 2pn − 1}) (At ∈ [Mt,Mt+1[⇐⇒ Mt < At < Mt+1)

� The set of these under-intervals ]At, Bt[ 
ontains itself two subsets the ele-

ments of whi
h are respe
tively the under-intervals ]A2k, B2k[ et ]A2k+1, B2k+1[,
and we have

(∀pj ∈ πpn
) (At ≡ −A2pn−1−t [pj])

In parti
ular, for a given natural integer at 
hosen in the set

Z/pnZ = {0, 1, · · · , pn − 1}

ea
h of these two subsets 
ontains one and only one under-interval ]At, Bt[,
where

At ≡ at [pn]

and

(At ≡ at [pn]) ⇐⇒ (A2pn−1−t ≡ −at [pn])

Let us pose

1

2
TSpn−1 ≡ α [pn]

A0 ≡ a0 [pn]

then, for the index τ1 varying from 1 to pn−1

A2 = A0 +
1

2
TSpn−1 ≡ a2 = a0 + α [pn]
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A4 = A0 +
2

2
TSpn−1 ≡ a4 = a0 + 2α [pn]

A6 = A0 +
3

2
TSpn−1 ≡ a6 = a0 + 3α [pn]

· · ·

A2τ1 = A0 +
τ1
2
TSpn−1 ≡ a2τ1 = a0 + τ1α [pn]

· · ·

A2(pn−1) = A0 +
(pn − 1)

2
TSpn−1 ≡ a2(pn−1) = a0 + (pn − 1)α [pn]

Similarly, let us pose

A2pn−1 ≡ a2pn−1 = −a0 [pn]

then, for the index τ2 varying from −1 to − (pn − 1)

A(2pn−1)−2 = A2pn−1 −
1

2
TSpn−1 ≡ a2pn−3 = a2pn−1 − α [pn]

A(2pn−1)−4 = A2pn−1 −
2

2
TSpn−1 ≡ a2pn−5 = a2pn−1 − 2α [pn]

A(2pn−1)−6 = A2pn−1 −
3

2
TSpn−1 ≡ a2pn−1−7 = a2pn−1 − 3α [pn]

· · ·

A(2pn−1)−2τ2 = A2pn−1 −
τ2
2
TSpn−1 ≡ a2pn−1−2τ2 = a2pn−1 − τ2α [pn]

· · ·

A(2pn−1)−2(pn−1) = A2pn−1 −
pn − 1

2
TSpn−1 ≡ a1 = a2pn−1 − (pn − 1)α [pn]

and

a2pn−3 ≡ − (a0 + α) [pn]

a2pn−5 ≡ − (a0 + 2α) [pn]

a2pn−1−7 ≡ − (a0 + 3α) [pn]

· · ·

a2pn−1−2τ2 ≡ − (a0 + τ2α) [pn]

· · ·

a1 = a2pn−1−2(pn−1) ≡ − (a0 + (pn − 1)α) [pn]

One of the natural integers a2τ1 , whi
h we denote a2λ, and only one is equal to

zero, and

a2λ = a0 + λα ≡ 0 [pn]
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In the 
ase where a0 = 0, we then noti
e that

A0 ≡ 0 [pn]

and

A(2pn−1)−2τ2 ≡ a(2pn−1)−2τ2 = −τ2α [pn]

Let us pose now τ2 = pn − τ1

A(2pn−1)−2(pn−τ1) = A2τ1−1 ≡ a2τ1−1 = jα [pn]

We 
an �nally write

((∀τ ∈ Z/pnZ) (A0 ≡ 0 [pn]) ⇐⇒ (A2τ −A2τ−1 ≡ 0 [pn])) (4.2)

Let us 
onsider again the set of the under-intervals {]At, Bt[}. Let us 
hoose

three pair-wise distin
t integer indi
es t1, t2 et t3 su
h that

M2t1 =
2t1
4

TSpn−1

M2(pn−1)−2t1 =
pn − 1− t1

4
TSpn−1

M2t2 =
2t2
4

TSpn−1

M2(pn−1)−2t2 =
pn − 1− t2

4
TSpn−1

M2t3 =
2t3
4

TSpn−1

M2(pn−1)−2t3 =
pn − 1− t3

4
TSpn−1

then

A2t1 =
2t1
4

TSpn−1 +A0

A2(pn−1)−2t1 =
2 (pn − 1− t1)

4
TSpn−1 −A0

A2t2 =
2t2
4

TSpn−1 +A0

A2(pn−1)−2t2 =
2 (pn − 1− t2)

4
TSpn−1 −A0

A2t3 =
2t3
4

TSpn−1 +A0

A2(pn−1)−2t3 =
2 (pn − 1− t3)

4
TSpn−1 −A0

We get

M2t2 −M2t1 = A2t2 −A2t1 =
2 (t2 − t1)

4
TSpn−1
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M2t3 −M2t2 = A2t3 −A2t2 =
2 (t3 − t2)

4
TSpn−1

M2t1 −M2t3 = A2t1 −A2t3 =
2 (t1 − t3)

4
TSpn−1

and likewise

M2(pn−1)−2t2−M2(pn−1)−2t1 = A2(pn−1)−2t2−A2(pn−1)−2t1 = −
2 (t2 − t1)

4
TSpn−1

M2(pn−1)−2t3−M2(pn−1)−2t2 = A2(pn−1)−2t3−A2(pn−1)−2t2 = −
2 (t3 − t2)

4
TSpn−1

M2(pn−1)−2t1−M2(pn−1)−2t3 = A2(pn−1)−2t1−A2(pn−1)−2t3 = −
2 (t1 − t3)

4
TSpn−1

Let us now assume

A2t1 ≡ 0 [pn]

then

A2t2 =
2 (t2 − t1)

4
TSpn−1

A2t3 =
2 (t3 − t1)

4
TSpn−1

and we have

((A2t1 ≡ 0 [pn]) ∧ (A2t2 +A2t3 ≡ 0 [pn])) =⇒ (t2 + t3 ≡ 2t1 [pn]) (4.3)

Let us pose now t1 = 0. We already showed that (see the equation 4.2 page 57)

(∀j ∈ Z/pnZ) (A2t1 = A0 ≡ 0 [pn] ⇐⇒ A2t2 −A2t2−1 ≡ 0 [pn])

and in this 
ase

A2t2−1 = A2(pn−1)−2t3

and thus

A2t2 −A2t2−1 = A2t2 −A2(pn−1)−2t3 =
2t2
4

TSpn−1 −
2 (pn − 1− t3)

4
TSpn−1

and �nally

A2t2 −A2t2−1 =
2 (t2 − (pn − 1− t3))

4
TSpn−1 =

2 (t2 − pn + 1 + t3)

4
TSpn−1

We should therefore have

t2 + t3 + 1 ≡ 0 [pn]

This leads us to a 
ontradi
tion as we also showed (see the equation 4.3 page 58)

((A2t1 ≡ 0 [pn]) ∧ (A2t2 +A2t3 ≡ 0 [pn])) =⇒ (t2 + t3 ≡ 2t1 = 0 [pn])

Consequently

(∀]At, Bt[∈ {]At, Bt[}) ((At ≡ 0 [pn]) ⇐⇒ (t 6= 0)) (4.4)

This result, obtained for a given family {]At, Bt[u}, is valid for ea
h and every

of these families and we 
an enun
iate the following theorem
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Theorem 6 For all prime integer pn and its asso
iated fun
tion Spn
, let the

set of the intervals

[kpn, (k + 1) pn[

where k is any natural integer, and let the natural integer

M1 =
1

4
TSpn−1

then

(∀k ∈ N) (k < M1) (∃a ∈ ([kpn, (k + 1) pn[∩N)) (Spn
(a) 6= 0)

Among other 
onsequen
es, the 
onje
ture that we set out above is veri�ed and

we 
an enun
iate what is now a theorem

Theorem 7 Let pn be a given prime integer, there exists at least one prime

integer in ea
h interval [kpn, (k + 1) pn[ for all non-zero natural integer k su
h

that (k + 1) pn < p2n+1.

A formula 
an be derived from the latter theorem. Let us 
onsider the following

sequen
e of the under-intervals

[pn, 2pn[

[2pn, 3pn[

· · ·

[kpn, (k + 1) pn[

· · ·

[(pn − 1) pn, p
2
n[

Ea
h of these under-intervals 
ontains at least one prime integer that we respe
-

tively denote pν+1, pν+2, · · · , pν+k+1, · · · , pν+pn
, and we of 
ourse have

pn+1 ≤ pν+1 ≤ 2pn

pn+2 ≤ pν+2 ≤ 3pn

· · ·

pn+k+1 ≤ pν+k+1 ≤ (k + 1) pn

· · ·

pn+pn
≤ pν+pn

≤ p2n

and �nally





j=n+pn
∏

j=n+1

pj ≤ pn!p
pn−1
n



⇐⇒





j=n+pn
∏

j=n+1

pj ≤ (pn − 1)!ppn

n





(4.5)
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Chapter 5

Some thoughts on two other


onje
tures.

5.1 A 
onje
ture proposed by Jean Marie legen-

dre.

Jean Marie Legendre proposed the following 
onje
ture.

Conje
ture 6 of Legendre For all natural integer n > 2, there exists at least

a prime integer that belongs to the interval [n2, (n+ 1)2].

We give an approa
h that 
ould lead to a rigorous proof of this 
onje
ture. We

re
all the de�nition of the fun
tion Spn

Spn
: R −→ [−1, 1]

x 7−→ Spn
x

with

Spn
(x) =

j=n
∏

j=1

spj
(x)

and

spj
(x) = sin

π

pj
(x)

We will use the following theorem, whi
h we previously proved (see the theo-

rem 7 page 59).

Theorem 8 Let pn be a given prime number, there exists at least one prime

integer in ea
h interval [kpn, (k + 1) pn[ for all non-zero natural integer k su
h

that (k + 1) pn < p2n+1.

Ea
h and every divisor of both the natural integers k and k+1 belongs to πpn
.

Neither of these two natural integers is divisible by a prime number greater
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than pn. The union of the intervals

⋃

∞

j=1[pj , pj+1[ is the set of the real numbers
greater than or equal to 2. We have

∞
⋃

j=1

[pj , pj+1[= R+ − {1}

We 
he
k �rst of all that

12 < 3 < 22

22 < 5 < 7 < 32

32 < 11 < 13 < 42

. . .

Let us 
onsider, whi
h is always possible, the natural integer m su
h that

pj ≤ m < m+ 1 ≤ pj+1. Then

p2j ≤ m2 < (m+ 1)2 ≤ p2j+1

The interval [p2j , p
2
j+1] 
ontains a �nite set of intervals [kpj , (k + 1) pj [, where

k ∈ N . There then exists a natural integer K su
h that

Kpj < p2j+1 < (K + 1)pj

Let us 
onsider m2
and

(m+ 1)
2
= m2 + 2m+ 1

It is 
lear that

(∃k ∈ N)
(

m2 ∈ [kpj , (k + 1) pj[
)

In order for the Legendre's 
onje
ture to be true, we simply have to show that

(∀k ∈ N)
(

m2 ∈ [kpj , (k + 1)pj [
)

=⇒
(

(m+ 1)2 ≥ (k + 2) pj

)

and then invoke the here-above mentioned theorem (see the theorem 7 page 59).

We just have to show that.

2m+ 1 > 2pj

One 
an see that the latter inequality is always true. Indeed

2m+ 1 > 2pj ⇐⇒ m ≥ pj

whi
h is our prerequisite. The 
onje
ture is therefore proved whenever

m+ 1 < Kpj
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Kpj being the largest natural integer multiple of pj less than p2i+1.

We now have to look into the intervals

[(K − 1)pj ,Kpj[

and

[Kpj, (K + 1)pj[

where

p2i+1 ∈ [Kpj, (K + 1)pj [

We have

Kpj < p2i+1 < (K + 1)pj

and thus the natural integers

p2i+1 − (2m+ 1)

and

(m+ 1)2 − (2m+ 1)

that is to say m2
, are both stri
tly less than Kpj. Indeed

(m ≥ pj) ⇐⇒
(

p2i+1 − 2m ≤ p2i+1 − 2pj
)

⇐⇒
(

p2i+1 − (2m+ 1) < p2i+1 − 2pj
)

and thus

(m+ 1)2 − (2m+ 1) < p2i+1 − (2m+ 1) < Kpj

This 
ompletes the proof of this 
onje
ture and allows to enun
iate what is now

a theorem

Theorem 9 of Legendre For all natural integer n > 2, there exists at least a

prime integer that belongs to the interval [n2, (n+ 1)2].

5.2 A 
onje
ture proposed by Henri Bro
ard.

For his part, Henri Bro
ard proposed this other 
onje
ture

Conje
ture 7 of Bro
ard For all prime integer pn > 2, there exists at least

four prime integers that belong to the interval [p2n, p
2
(n+1)].

We will show that there exists at least four under-intervals [kpn, (k+1)pn[, with
k ∈ N, that are in
luded in the interval [p2n, p

2
n+1[, for ea
h prime integer pn.

these under-intervals are expli
itly of the form

[(pn + k)pn, (pn + k + 1)pn[ (k ∈ N∗)
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We know that

(∀n ∈ N∗) (pn+1 − pn ≥ 2) ⇐⇒
(

p2n+1 ≥ p2n + 4pn + 1
)

but p2n + 4pn is the upper endpoint of the fourth under-interval

[(pn + k)pn, (pn + k + 1)pn[ (k = 3)

Ea
h of these under-interval 
ontains at least one prime integer, further to the

here-above mentioned theorem (see the theorem 7 page 59). The 
onje
ture is

therefore proved and we end up with the following theorem

Theorem 10 of Bro
ard For all prime integer pn > 2, there exists at least

four prime integers that belong to the interval [p2n, p
2
(n+1)].



Chapter 6

Lemma relating to the

fun
tion S1
pn.

The fun
tions Spn
et S1

pn
vanish at the same odd natural integers in the interval

[0, TSpn
[. The study of some properties of the fun
tion S1

pn
may thus give us

an insight on the behaviour of the fun
tion Spn
itself.

6.1 One property of the fun
tion S1
pn.

Given a prime number pn ≥ 13, let us 
onsider the fun
tion S1
pn

in the 
losed

interval [kpn, (k + 1) pn]

S1
pn

(x) =

j=n
∏

j=2

sin

(

π

pj
x

)

and let us assume that this fun
tion vanishes at all the odd natural integers mh

in this interval, with h ∈ N∗
. These natural integers are of the form

mh =

(

k=n
∏

k=2

pak

k

)(

k=ν
∏

k=n+1

pak

k

)

Thus, there exists at least one fun
tion spj
that vanishes at ea
h of these natural

integers mh. We have

spj
(mh) = sin

π

pj
(mh) = 0

As mh is odd, we have for ea
h prime integer pj that divide pj
(

spj
(mh) = sin

π

pj
(mh) = 0

)

⇐⇒

(

spj

(

1

2
mh

)

= sin
π

2

(

mh

pj

)

= ±1

)
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and we 
an write

spj

(

1

2
mh

)

= ±1 ⇐⇒ cpj

(

1

2
mh

)

= 0

Let us 
onsider then the fun
tion C1
pn

su
h that

C1
pn

(x) =

j=n
∏

j=2

cos

(

π

pj
x

)

This fun
tion vanishes at ea
h number

1
2mh in the 
losed interval

[
1

2
kpn,

1

2
(k + 1) pn]

All these numbers are stri
tly rational and we have

(∀h)

(

(mh+1 −mh = 2) ⇐⇒

(

1

2
mh+1 −

1

2
mh = 1

))

and

(∀h)

((

mh ±
1

2

)

∈ N

)

Furthermore, we note that

C1
pn

(x) = C1
pn

(

x+
1

2
−

1

2

)

=

j=n
∏

j=2

cos

(

π

pj

(

x+
1

2

)

−
1

2

)

Let us now 
onsider

cos

(

π

pj

(

x−
1

2

))

= cos

(

π

pj

(

x−
1

2

)

+ (2lj + 1)
π

2
− (2lj + 1)

π

2

)

with lj ∈ N. Then

cos

(

π

pj

(

x−
1

2

))

= cos

(

π

pj

(

x−
1

2

)

+ (2lj + 1)
π

pj

pj
2

− (2lj + 1)
π

2

)

= cos

(

π

pj

((

x−
1

2

)

+ (2lj + 1)
pj
2

)

− (2lj + 1)
π

2

)

and

cos

(

π

pj

(

x−
1

2

))

= ± sin

(

π

pj

(

x+
1

2
((2lj + 1) pj − 1)

))

Therefore

j=n
∏

j=2

cos

(

π

pj

(

x−
1

2

))

= ±

j=n
∏

j=2

sin

(

π

pj

(

x+
1

2
((2lj + 1) pj − 1)

))
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Let us pose

α =
1

2
((2lj + 1) pj − 1)

and let us 
hose α su
h that α is independent from the index j, then α 
an be

equal to

α =
1

2





j=n
∏

j=2

pj − 1





and we write

j=n
∏

j=2

cos

(

π

pj

(

x−
1

2

))

= ±

j=n
∏

j=2

sin

(

π

pj
(x+ α)

)

In parti
ular, whenever the fun
tion S1
pn

vanishes at ea
h of the odd natural

integers mh in the interval [kpn, (k + 1) pn] then the fun
tion C1
pn

vanishes at

ea
h of the rational numbers

1
2mh in the interval [ 12kpn

, 1
2 (k + 1) pn] and, in this

same interval, we have

j=n
∏

j=2

cos

(

π

pj

(

1

2
mh

))

= ±

j=n
∏

j=2

sin

(

π

pj

(

1

2
(mh + 1) + α

))

= 0

This means that the fun
tion S1
pn

vanishes at ea
h of the integers in the interval

[ 12 (kpn + 1) + α, 1
2 ((k + 1) pn + 1) + α]. Hen
e the following lemma

Lemme 2 Let a prime number pn ≥ 13 and the fun
tion S1
pn
, if this fun
tion

vanishes at all the odd natural numbers of the interval [kpn, (k + 1) pn], then

there exists a number α = 1
2

(

∏j=n
j=2 pj − 1

)

su
h that the fun
tion S1
pn

vanishes

at all the natural integers of the interval [ 12 (kpn + 1)+α, 1
2 ((k + 1) pn + 1)+α].

Let us pose

1

2
(kpn + 1) + α = a

1

2
((k + 1) pn + 1) + α = b

It is 
lear that one and only on of the two numbers a and b is a natural integer

depending on the parity of the natural integer k. Let now mh1
and mh2

be

two distin
t natural integers 
hosen in the interval [kpn, (k + 1) pn] su
h that

mh1
< mh2

, then their respe
tive images in the interval [a, b] are α+ 1
2 (mh1

+ 1)
and α+ 1

2 (mh2
+ 1). These images are distin
t and we have

α+
1

2
(mh2

+ 1)− α+
1

2
(mh1

+ 1) =
1

2
mh2

−
1

2
mh1

> 0

Thus, the fun
tion S1
13 vanishes at all the odd natural integers in the inter-

val [2184, 2197[, where k = 168, and all the natural integers of the interval

[8599.5, 8606] (see �gure 6.1 page 68). Similarly, the same fun
tion vanishes at

all the odd natural integers in the interval [9113, 9126[, where k = 701, and all

the natural integers of the interval [12064, 12070.5] (see �gure 6.2 page 68).
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2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 x

8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 x

Figure 6.1: The fun
tion S1
13 on the intervals [2184, 2197[ et [8599.5, 8606[

9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 x

12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 x

Figure 6.2: The fun
tion S1
13 on the intervals [9113, 9126[ et [12064, 12070.5[
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me the opportunity to develop my ideas without paper drafts. My warmest

thanks to the L

A

T

E

X 
ommunity.

- WinGCLC. This geometry software proved to be easy to use. It allowed

me to make all the illustrations 
ontained in this work. I would like to thank

its author, Mister Pedrag Jani
i
 of the University of Belgrade, as well as the

numerous 
o-authors.
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