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Used notations.

0.1 Reminder about the notations used.

For the purpose of this study, we utilise the usual mathematical notations and
symbols. However it is suitable to define precisely some of them.

In propositional calculus, a proposition P is either true or false by defini-
tion. As the purpose of mathematics is to logically link propositions from one
to another to derive a conclusion, itself fromulated as a proposition, we will need
the logical connectors

e negation symbol —
e conjonction symbol "and" A
e disjonction "inclusive or" symbol V
as well as the relation symbols
¢ implication symbol =
e equivalence symbol <—-
We will also resort to utilise the following logical quantifiers
e universal "For all..." V
e existential "There exists at least one..." 3
e existential "There exists one and only one..." 3!

Usual notations used in Set Theory will be utilised. The membership symbol,
and its negation, of an element a contained in a set A are respectively denoted
€ and ¢. Also, the inclusion symbol of a set A in a set B and its negation are
respectively denoted C and ¢. Lastly, depending on our needs, we denote the
intersection and union operators of sets respectively

oﬂorﬂ

e |Joru.

iii



iv USED NOTATIONS.

Let A and B be two sets, not necessarily distinct, and let a € A and b € B any
two elements of these two sets, the ordered pair (a,b) belongs to the set A x B,
usually called the Cartesian product of the set A by the set B. This notion
of Cartesian product can be of course extended to a product of more than two
sets.

In a subset A; xBy, of the Cartesian product A xB, we can define the binary
relation R

(Va € A) (Vb €B)  ((aRb) < ((a,b) € A; x By))

This definition leads rather naturally to the notion of equivalence relation.
A binary relation R on a set A is an equivalence relation if and only if

(Va e A) (aRa)
(V(a,b) € A*)  ((aRb) <> (bRa))
(V(a,b,c) € A*)  ((aRb) A (bRc) => (aRc))

The definition of the equivalence relations leads in its turn to the one of equiv-
alence class. The equivalence class of an element a € A generated by the
equivalence relation R is the set, which we denote R (a)

(VbeA) (beR(a))) < (aRD)

and we have
R(a) C A

The set of equivalence classes R (a;) generated by the equivalence relation R
on the set A est son quotient set, which is denoted A/R.

The set A has a number of elements, finite or infinite, and in this last case,
countable or uncountable. This number is defined as the cardinal of the set
and denoted |A].

We will be interested more specifically in the following sets

e N Set of the natural integers.

e 7 Set of the rational integers.

e Q Set of the rationnal numbers.
e R Set of the real numbers.

In the sets Z, Q et R, the elements, in other word numbers, other than the null
element can be positive or negative. Each set A chosen among these sets contains
the subset of its negative numbers, which we denote A, the null element, which
we denote 0 and the subset of its positive numbers, which we denote AT. We
have

A=A"U{0}UAT
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The notion of absolute value follows naturally
(Vae A™) (la| =—a) (Vac AT) (la]=a)

As well, for each set A, chosen among any of the here-above mentioned sets, we
will denote the set of its non zero A*

(a € A") <= (a #£0)

and
A=A"U{0}

We will use the internal binary operations usually applied to the elements of
these sets, the numbers. These operations are denoted

e + for the addition
e X for the multiplication.

However, we will most of the time omit this symbol, as is customary.
We will also use the notations

e — for the soustraction
e / for the division.
After reminding the definition of the Euclidean division in the set Z
NMaeZ)(WMbeZ)(3qeZ)(IreZ) (a=bg+r)

we are using, whenever r = 0, the symbol | for the exact division in this same
set and we denote

(Va € Z)Y (Vb€ Z*)  (bla)) <= (e €N*) (a = bc))

The Euclidean division by a given prime number p,, in Z leads to the definition
of the equivalence relation, which we denote R = p,,

Va€Z) (Vb eZ) (apnb) < pn|(a—Db)

This equivalence relation generates in its turn p, equivalence classes, as the
remainder r of Euclidean division by the prime number p,, can take p, values
among the integers 0, 1, 2, -+, pp—2 et p,—1. These p,, equivalence classes are
the elements of the quotient set, which we denote

Z/an = {07 15 27 T 7pn725pn71}
We utilise the usual notations of the congruence theory
(a€Z)(beZ)(ceZ) (a=b [ < cla—1D)

The interval, with the two elements a et b of a set K as endpoints are denoted
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¢ Ja,b[ for an open
e [a,b] for a closed
¢ Ja,b] et [a,b] for the semi-open.

We will make use of functions in their usual definition. Let K and K’ be two
sets and F' the set of functions f, which map an element %k of K to an element
k' of K. We denote

fK — K
ks K = f(k)

In what follows, the sets K and K’ will be most of the time the set R itself, or
one of its subsets.



Introduction and preliminary
remarks.

Prime numbers appear to be distributed randomly within the set of natural
numbers. It was proved long ago that, given an interval [0, pi[ in the set of real
numbers R, where py and py41 are two consecutive prime numbers, every natural
integer belonging to the interval [py, pi_ﬂ [ taken in R is either prime or a multiple
of at least one of the prime numbers belonging to the interval [0, px[. Besides,
a theorem, postulated by Joseph Bertrand and proved by Pafnuty Tchebychev
[1] [2] states that

Theorem 1 of Bertrand Tchebychev For all natural integer n > 1, there
exists at least a prime integer that belongs to the interval In, 2n).

Also, the definition of the congruence between two numbers a and b, the two
of them being non zero, modulo a third natural integer ¢, non zero itself, which
we usually write as follows

(aeN)(beN)(ceN) ((a=b [d) <= (cla—0b))
leads us to consider that a function F,. could exist such as

F,:R—R
x +— Fo(x)

for which
(aeN")(beN*)(ceN") (Fcla)=F.(b) < cla—0b)

Such a function is evidently periodic, with period C. We endeavour in the fol-
lowing pages to create one possible of these functions F, and to study some of
its property, emphasizing on symetry properties in particular.

Then, in the following chapters, we will first consider the strong Goldbach con-
jecture

Conjecture 1 strong of Goldbach Every even natural integer n > 4 is the
sum of two prime numbers.

vii



viii INTRODUCTION AND PRELIMINARY REMARKS.

We will also try and prove the following theorem, by utilising some properties
of the periodic functions S,,, , and S,,, which we will introduce later and the
periods of which will be respectively denoted TS, and T'S,,, _,

Theorem 2 For all prime integer p, and its associated function S, , let the
set of the intervals

[kpn, (k + 1) pu

where k is any natural integer, and let M be the natural integer

1
M1 == ZTSpnfl

then, for all k < M, there exists at least one natural integer
ac [kpnv (k + 1)pn[

such that
Spn (a‘) ?é 0

which can be otherwise formulated
(Vk € N) (k < Mi) (3a € ([kpn, (k + 1) pa[N)) (S, (a) #0)

One consequence of this theorem is another theorem that we enunciate here-
under

Theorem 3 of Bertrand-Tchebychev extended Given a prime number p,,
there exists at least one prime number in each interval

[k, (K + 1) pn

for each mon zero natural integer k such that

(k+1)p, <pZyy

This theorem is somewhat similar to the Bertrand-Chebyshev theorem.

These results will enable us, to finish with, to draw some conclusions on two
conjectures, one due to Adrien-Marie Legendre [3].

Conjecture 2 of Legendre For all natural integer n > 2, there exists at least
a prime integer that belongs to the interval [n?, (n + 1)2].

the other to Henri Brocard [4].

Conjecture 3 of Brocard For all prime integer p, > 2, there exists at least
four prime integers that belong to the interval [p%,p?nﬂ)].



Definitions.

0.2 Definitions.

We define some sets and some functions that we will have to use.

0.2.1 Finite sets 7,, of prime numbers

let 7, be the set that contains all the prime numbers p; (distinct from 1) and
less than or equal to a given prime number p,,

T, = {pjl (clpj == c € {1,p;}) A (pj < pn)}

The set 7, is totally ordered, within the definition of the relation <.We note
that it is also a well ordered set, as it has a least element denoted p; = 2. So
we have

p1 =2
p2 =3
p3 =9
pa=7

Pn = SUp p,

We pose |(7p, )] = n

0.2.2 The elementary functions

We need to define some functions, some properties of which will be put forward
in our study.

The functions s, et 5, .

For each prime number p; € m,, , we define here-under the functions s, ,, and
Sap,» where a € N

Sa,p; R — [—1, 1]
T Sqp; ()

ix
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with

.
Sa,p; (z) = sin — (a + x)
pj

This function vanishes for each and every (a + ) multiple of p;.
Sap; R — [-1,1]
T 5gp (T)

with

Sa,p,; (x) = sin Ll (a—x)
pj

This function vanishes for each and every (a — ) multiple of p;.

The periods of these two functions, which we respectively denote T's,;,, and
T'54p; are both equal to 2p;.

We will denote for a =0

S0, (2) = sp, (1) = sinpij ()

and for a = 2m -
52mp, (*) = sin — (2m — x)

bj
The functions c,,, and ¢, ..
Similarly, we define the functions c, p; et ¢4, respectively as
Cap; : R — [-1,1]
T Cap,; ()

with

T
Ca,p; () = cos — (a + x)
bj

This function vanishes for each and every (a + z) odd multiple of 3p;.
Cap; - R — [—1, 1]
T Cqp; ()
with .
Ca,p, (z) = cos — (a + x)
Pj
This function vanishes for each and every (a — z) odd multiple of 3p;.

The periods of these two functions, which we respectively denote T'c,,; and
T¢qp, are both equal to 2p;.
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We will denote for a =0

co, () = ¢, (z) = pﬂ (z)

and for a = 2m -
Cam,p, (T) = cos — (2m — x)

pj

It might be useful to recall that the sin and cos functions are respectively odd
and even.

0.2.3 The product functions.

We need to define the product functions of a finite number of functions s, .
We so define

Sp, R — [-1,1] (1)
z+— S, (2)
with

Sp,, (z) = 1:[ sinplj (x) = 1:[ 5p; ()

where the prime number p; belongs to the set m, , which we define as as the
reference set of the function S, .

Similarly, let Sa, 5, be the function

Squpn R — [71, 1]

T —> Som p, ()

with
=n j=n
Som.p, (T) = H sin — (2m — ) = H S2m.p, ()
j=1 Pj j=1
We note that
Cm—-—z=X) <=
j=n j=n
Som.p, (X) = H sin— (2m —x) = Hsm— () =85p, (X)
P S

and hence
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These two functions are sharing interesting properties of symmetry.

Finally, we construct a third function Gy, p,

Gmp, :R— [-1,1]
x+— G p,, (2)

with

Gompn (2) = Sp, (x) X Som,p, ()

j=1 j=1 pj
j=n
= Spj (1") S2m pPj (1')
j=1

We will utilise as well the product functions of a finite number of functions
Ca,p,;- We so define

Cp, R — [-1,1]
z+— Cp, (2)

with

Cpn ) = [Jeos = (@) = [ e, @)

where the prime number p; belongs to the set 7,,, which we define as as the
reference set of the function Cp,.

We are now going to study these various functions.



Chapter 1

Some properties of the
function S, .

1.1 Purpose of the chapter

Study of some properties of the function S),,. A special property of functions S,
when n < 5. A simple explanation of the distribution of some prime numbers
less than 49.

1.2 Some properties of the function S,

We recall the definition of the fumction S,

Sp, 1R — [—1,1]
z+— Sy, (2)

with _
j=n
Sp. () =[] sp, (2)
j=1
and

sp; (x) = sinplj (z)
1.2.1 Period and parity

The period of the function S,,,, which we denote T'S,,, , is two times the product
of the periods T's,,, where p; are all the elements of the set 7, . We then have

TSpn =2 Xﬁpj

Jj=1
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The function S}, is the product of functions sin and is odd when n is odd and
even when n is even. Inside the interval [0, TSy, [, we note that the function S,
vanishes when z equals all the non-prime integer, as well as all the elements of
Tp, - In particular

— TSpn

- Spn ( 92 )
37,

Spn ( Tp)

Sp. (T'Sp,,)

0

n

For instance, we show the respective graphs of the functions S3 (see figure-1.1
page-9)
S3 (x) = sin (gx) sin (ggg)

which is an even function, and the function Sy (see figure-1.2 page-9),

S5 (x) = sin (gx) sin (gz) sin (gz)

which is an odd function.

1.2.2 Some symmetry properties

We now propose to study some properties some simple symmetry properties of
the function S(p,) in the interval [0,7'S,, [. We will limit ourselves to study
these properties in the neighbourhood of the natural integers T?% and TS%

Let x, and x4 be two real numbers such that

(3 (oo =175, ) (1€ 5.3 ) = @by =475, (ke (313

We have

Sp, (2¢) = Sp,, (KT'Sp,, — xp)

Jj=n

= <sm — (KT'S, xp)>
i\ D
j=n .

= (sin (k—TSpn - :I:p))
i=1 Dj Dj

Let us pose for all p; > 2
2h; +1= LTS
J 4p_] Pn
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with
hj e N*
then
™ ™ ™
sin | k—=TS,, — —= > sin<4k 2hj +1)m — —x >
(kZ75,. - T, @ty +1)7 - T,

Besides, when p; = 2

s s s s
sin | k=TS, — —= > = sin (k—TS . — =T )
< P p P p 9 p 9 p

. ™
= sin (Qk 2h+1)m— 5%)
with h € N* We then obtain the following results

Cask:%

pj

sin <41€ (2h; +1)7 — izp) = sin <2 (2h; +1) ﬁi — zp)

sin (2k 2h+1)m— gacp) = sin ((Qh +1)7— gxp)

hence
Spn (Tg) = Sp,, (KT'S) Tp)
j=n
T . T
= sin (ng) H <s1n (—sz>>
j=2
Jj=n
= (- (sin —acp)
j=1 Pj
Cas k=1

sin <41€ (2h; +1)7 — lzp) = sin <4 (2h; +1) = zp)
4 Iy

Dj j
. ( ﬂ- )
= Sin —X
p; "
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sin (Qk (2h+1)7 — gxp) — sin (2 2h+1)7 — gxp)

hence
Sp,, (wq) = Spn (kTSpn - xp)
j=n
™ .
=sin (=) 11 (30 ()
=
j=n -
=(-1)" H (sin —xp>
=1 J
Conclusion

Inside the interval [0,T'S, [, we can write

1 n—1 = . T
<:cp +x4 = ZTSP”> = | Sy, (zq) =(—1) H (sm fzp)
or, formulated otherwise

(020 = 4780, ) = (Sp (00 =08 5)) (1)

and likewise
1 (=N
(xp +z4 = QTSPn) = | Sp, (zg) = (=1)" ]-_-[ (Sin;%)
j=1 ’

which we can also write

(xp Ty = %Tspn) = (Sp,, (2g) = (=1)" Sp, (p)) (1.2)

1.2.3 A special property of the fonction S,, when n <5.
Let s, p, be a function such that
. s
o (@) =50 (2 (o)) =, 0 )
Dj

where «; is a natural integer that belongs to the interval [0, 2p;[. We now define
the functions U,

Up, :R— [-1,1]
T — Upn (:C)
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where
j=n—1

Up., (55) = 52 (m) Spn (55) H Saj,p; (55)

Let us first consider the case where n = 5 <= p, = 11. Let us look for a
function Uy; that vanishes for each natural integer in the interval [0,11] and let
us write

Jj=4
(Ve €{0,1,2,---,9,10}) | Ur1 = s2 () s11 (x) H Sajp; () =0
j=2

We note that

s11(0)=0

(Vz € {0,2,4,6,8,10}) (s2 (z) = 0)
(Ve € {1,3,5,7,9}) (s2 (z) #0)
(Ve € {1,3,5,7,9}) ((s11 (z) # 0))

At least one function s, ,, must vanish when z is equal to one of the odd natural
integer in the interval [0, 11]. There are three such functions, with p; € {3,5,7}.
We must have

(Vz € {1,3,5,7,9}) (35 € {2,3,4}) (sajﬁpj () = 8p, (x — ;) = O)

We then have a product of three functions s, p,,which must vanish for five
distinct natural integer. But the difference between any two of these natural
integers is a power of 2, with the exception of the pairs (1,7) et (3,9), for which
only the functions s; 3 et s3 are respectively cancelled out. The functions sq, 5
et Sq,,7, as for them, are only cancelled out respectively by one and only one
natural integer remaining in the set {1,3,5,7,9}.

Such function Uyy, which must vanish for every integer in the interval [0, 11],
therefore cannot exist.

Consequently, there exists necessarily in each interval [11k,11 (k+1)[, k €
N, at least one natural integer for which the function S1; does not vanish. These
integers are prime number for each interval, the upper endpoint 11 (k + 1) of
which is < 132.

We show in the same manner that for each and every p, < 11, there is at
least one natural integer in each interval [kp,,, (k + 1) p,[, k¥ € N, for which the
function S}, does not vanish. These natural integers are prime integers for each
interval the upper endpoint (k + 1) p,, of which is < p?2 ;.

When p,, <5, we have

j=n
2
H Dj < Pn+1
j=1
In the special case where n = 3, p,, = 5, then

TS5 =2(2x3x5)
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and
TSy 9

5 <T? = (2x3x5) <7

In the interval [0, Z55]

TS =
(xp +x4 = 75) = | S5(zq) = (— H (sm —:I:p)
which implies

<<zp+:cq TTSE’) A(z,ﬂém) s (2 £ 0)

but x, and z, are necessarily prime numbers, as they are no multiple of 2, 3
and 5, and at the same time less than 72. In this simple case, if z, is prime
number strictly greater than 5, then z, = 30 — z,, is also a prime number.

1.2.4 Number of natural integers for which the function
Sp, does not vanish in the interval [0,7'S,,|

Let us consider an odd prime integer p,, and its associated function Sj,. Let in
the interval

[0, T Spx|

be the set B, of the natural integers, the least divisor of which is greater
than p,. In this manner, B,, = By is the set of the natural integers less than
TSy, =420 that are not divisible by any of the prime integers that are strictly
less than p4, to name them 2, 3 and 5.

Let us consider the set B of the natural integers non multiple of 2 (i.e. all
the odd numbers), including 1, in the interval [0, T'S,, [; Its cardinal |Bo| is equal

to
1
Bl = (1-3) TS,

In the same way, the set B3 of the integers non multiple of 3, including 1, subset
of the set Bs, has his cardinal equal to

Bal = (1- ) B
(15 |(-3) 7]
66
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Step by step, we can calculate the number |B,, | of natural integers non multiple
of p,, including 1

- chosen in the set of natural integers non multiple of p,,_1, p,—1 being the larger
prime number less than p,,

- themselves chosen in the set of the natural integers non multiple of p,_2, pp—2
being the larger prime number less than p,_1

- themselves chosen in the set of the natural integers non multiple of p,,_;_1),
Pn—(j—1) being the larger prime number less than p,,_;
- themselves chosen in the set of the natural integers non multiple of 2 that is

1
|Bpn| = <1 - P_n> ‘Bpnfl ’ TSpn

Now, let us recall that

we find

j=n 1 j=n
By, | = <1f> QHPJ'

By analogy with the usual definition of the Euler product, we define the finite

Euler product of rank n
me-;)
(12
i=1 bi

Remark

The proportion of natural integers, which we denote d,,, for which the function
Sy, does not vanish in the interval [0,7°S),, [ is naturally
_ TSy,
By,
j=n 1
Iy

On
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but

and therefore

j=n k=l 1 +o0o 1
lim §, = lim lim <—k> — lim §, = Z (—) =00
n——+oo n—-+oo 4 l—+o0 pj n—+00 ]
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Figure 1.1: Graph of the function Sj

Figure 1.2: Graph of the function Sj
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Chapter 2

Some properties of the
function Gy, p,,.

It is acknowledged that Christian Goldbach stated the following conjecture

Conjecture 4 strong of Goldbach For all natural integer m > 2, the even
natural integer 2m is the sum of two prime numbers.

For this conjecture, we develop an approach in the two following chapters that
could lead to a rigorous proof. The chosen path for our study is based on the
idea that it is possible to construct a function defined on R, which would be
symmetric with respect to a given natural integer m, the properties of which
should enable us to better understand the reasons why this conjecture is likely
to be true. Once we have built this function, we will study some of its prop-
erties. In particular, we will try to show that this function does not vanish at
some natural and relative integers in its domain.

Let

T = Pjl (¢lpj <= c € {1,p;}) A (pj < pn)}
be the set that contains all the prime numbers p; less than or equal to p,, and the
function S, , which we already defined (see formula 1 page-xi). .S, is a periodic
function with period T'S,, (see formula 1.2.1 page-1). In a way similar to the

one used to construct the function S,,, we will construct the new functions
Gm,p; and G, p, . Let us begin with the function gy, ,,

Gmp; : R — [=1,1]

T Gmp, (¥)
with
i i
Gm,p; () =sin | —x | sin —2m:c>
v (%) (pj ) (pj( )

11
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where m € N* Using the notations already introduced, this function can also be
written

Gmp; (T) = 5p, () 5p, (2m — )
= 8p; () S2m.p; ()
Then, let us define the function G, p,

Gmp, :R— [-1,1]
z+—> G p, (T)

with

G, (1) = Jﬁ sin (pl]x) sin (1 (2m — x))

pj
where m € N* This function can also be written

Gom.pn (€) = Sp, () Sp,, (2m — )
= Sp,, () Sam.p, (¥)

and also

j=n
Gmp, () = H gm.p; (%)
j=1

We expect that the study of this function will provide us with some insight on
the strong Goldbach conjecture and its likelihood.

2.1 About some properties of functions g,,, et
Gp,

Functions g, p, and G, p,, display properties of symmetry and periodicity that
we will look into here-under.

2.1.1 The functions g,
Periodicity
Let us recall that

We have
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and so )
Sp; (2m —x) = (—1) sp, ((2m —x)+ §Tspj)
and .
sp; (2m —1x) = (—1) sy, ((2m —x)— §Tspj)
Let us consider the function g, p,
Gm.p; () = 5p, () 5p, (2m — )

then

1 1
Gm.p; () = (—1)° Sp, (z + §Tspj) Sp; <(2m —z)+ iTsp].)

and

1 1
Imp;, |2+ T sp. | =5p, |2+ Tsp. | sp, (2m — (2 +
»Pj 2 Pj Pj 9 Pj Pj

We have then established that
1
9m,p; (x) =9mp; | T + QTSPJ
and therefore, the function g,, ,, is periodic with period
1
§TS:D;' = Tgpjﬂ" =DPj

Symmetry
Let us begin with the definition of the function g, p,

9m,p; (x) = Sp; ('T) Sp; (2m - 'T)

we write

9m,p; (2m - ,T) = Sp; (27’71 - ‘T) Sp; (2m - (2m - ‘T))

hence
gm,pj (2m —x) = Sp; (2m — ) Sp; ()

13

Commutativity of the product of functions s,, (2m — x) and s, () allows us

to write
9m,p; (r) = 9m,p; (2m —x)
In particular, when x = 2m
9m,p; (2m - 2m) = 9Im,p; (Qm) = 9m,p, (0)

and
5p; (2m —2m) = s, (0) =0
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Zeros

For each and every number z that cancels out the function g,, ., we verify
(gm.p, (@) = 0) <= (sp, () 5p, (2m — x) = 0)

and then, these numbers are either of the form hp; or of the form 2m — Ip;,
where h et [ are natural integers. If the two functions s, et S3,,,, vanish
simultaneously at the same natural integer, then m is necessarily a multiple of
pj. These two functions are then non-distinct. In particular, we note that these
two functions vanish when z = 0, z = m and x = 2m in the interval [0, 2m)].

If, on the other hand, only x is multiple of p;, then, only the function s, vanishes.
This function is distinct from the function 3., ;. In particular, in the interval
[0, 2m], the function 53, , does not vanish when x = 0, z = m and = = 2m.
Let us now consider the function g, ,, on one of the intervals

(kpss kpj + Tgm.p, |
It vanishes when x = hp;. Also, assuming
m=m; [p]
we get
(sin (1 (2m — x)) = sin (h7) = 0) — (x =2m, — lp,)
by
and then, on the considered interval
[kpjv kpj + Tgm,pj [: [k’pjﬂ (k =+ 1)pj[
we have two natural integers, kp; et (k + 1)p; — 2m,, for which the function
9m,p; vanishes.
Example

We present, as an example for p; = 5 and m = 13,the graph of the function
95,13 with period T'gs 13 = 5 in the interval [0,26] (see figure-2.1 page-15) In
particular, this graph shows the property of symmetry of this function in the
interval [0, 26] et [—2, 28|, as already established in the previous pages.

2.1.2 The function G,, ),
Periodicity
We already showed

Spu (@) = (1)), (:c +2TS > — (-1)8,, (:c - %TSpn>
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210
-1
Figure 2.1: Graph of the function g5 13
and thus .
Sp, 2m —1z) = (-1)S,, ((Qm — )+ §TS n)
and also

1
Spn (2m - ZC) = (_1)Spn ((2m - ZC) - iTspn)
Therefore, we can write

Gom.p, (€) = Sp, (x) Sp,, (2m — x)

and
2 1 1
G, (2) = (=1)2Sp, 2+ 5Ty, | Spo | (2m = 2) + 5TS,,)
and also
1 1 1
and lastly

1
Gm.pn, (z) = Gmpn (z + §TS )

15

We note that the function G,, p, is periodic, with period %TSpn and we write

1
=TSy,

TGy, = 5
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This period is always even for all n.

Symmetry

We can also verify that in the interval [0, 2m]
= 7r ™
Gmp, () = sin <—z> sin <— (2m — x)>
: J[Il Pj Pj

which can also be expressed

and thus
(Gmp, (2) = Gmp, 2m — 1)) <= (Gmp, (M —2) = G p, (M + 1))
In particular
(Gm,p,, (m =) #0) <= ((Sp, (m —x) #0) A (Sp, (m+z) #0))
Likewise
(Gmp, (M — 1) =0) <= ((Sp, (m —x) =0) A (Sp, (m+x) =0))

By construction, the natural integer m is the centre of symmetry for the function
Gm.p, in the interval [0,2m[. In addition, we have

1 1
Gmmn (m — §TGm,pn,) = Gmmn (m + QTGm,pn)

and so, m is also the centre of symmetry for the function G, p, in the interval

1 1
[m — §TGm,pn, m+ §TGm7pn[
We finally note that

G, (—2) = ﬁsin (1 (z)) sin <1 (2m + z))

pj

= ()" ﬁ:sin (%x) sin (i (2m + x))

pj
and

G, (1) = j]j:sin (% (x)) sin (1 (2m — x))

Dj



2.1. ABOUT SOME PROPERTIES OF FUNCTIONS Gy, p, ET Guypy 17

Should there exist non zero natural integers as values taken on by x

Gmpo (=) = |G, ()]

then, we should have

(Vp; € mp,) (sin <pl] (2m + z)) = sin (;9% (2m — x)>)
but

sin (1 (2m + x)) =

pj

sin (pl] (2m — x)) cos (pi] (2@) + cos (pl] (2m — x)) sin (% (2:5))
and so

<sin (;91] (2m + :c)> = sin <pl] (2m — z))> —
(cos (;91] (250)) =1 <= sin (;9% (250)) = 0)

This necessarily implies

j=n
(3ho € Z*) | = = ho Hpj

j=1

and we verify

| =

(Vpr € mp,,) (3h1 € Z") | sin

bS]

j=n
h | =sin(hyw) =0
- ojll[lpj (ha)

which implies
j=n j=n
Gm,pn, ho H b | = Gm,pn —hg H pPi| = 0
j=1 j=1
On the other hand, when

j=n
(ho € Z*) | = # ho [ [ pj

j=1

then
Gmp, (¥) # G p, (—)

Hence, 0 is not a centre of symmmetry for the function Gy, p, -
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Figure 2.2: Graph of the function G5 13 on the interval [—2, 58]

Examples

We present, as an example for p; = 5 and m = 13,the graph of the function
G5,13 with period T'Gs 13 = 5 in the interval [—2, 28] (see figure-2.1 page-15) In
particular, this graph shows the property of symmetry of this function in the
interval [0, 26] et [—2, 28|, as already established in the previous pages.

Other properties

Up to now, we have not made any hypothesis as regards the parameter m,
the value of which has evidently some influence in the behaviour of the func-
tion G, p, and specially in the way this function vanishes in its domain. By
construction, the function vanishes at x when

Spn () =0

or else
Sp, (2m — x) = Som p, () =0

Case 1: m < p, The interval [0,m[ is included in the interval [0,p,[. We
know that the function .S, vanishes at all the natural integers in the interval
[0, pn[, save for 1. Therefore, by symmetry, the function G, ,, a priori vanishes
at all the natural integers in the interval [0, 2m], save for 1 and 2m — 1, which
this function does not necessarily vanishes at. However, if 2m — 1 is divisible
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by at least one of the prime integers less than or equal to p,, then the function
Gm.p, vanishes at all the natural integers in the interval [0,2m[. We illustrate

o
N
w
IN
x

Figure 2.3: Graph of the function G5 3 on the interval [—2,30]

this case with the graphs of the functions G5 3 et G5 4 on the respective intervals
[0, 6], [0, 8] and [0,10] (see figures 2.3 and 2.4 pages 19 and 20).

Case 2: m > p, The interval [0, p,[ is included in the interval [0, m[. There-
fore, the function G,, p, a priori may not vanish at all the natural integers in
the interval [0,2m[. We illustrate this case with the graphs of the functions
Gr,6 et G7.7 on the respective intervals [0, 12] and [0, 14] (see figures 2.5 and 2.6
pages 21 and 22). This latter case, where the natural integer m is strictly greater
than the prime integer p,,, will be the object of the deeper study that follows.

We will show that for all prime integer P, > 11, there exists at least one
natural integer in each interval

[kpn, (k + 1) pnl

which the function S, does not vanish at, when k is less than some integers,
the value of which depends on p,,. Moreover, when

(k+1)pn <p2,y

such integer is prime. We also note that every natural integer which the function
Sp,, vanishes at, cancels out the function G, p,. The converse is not true.
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Figure 2.4: Graph of the function G54 on the interval [—2,30]

Indeed, this function also vanishes when we have

sin (pij (2m — x)) =0

for at least one of the prime integers p;.

The natural integers which do not cancel out the function G,, .
We pair each natural integer m with the function
J=p - -
Gm.p, () = H sin (—x) sin (— (2m — x))
o\p pj

and we choose the prime integers p, and p,11, consecutive in the set of the
prime numbers, such that
pi <2m < piﬂ

then we look at the way the function G,, p, vanishes in the interval

1 1
[7§TGm,pn + m, §TGm,pn + m[

This interval is centred on the natural integer m and contains T'G,, p, natural
integers, with

j=n
Tvapn = HpJ
j=1
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Figure 2.5: Graph of the function Gz on the interval [—2,30]

Let us consider the natural integers ay in this interval, and for all these natural
integers, their respective remainders a;, ; modulo each of the prime integers p;
in the set m,,. For each of these natural integers, we have for each index j

ak = ay,j [pj]
with

ax,; € L/p;Z
Let us write down each of these natural integers aj, in the interval
1 1
[7§TGm,pn + m, iTGmypn + m[

and there respective remainders modulo p; in each of the Hijf p; rows of the
following table
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Figure 2.6: Graph of the function G7 7 on the interval [—2, 30]

= [pl

g1
Qa2 1
31

€778 1

M=t p—21
M=t p-11

H] 1Pl

= [po]
aq .2
Qa2 2
a3 2

Qg 2

MTIZY py—2.2
M= pi—1.2

HJ 1 P2

= [p]
aq 5
Q2 j
Qs j

Qk,j
M= py—2.

M= pi—1i

HJ 1 Pt

= [pn

a1 n

s
Qa2 n
Qas n

Ok .n

H] 1Pj—2m
H] 1pi—1n

H] 1 Pjm

Each of the remainders oy, ; can take p; distinct values in the set

Hence, each row of the table can be written in H;i

{0’1,2’...

a]a’p_]_l}

! p; different ways. In

addition, we note that two distinct rows containing exactly the same remainders
oy, j, for each value taken by the index j, necessarily correspond to two distinct
natural integers ax, and ag, that are such that

(vpj € Trpn) [(akl = a’k2

[pj]) =

((ak,

—ar,) =0 [ps])]
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We then conclude that there can only be one of such numbers in the interval
1 1
[7§TGm,pn + m, iTGmypn + m[

Consequently, in this interval, two rows taken among the H;jf p; possible rows
of the table cannot be identical and the set of these rows contain all the possible
rows that can be constructed with the remainders oy, ;. Let us consider now the
natural integers a, in the interval

1 1
[7§TGm,pn + m, iTGmypn + m[
which the function G, ,, does not vanish at. For each of them, none of the

remainders oy, ; modulo p; is zero and each of them cannot take more than p; —1
different values. The number of natural integers a; contained in the interval

1 1
[7§TGm,pn + m, iTGmypn + m[

J::
Jj=

(Var) (Vpj € mp,) (@ — (2m — ax) = 2m  [p;])

is therefore equl to ! (pj — 1). Besides, it is clear that we must verify

Let {pgm)} et {p;(m)} be the sets of the odd prime numbers that respectively

divide and do not divide m, and then 2m. We have

The set {pgm)} is empty if m is itself a prime number or a multiple of prime

numbers that do not belong to m, . We have

(Vpgm) € {pg»m)}) (2m =0 [pgm)])

Similarly

(0 & {™}) (s €70 (2m =i ™)

-+

Hp;(””H =(n—-1)-p

Let us assume that there exists at least one prime integer p;, € 7, that divides
2m — a,,. Then

Gpr € mp,) ((an =2m [p1]) & ((2m —as) =0 [ps]))

We pose

which implies
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and in this case
Gmp, (ar) = Gmp, C2m —ar) =0

Conversely, the natural integers aj, such that

(Vp; € mp,) (ax # 2m  [p;])
satisfy
Gmpn (ak) = Gmp, (2m —ar) # 0
For each of these natural integers ay, none of its remainders « ; modulo p; is
zero. Two cases then present themselves

({57} =0) & ([{»"}] = o — 231 = 1)

Besides, none of its remainders oy ; is equal to the remainder x; modulo p; of
2m. There are therefore only p; — 2 possible values for each of its remainders
oy, ;. The number of such natural integers a;, contained in the interval

Case 1

1 1
[—=TGmp, +m, §TGm7pn +m|

2
which the function G, ,, does not vanish at in the same interval is then equal
to )
Jj=n
T, =[] (n,™ ~2) (2.1)
j=2

As an illustration, the prime number p,, and the parameter m being respectively
chosen equal to 7 an 31, the period of the function Gz 7 is equal to

TGs17 =210
We verify that 72 < 62 < 112. As well, 31 ¢ 77. The contemplated interval is

1 1
5210431 = 74,5210 + 31 = 136]
(-
(B} =m -2 =057

{p§m)}’ =0et Hp;(m)}’ = 3. The set of the natural integers that
do not cancel out the function Gs; 7 in the interval [—74,136][ is the set

{—59, —47,—41,—17,—11,1,19, 31,43, 61, 73,79, 103,109, 121}

This interval contains

and

Therefore,

It contains 15 natural integers and one can verify that

O (B =2) =3-26-2(T-2) =15

Jj=2
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Case 2

(i} #0) & ({5} =) = ([{p "} = -1 -0)

Besides, none of its remainders oy, ; is equal to the remainder p; modulo P;

of 2m. Each of its remainders a4, ; can only take one value among p; — 1 natural
(m)

J

Likewise, None of its remainders «y ; is equal to the remainder p; modulo

p;(m) of 2m. Each of its remainders a4, ; can only take one value among p; — 2

(m)

integers for each prime integer p; € {p

natural integers for each prime integer p; € {p;
The number of natural integers aj contained in the interval

1 1
[7§TGm,pn + m, iTGmypn + m[

which the function Gy, p, does not vanish at in the same interval is then equal

to
k=p l=n—p

Te,,. =] (p,(j”) - 1) I1 (p;(”” - 2) (2.2)

It is clear that the preceding case is in fact a particular case of this present case
where p = 0, and we can write

j=n

Jj=n

neN) | [[wi-2 <Te,.,. <[] @i-1
Jj=2 Jj=2

the sets {pgm)} and {p;-(m)} being the sets of the odd prime integers that

respectively divide and do not divide m. As an illustration, the prime number

pn, and the parameter m being respectively chosen equal to 7 an 30, the period

of the function Gsp 7 is equal to

TGso7 = 210

We verify that 72 < 62 < 112. Besides

and

The contemplated interval is
1 1
[—5210 + 30 = =75, 5210 +30 =135]

This interval contains 210 natural integers. We have

=5
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and

{; "} =75~ {2,3,5) = {7}

{pgm)}‘ = 2 and Hp;(m)}‘ = 1. The set of natural integers that
cancel out the function Ggp 7 in the interval [—75,135] is the set

Therefore,

{-71,-67,—61,—53,—47,107,113,121,127,131}
U {—43, —41,-37,-29,—23,83,89,97,101, 103}
u{-19,-13,—-11,-1,1,59,61,71,73,79}
U{13,17,19,23,29,31,37,41, 43,47}
We purposely divided this set into four subsets containg each 10 natural integers

for the sake of clarity. This set then contains 40 natural integers and we verify
that

k=2 =1
Paw- = [T (o0 = 1) T (o™ =2) =3 -1)(5-1) (7~ 2) =40
k=1 =1

2.2  Study on the interval [0, 2m]

The result we just obtained shows that the function G, ,, does not vanish at
a significant number of natural integers in the interval

1 1
[7§TGm,pn + m, §TGm,pn + m[

These natural integers are necessarily either prime integers that do not belong
to mp, , or natural integers that are multiple of prime integers that do not belong
to mp,,. There exists as well two prime integers p,, and p,11, with v € N*, such

that for the corresponding functions G, p, and G, p, ., we should have

TGmp, <2m <TG,

sPr+1

The function G, p, does not vanish either at a significant number of natural
integers in the interval

[f%TGmﬁpy +m, %TGmypV +m]

2.2.1 Zeros

let us now consider these two functions G, p, and Gy, p, in the closed interval
[—%TGm,pu +m, %TGWPU + m)|

where p, is such that

1 1
[7§TG’m,p,, +m, iTGm’pV + m] C [0, 2m[
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We already showed that
J=v
Tvapu = H p]
j=1
One can notice that the endpoints of the interval
1 1
[_iTG’”hPu + m, QTGT’MPU + m]

which we denote respectively A, et B, are of same parity. For these two end-
points, we have

(ij < pv) (Al/ =B, [pj])
We will assume also that the natural integer m is not prime. Let us now recall
Gom.pn (€) = Sp, (2) Som,p,, (2)
with _
j=n - j=n
Sp, (z) = H sin o (2m—x) = H 5p; ()
=1 / 3=1

Jj=n

j=n
. _
Som.p, (T) = H sin P (2m —zx) = H S2m.p, ()
j=1 J

j=1

The function S, vanishes at a,, natural integers belonging to the interval
1
[_ETGmapu + m, m[
and at b, natural integers belonging to the interval
1
]m, §TGm1pV + m]

Symmetrically, the function Sayy, 5, vanishes at @,, = b,, natural integers belong-
ing to the interval

1
[_ETGmapu + m, m[
and at b,, = a, natural integers belonging to the interval
1
]m, §TGm1pV + m]

Therefore, the number of natural integers which the function G, p, vanishes at
in the interval

1
[—QTGm,pV + m,m]

is less than or equal to a,, + by,,, when the number of natural integers which the
function S, vanishes at in the interval

1 1
(=57 Gomp, + 10, 5T G, + 7]
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is itself equal to a, + b, + 1.
The set of natural integers which the function S, vanishes at in the interval

1 1
[*§TGm,pu +m, §TGm7pV +m]

is also the set of natural integers the least prime divisor is less than or equal to
pn. We denote this set C,, and we have

Cp | = an +bp +1 (2.3)
From the foregoing, it follows that

e the number of natural integers which the function G, ,, vanishes at in
the interval

1
[—QTGm,pV + m,m]

is less than or equal to (a, + b, ). These natural integers are the elements
of the set which we denote D,,, and we have

Dy, | < an +bn (2.4)

e the number of natural integers which the function G, ,, does not vanish
at in the interval

1
[—QTGm,pV + m,m]

is greater than %TGm,pu — (an + by). These integers are the elements of
the set which we denote [, and we have

1
Ep, | > 5TComp, = (@ +bn) (2.5)

We now define in the interval [—2TG, p, +m, 3T G, p, + m]
- the set Ay of the natural integers the least prime divisor of which is 2, and its

complement B in this interval. The cardinals of these two sets are respectively
denoted |Az| and [By|. We have the strict equalities

1
|A2 | = §TGm7pu

1
|B2| = (1 - 5) TGm,p,,

Bs is the set of the natural integers the least prime divisor is greater than 2.
- the set A3 of the natural integers the least prime divisor of which is 3, and its
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complement B3 in the set Bs. The cardinals of these two sets are respectively
denoted |As| and |Bs| and we have yet again the strict equalities

1 1
=1 (1- D76

mi-(1-2) 1)

B3 is the set of the natural integers the least prime divisor is greater than 3.
For the sets of natural integers the least prime divisor of which is 5 < p; < p,,
there are no longer strict equalities, except when

In that manner, the set A5 is the set of the natural integers the least prime
divisor of which is 5, and its complement By in the set B3. The cardinals of
these two sets are respectively denoted |As| and |Bs| and we have the inequalities

()P
w32 (1-8) (- (- e

B5 is the set of the natural integers the least prime divisor is greater than 5.

In general, the set A, is the set of the natural integers the least prime divisor
of which is p;, and its complement B, in the set B, _,. The cardinals of these
two sets are respectively denoted ]Ap ‘ and ]Bp ‘ and we have the inequalities

|Ap, | < 1 ﬁ (1 - —) TG p, (2.6)

by —

B,,| > H (1 —~ —) TG p, (2.7)

Pk

For all j, B, is the set of the natural integers the least prime divisor is greater
than p;. Moreover, we have

TGm,pu = Am U Bm

Bpl = APZ U sz
sz = Aps U Bps
B

= Ay, , UB

= Ay, UB,,

bj—2

B

Dj—1

Dj—1
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Bpnq = Apj U Bpn

and thus
B, =A,, UA,, UB,,

and following this path from one value of j to the next

k=j—1
(Vj € N*) (J < n) (Bpl = U Apk UBP;)

k=2

Furthermore, it is clear that the sets A, are pairwise distinct and disjoint and
that the set C,, of the natural integers the least prime divisor of which is less
than or equal to p,, with 1 < j < n, in the interval

1 1
[*§TGm,pu +m, §TGm7pV +m|
is equal to
j=n
Cp, = U AP;‘
j=1
with its cardinal equal to

Jj=n
Cpal =D Ap] (2.8)
j=1

Lastly, the set B,, of the natural integers the least prime divisor of which is
greater than p,, is the complement of the set C,, of the natural the integers the
least prime divisor of which is less than or equal to p, in the set of the natural
integers belonging in the interval

1 1
[*§TGm,pu +m, §TGm7pV +m]

and hence
|Bpn| = TGm,p,, - (an + bn) (29)

let us now pose
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k=j—1
1 1
uj = — (1 — —) (2.10)
et
k=j 1
vi=1]] (1 - —) (2.11)
et Pk
and we have
(Vi eN*)  (uj +vj =vj-1)

and

. X 1
(Vj eN ) (Uj = —’Ujl)
bj
We also pose ug = 0 et vg = 1 by convention. Moreover

k=j k=j—1

1 1 1 1 1
om0 =5 05) T ()
Dj+1 o Pk Pj+1 bi/) = Pk

. 1 Ui 1 ;
(Uj+1 = P (1 — —) Uj) < ( g+l = i < i < 1)
Pj+1 Py Uj Pj+1 DPj+1

which shows that the sequence u; is decreasing. Now

(Vj € N) <uj _ ]%vH)

J

hence

and thus

Jj=n Jj=n 1

SUES JEE

= =1 Pi
We can now proceed to the next chapter where we will present a path that could
lead to a proof of the Goldbach’s strong conjecture [5]. We will make use of
results already widely known.
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Chapter 3

About the Goldbach’s strong
conjecture

As already hinted at the end of chapter 2, let us begin with establishing some
results with the help of Franz Mertens’s works [6]

3.1 A lower bound of the sum of the inverses of
the first n prime numbers

Let us consider the sum S of the inverses of the prime numbers. We have

S = Bl

and for each prime number p;

Let p,, be the nth prime number and let us choose the integer P such that

DPn S P <pn+1

then .

= /1 1
S() =2
n€Np,

where IV, is the set of the natural integers the greatest prime divisor is py.
Clearly
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yet
1 =1 1 1 1
=) F=l+=—+5+ =1+—+—2(1+—+---)
k=1 P j ' pj ' pj
and
1 ( ) 1 o1 1 1 1
—(1+=4... ) == = -
3 pj pszzopf pil—o pilp;—1)
and thus
i T 1
=< 1+—+ )
il ]1:[1( i pi(pi—1)
but )
=2d
1> / &
rx=1 z
/H de 1 *=3 dx
R — > R
=1 x 2 =2
/w‘j de 1 /w‘j“ dz
z=j—1 L J z=j €
/x:pn dZE 1 /I—pn+1 d.’L'
T=p,—1 € Pn T=pn T
/z—P dz _ 1 - /z—PH dz
z=P—-1 L P =P €T
and thus
T=pn d j=P 1 r=P+1 d
1 +/ Loy o / &
z=1 €z —1 ) z=1 T
=
—
=P
14 Inz)?=F > = > [Ing2=tt
=17
and et
j=r 1
1+In(P) > ->In(p,+1)
—J
=
=
j=P 1
1+1In(P) > =>1In(P)
J
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It follows

j=n
1 1
Inln (P) <In [ (1 +—+ 7)

j=1 pj Pj (p]i]‘)

and we have
111H<+—+ > Zln( +—+;)
J pj (Pj - 1)
Let us now recall that
(Vz € R) exp(z):z% = (exp(z) > 1+41x)

and thus

(1+ 1 )>1+]+ 1
exp|l —+——— | > e e ——
p;  pi(pj—1) p;  pi(pj—1)

and therefore

e p;
or else
j=n
1 1
Inln (P) < (— + )
= \p; pilp;—1)
but _
j=n j=n LS
1 1 1
< —- < —- < 1
= pjp;—1) ; el
and finally
=n =n
Inln(P) <1+ <—> <~ |Inln(P)—-1< <—) (3.1)
pj = pj

3.2 An upper bound of the sum of the inverses
of the n first prime numbers

Let us pose, for 1 <j<n
1

Inp;

aj:

Inp;

b, =
T
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k=j
Bj = by
k=1
First of all, let us consider
k=j In k=j s k=j 1
B; = —k Inpg* :1an£‘k
=1 PR D k=1

is differentiable and its derivative is

d d /1 1 1
Ly=2 (2 Shz)=(—=(1-1
Y=o (x nx) exp (x nx) (zQ( nx))x

and this derivative is negative when x > e. Therefore, for all k£ > 2

8=

Inpr, Ink
Dk k
and thus
inp, " nk
o S h
k=2 Pk k=2
but k k+1
r=ro] Ink = 1
/ D <« 28 < / P
r=k—1 L k =k x
and hence
" Ik /w‘m“ Inx
— < —dzx
=k r=2 r
and finally
' 'k 1
<y = <[y ()’
K k 2
k=2 k=2
and
"= In n2 ‘A nk 1
P e ((ln(m+1))2fln2(ln2f 1))
Pk 2 k 2
k=1 k=2
We numerically check that
n
B; = — < Inp;
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when j < 10. Let us assume that this relationship holds for m, then

k=m+1

In In In
Byl = Z 1Pk _ B, + HPmi1 < Inp, + LPmi1
b—2 Dk Pm+1 Pm+1
and
k=m+1 hlpk 1
Byl = Z —— <Inpp +Inp, 4
k=2 k
and
k=m+1 hlpk 1
Bu= 30 WPy
) Pk

Let us also assume
Pm
Pm m m
(pm-':ll < pm> — (pzr)n-f-l < phy H)
or stated otherwise

DPm lnperl < Pm+1 lnpm

yet the Identity function increases faster than the In function. Consequently,
there exists a prime number p,, such that

Pj 1 pjtl

((vpj > ba) (pj < p;r;)) — (pjp;f; <Py < pj+1)

We check in this instance that p,, = ps = 5. We thus showed that

k=3
. In pg
N B, = —— < Inp;
(V) < J E , Dk py)

k=1

Let now p, be the nth prime integer and let us choose the natural integer P
such that
DPn S P < Pn+1

Let us consider the sequence
(aj-1 —a;) Bj
and for each of its terms, let us develop. Then

1 1 In
(a1 — a2> Bl = < ) P1

In py B In ps P1
1 Inp; 1 Inp;

Inp; p1 Inps p1
1 1 Inp;

pi lnps pr
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1 1 In In
(a2 — ag)BQ — <1 _ > < P1 + p2)
nps Inps 1 P2
_ 1 <1np1 N 1np2> 1 <1np1 N hpo)
Inps \ p1 P2 Inps \ p1 D2
1 N Inp; 1 (1np1 1 Inpy 1 )

D2 p1 Inpo p1 Inps p2 Inps

1 1 In In In
(a3—a4)33:( - ) ( p1+ p2+ ps)
Inps Inpy p1 D2 D3
1 In 1 1 1 1 1 1
_ ( P Inp ++np3) B (nm L lope nps)
Inps \ p;1 D2 D3 Inps \ p1 D2 D3

i+<lnp1 1 Jrlnpg 1 )<1np1 1 +1np2 1 Jrlnpg, 1)
D3 p1 Inps  p2 Inps p1 Inpy  p2 Inpy  p3 Inpy

k=j—1

(“J‘—l—aj)Bj—1=( ! L ) 3 Inpy.

hlpj,1 hlpj P Pk

k=j—1 1 1 k=j—1 1
Pt et Dl
= bk Inp; =
k:i_Q In py, 1 kil In py,
Inp; Pk

=1 Pk k=1

1

B Inp;_1

1 1
= +
pj—1 Inpj

1 1 ) = In pg
Inp;  Inpj Pk
k=j k=j

1 Zlnpk B 1 Zlnpk

N Inp; = Dk Inpjq = Pk
k=j—1 k=j

:i_i_ 1 Z 1npk_ 1 z:lnp;C

pj p; = pr Ipj = e

(aj —ajy1) Bj = <

k=1

k=n—1
1 1
(anfl - an) anl = ( ) Z hlﬂ

lnpn—l B lnpn

i—1 Pk
_ 1 kfl In pg B 1 kil In pg
mpny = p  Inpn = pr
k=n—2 k=n—1

1 Z%_lz%

S Pao1 per 2= e lpe = e
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k=

k=n
1 1 1 In pyg,
(R —— Bn = — 7 S -
(a 1nP) <1npn 1nP) Zl Pk

1 %lnpk 1 k_nlnpk
7lnpnk Dk InP

Let us make the summation

Jj=n—1

k=n
1 In pi
Z (aj — aj+1)Bj + <an — —lnP) Z —pk +
7j=1 k=1
with

h=n Inp

> B g,

w1 Pk

and, further to what we already showed

(Vj € N")  (Bj <Inp;)

Jj=n j=n—1
1 1
Y (Inpjy1 —Inp;) Bi+———= (In P —Inp,) B+
=1 Pi Jz:; Inp;jInpj ! 7770 lnp, In P
and thus
Jj=n j=n—1
1 1 1 1
—< Inpit1—lnp)+ — (nP —lnp,) + —B,
=1 Pi ; Inpjiq (Ipjes = Inp;) + In P (In npn) + In P

1

_‘zn:(l _ 1 )B-‘,—(L——
* Dj = Inp; Inpjq J Inp, InP

1

nP

B,

1
Bn —Bn
) * InP

P

1
— B,
In
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We have
T=pit1 ] 1
Inpjr1 —Inp,) < —dlnzr < — (Inp;+1 —Inp,
Inpja1 (Inpj41 — Inp;) /Z_pj In 2 nw Inp; (Inpjr1 —Inp;)
and _ _
1 j=n—1 j=n—1 T=piy1 |
(Inpjr —Inp;) < —dlnz
Inp;iq ]; J J ]; e=p; Inz
but _
J=n—1l a=p;, 1 T=pn
Z —dlnz = —dlnz =Inlnp, —Inln2
, . Inz _ Inzx
j=1 T=DPj r=p1
similarly
L mp-1 )</Z_P1d1<1(1P1 )
—— (InP —Inp, ——dIn nP —Inp,
In P p w=pn Inx . Inp, P
with

z=P 1
/ l—dlnlenlnP—lnlnpn

—p, INT
We finally obtain the inequality
Jj=n

1 In p,
Y — <P -Ilnln2+ np
Dj InP

(3.2)

j=1
3.3 An approximation of the value of the finite

Euler product of rank n

We have in general

(Va € RY) (WbeRY) (a<b) (% < /m_b Law < 1)

and

r=b
/ ldac:hrlb—haa:haé

0 T a

Let us pose

we get
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or likewise ) )
VpjeN —<hn—2L_ <~
Pj pi—1 p;j—1

: —1 1
In Pi :—lnpj :—ln(l——)
pj—1 Dj Dj

1 1 1
Vp; €N —<1n<1—)<
pj 2 pj—1

but

and thus

Now let us pose

1 1
—In(l-—) =—+¢
Dj Dj
Clearly
0< < 1 1 < !
€ - = Bl
Tl (-1 S
We have
j=n 1 j=n d=n
- 1n(1__) S
j=1 Pj =P 3
but
j=n j=n 1
€; < - < 2
j=1 =/
and hence
j=n j=n j=n
1 1 1
— < - 1n<1—>< — +2
=1 Pi j=1 pj =1 Pi
Yet
j=n j=n
1 1
Zln<1—>1n (1—)
j=1 pj j=1 pj
and we can write
j=n j=n j=n
1 1 1
Z—<—1nH(1——)< — 42
) L D pj

or likewise, with p, < P < pp+1

Inp,
In P

j=n
1
1n1nP1<1nH<1—)<lnlnP1nln2+ +2
=1

pj

and, by posing e = exp(1)

In P = 1 In P 1
In (n_) < —1nH (1——) <In (n_) —Inln2+ 1 Pn +3
e e Dj e InP
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There exists thus a number p,, such that

Inp,

Inpn
<0<1nun <3—Inln2+ 1nP) S <1<un<exp <3lnln2+ 1nP)>

and such that

= 1 InP Ln
—ln]l;[l <1 - p_g) =In (T) Inp, =1In (F lnP)

Let us pose
Hn 1 In p,,
(—:mn)<:> —<mp<exp|2—Inln2+
e e In P
we get
Jﬁl<1_i>:minpzun>o (3.3)
j=1 Pj n

3.4 A possible way to a proof

Let us now revert to the Goldbach’s strong conjecture and more specifically in
light with what we developped in the previous paragraph. Let us choose the
natural non prime integer m, and the two consecutive prime integers p, and
Pn+1, such that

2 2
pn < 2m < pn+1

and the fumction Gy, p,

Gmp, R — [-1,1]
x> G p,, (2)

with

G, (1) = ﬁ sin <pl]z> sin <1 (2m — x)>

pj

This function is periodic with period

j=n
Tvapn - H p]
7j=1

The divisors of m, which we assumed to be composite, belongs to the set
and thus

Gm7pn (m) =0
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Furthermore, we know that there exists two consecutive prime integers p, and
Pu+1, for which the respective periods TGy, p, €t TGy, p, ., of the corresponding
functions G, p, and G, p, ., are such that

TGmyp, <2m <TGpp,.,
Let uy, (see the equation 2.10 page 31) et vy, (see the equation 2.11 page 31) be
the two sequences we already introduced

Pr 5
1
Vg = H (1 — —)
he1l Ph
We have .
Uk = —Vg-1
Pk
and thus
k=n k=n 1
DTS P
k=1 k=1 Pk

Now, in the interval
1 1
[—QTGm,pV +m, QTGm_pV +m] C [0,2m)]

let us consider on the one hand the sets we already defined in the previous
chapter

e A, the set of the natural integers the least prime divisor of which is
pr. The cardinal of this set is |A,, |, and satisfies the inequality (see the
equation 2.6 page 29)

17! 1
|Ap, | < o 11 (1 - f) TGmp,

e B, theset of the natural integers the least prime divisor of which is greater
than pi. The cardinal of this set is |B,, | and satisfies the inequality (see
the equation 2.7 page 29)

j=n
1
|Bpn| 2 H (1 - _> TGm,pu
=1 Pj
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o C,, the set of the natural integers the least prime divisor of which is less
than p,,. The cardinal of this set is |C,,, | (see the equation 2.3 page 30)

k=n
Cpul =D 1]
k=1

and satisfies the inequality

Cp| S TGmp, > i (3.4)
k=1

and on the other hand, in the interval
1
[_ETGmapu + m, m[

let us consider the sets

e D, the set of the natural integers which the function G,,,, vanishes
at. The cardinal of this set is |D,,, | and satisfies the inequality (see the
equation 2.4 page 28)

Dy, | < an + by,

e [E, the set of the natural integers which the function G, ,, does not
vanish at. The cardinal of this set is |E, | and satisfies the inequality (see
the equation 2.5 page 28)

1
|Epn| > iTGm,pV - (an + bn)
The Goldbach’s strong conjecture would be proved if we could verify

1
(1901 < 5Ty ) = (B> 0)

3.4.1 Considerations on the set B,

Let us consider B, the set of the natural integers belonging to the interval

1 1
[7§TGm,pn + m, §TGm,pn + m[
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the least prime divisor of which is greater than p,, We have

j=n
1

Bl =[] (1- ) 76
j=1 Pi

j
with

j=v
TGmp, = Hpj
j=1

Furthermore, we showed that (see the equation 3.3 page 42)

ﬁ(l—i)— L =v, >0
e Dj my In P

with
L 1 Inp,
(—:mn)<:> —<mp<exp|2—Inln2+
e e InP
1 Inp,
<~ e>—>exp|—2+1Inln2 -
My, In P
and
DPn S P < pn+1
and thus
1 exp (—2 +Inln2 - lﬁf};‘)
B, | > —F—=TG,, = | |B,, | > TG,
(Bol 2 TG ) = (1Bl 2 i

Now, we notice that
(TGrp, C10,2m]) <= (AN € Q") (1 < A < put1) AT G p, =2m))

with pZ < 2m < p2_; and thus

2 2
(pi <ATGpp, < P2oq = % <TGy, < p”;“)

2
— < Pn_ TG p, <pi+1>
pu-‘,—l

and thus

2

pn In p;,
B, | > ——— —2+4+Inln2 —

| pn| perl lnP eXp ( + nin )

Yet, P can take any arbitrary value between p,, and p,,+1. Let us choose P = p,,
and we finally get

o

B, | >
B | Pu411npy,

exp(—3 +1nln2)
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or more explicitly
p721 > Pn
29p,4+1Inp, = 291lnp,

Bp,.| >

One can then see that the cardinal B, | of the set B, of the natural integers
the least prime divisor is greater than p,, numerically satisfies

(|Bp, | > 1) <= (pn > p35 = 149)

which seems to evidence that this set is not empty as soon as p,, > 149.

3.4.2 Considerations on the set C,,

Let us consider the set C,, . Its cardinal satisfies the following relations
ICp,,| = an + by

(see the equation 2.3 page 28) and

k=n

|(Cpn| < TGm,pV Z U

k=1

(see the equation 3.4 page 44)
Let us focus first on the equation 3.4, we get

1
uE <
,;2 kgmk 1Pk Inpr—y
or otherwise
1 pe—p
k — Pk—1
wuE < — = _—
Z Z klnpk 1 Z khlpk 2e 7=~ prlnpy
now B s=pn g B
Pk Pk—1</ T Pk DPr
P Inpy w=pp_, TINT  pr_1lnpg_q
and
/JEZP’“ dz /Z:p" dlnz
w=p,_, TInT w=pr_, DT
and hence

kn

k=
Pk = Pk—1 Z/ Podina X Pk — Ph—1
T=Pk—1 Inz

paret pklnpk = Pe—1Inpp
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or else
k= - k=
< P — P </m‘p" dlnz _ S~ pr—Pr-1
P pr Inpy o=p; DT P Pr—11npr_1
and finally
k=n
Pk — Pk—1 o= Dk — Pk—1
——— < [Inlnz]jZP <
= DprInpy <l l==5 Zpk 1Inpy
therefore
k=n
Zuk < 2— (Inlnp, —Inln2)
k=2

In the interval [—2TG,, ,, + m,m|, the number of natural integers which the
function G, p, vanishes at is less than or equal to a, + b,. These numbers are
either even natural integers, in which case we have

(VE < m) (Qk € [—%Tcm,pu + m,m[) (S, (2k) = S, (2m — 2k) = 0)

or odd natural integers. The cardinal of the set of these odd natural integers in
the interval

1 1
[_§TGm7pu + m, QTGT’MDU + m[

is equal to TG,y ,, and the following inequalities are satisfied

k=n
1 1 1
(2 (an +bp) < TG m.py E uk> = (5 (an +bn) < I (Inlnp, —Inln2) TGWPU)

Now, the cardinal of the set of the odd natural integers which the function
Gm,p, vanishes at in the interval [f%TGm,py + m,m[ is also less than or equal
to % (an + by). The cardinal of the set of the odd natural integers in the same
interval is %TGmypV. Let us try and fine the values of p,, for which

1 1
(4— (Inlnp, —Inln2) TGy, p, < ZTGWﬁUu) <— ((Inlnp, —Inln2) <e)
e

We get

((Inlnp, —Inln2) <e) <= (Inlnp, <e+1nln2)
— (hlpn < ee+1n1n2)

(p < eee+lnan)

and we can numerically verify

e+Inln 2

e® = 36 465,95
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Therefore, the cardinal of the set of the odd natural integers which the function
Gm,p, vanishes at in the interval

1
[—§TGm,pu + m,m]

is less than %TGm,pu for all prime integer p, < 36466. Finally, we notice that

1 1
<<§pi <m< 5p,%ﬂ) A (pn = 36 466)>
-

1
<§1 329765293 < m < 2(1329765 293))

3.4.3 A likely conclusion

Based on the previous results, we can now state that on the one hand, the func-
tion Gy, p, cannot vanish for all the natural integers belonging to the interval
[f%TGmﬁp,, +m, %TGm,p,, + m[ when p,, < 36466. On the other hand, in the
same interval, there exists at least a prime integer greater than p, as soon as
Pn > p35 = 149. The Goldbach’s strong conjecture seems to be partially proved,
at least for each natural integer m < %1 329765293 and we can fromulate the
following theorem

Theorem 4 Goldbach’s partial For each natural integer 2 < m < %1 329765293,
the even natural integer 2m is the sum of two prime numbers.



Chapter 4

On an extension of the Joseph
Bertrand’s conjecture

4.1 Object of the chapter

Joseph Bertand proposed a conjecture later proved by Panufty Tchebychev,
which we already mentioned in our introduction

Theorem 5 of Bertrand Tchebychev For each n > 1, there exists at least
one prime integer that belongs to the interval |n,2n).

In a similar spirit, and based on numerical results obtained with a computer,
we suggest the following conjecture

Conjecture 5 Let p, be a prime number, there exists at least one prime number
in each and every interval [kp,, (k + 1) p,| for each and every non zero natural
integer k such that (k+1)p, < p2,,.

We will try over this chapter to prove this conjecture.

4.2 Our tools.

We recall first the definition of the set 7, that contains each and every prime
number p; less than or equal to a given prime number p,,

T, = {p;| ((c|pj) <= (c € {1,p;}) A (pj < pn))}
Let us consider the function

Sp, R — [-1,1]
r— S, (z)

49
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with ‘
j=n
Sp., (m) = H Sp; (m)
=1

This function vanishes if and only if x is equal to one element , or the product
of several elements, of 7, . Its period is

j=n
1S, =2]]ps
j=1

As the function S,, is the product of sin functions, it is
e odd when n is odd
e even when n is even

In the interval [0,7'S,,[, we have

TSy, TSy, 3TSy,
4 )_Spn( 9 )_Spn( 4 )_0

We also recall that, for two natural integers x,, and z, chosen in the interval
[0,T°S,, [, we have (see the equations 1.1 et 1.2 page 4)

Sp (TSpn) = Spn(

n

(s 0 = 4750 ) = (S0 (00) = (1" 5 1)

(1020 = 5750, ) = (S (20) = (10" 5, 22

4.3 Towards an extension of Bertrand Tcheby-
chev’s theorem.

4.3.1 The functions S,, et S,,_, on the interval 0,175, |
We notice that

1 1 1 1
[0’ §T‘S’pn [: [0’ ZTSPTL [U[ZTSpn ) ETSpn [
Let now ; 11
[ZTSpnfl’ TSpnfl] (l € N)

4
be the sequence of the under-intervals included in the interval [0, 37°S,,,]. There
are 2p, of these under-intervals in the interval [0, %TSpn [ Let us denote the
endpoints of these under-intervals

My=0¢ =0
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My = iTSp%1
My = %TS,DP1
M3 = gTSpnf1
M; = ATSPW1
4
My, = %Tspnfl
Map, = %T'gpnﬂ

All the endpoints M; are natural integers multiple of p,,_1, and we have

1=2p,—1

(Mo, Moy, [= | [Mi, Mg
=0

and
(VIZ0 [pn]) (Mi#0  [pn])

The figure 4.1 (see page 52) shows the endpoints M; of each under-intervals
in the circular representation of the interval [0, %TSpn[ in the case where

(n=6) <= ((pn = 13) A (pn—1 = 11))

Let us consider now the function S, _, in the interval [0, 37'S),] and let us
assume that there exists an under-interval |A;, By = A; + p,[, in which this
function S, , vanishes at each and every natural odd integer. A; is a natural
integer assumed to be non zero and is not necessarily a multiple of p,. This
under-interval |A;, B[ contains p,, — 1 natural integers. The divisors of each of
these natural integers belong exclusively to the set m, _,. We are then faced
with two possibilities

e This under-interval |A;, B;[ contains a natural integer M;. Because of the
properties of symmetry of the function S,,_,, each natural integer M; in
the interval [My, My, [ belongs to one of the under-intervals | A, By[.
In particular, the natural integer My = 0 belongs to one of the under-
intervals |A;, B;[. But we know that S, , (1) # 0. This possibility must
therefore be ruled out.

e This under-interval ]A;, B;[ does not contain any of the natural integers
M;. Because of the properties of symmetry of the function S,, ,, each
under-interval contains an under-interval |A4;, By].
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M12, M3 m14

-
~

W
3/*\

=
7y
///

7

~
~

S g

Figure 4.1: The under intervals [M;, M;;1[ on the circular representation of the
interval [0, 17'S,, |

Because of the properties of symmetry of the function S, _,, each and every of
the 2p,, under-intervals [M;, M;;1] included in the interval [0, $7'S,, [ contains
itself an under-interval | A;, B;[. There are therefore 2p,, under-intervals | A;, B[
in the interval [0, 7°S), [. We denote them

JAo, Bo[

JA1, Bi[

]AtaBt[
JAig1, By

JA2p, —2, Bap, —2|
JA2p, —1, Bap, —1]
and we have
(Vt S {O, 1,2,---2p, —2,2p, — 1}) (At S [MtaMt—kl[@ M < Ay < Mt+1)

We shall say that the set of the under-intervals |A;, B[ is generated by the
under-interval | Ag, Bo[ and we will define this set as the indexed family of the
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under-intervals {]A;, B:[}. We should note that the under-interval [My, M;[ may
contain several under-intervals pairwise distinct, which we will denote |Ag, Bolu,
where the index u € N can take several different values. Hence, each under-
interval | Ao, B[, generates the family {]A;, Bi[,,}. In all that follows, we will
choose one of these families {]A¢, B[, }, that we will denote {] A, B:[} for the
sake of simplicity. For each ¢ € N such that 0 < ¢ < 2p,, — 1, we have, because
of the properties of symmetry of the function S, |

A+ A t+1
tft“ =M1 = TTSpnq

In general, for two natural integers ¢; et o, of distinct parity, where

0<t1 <ty <2p, —1

we have A A
% _ ]\Ll;t2 o
Hence A A
t+1 t+2 _ My
2
and thus 4 4 )
2 b = Myyo — Myy1 = —TSpn_s
2 4
and finally
1
At+2 - At - §TSpn71

and more generally, for ¢ € N
Apyoq — Ar = gTSpn—1

Similarly, for each t such that 0 <t < p,, — 1, we have, because of the properties
of symmetry of the function S,

(% (Ar+ Azp, —1-4) = iTSpn> — <A2pn—1—t + Ay = %T‘Spn>
We can therefore write
(Vpj € mp,) (Azp,—1-e = —Ar [pj]) (4.1)
In particular, for the natural integer «; chosen in the set Z/p,Z = {0,1,p, — 1}
(A =oar [pn]) = (Azp, -1t = = [pa])

The figure 4.2 shows the position of the under-intervals | A, B;[ in the circular
representation of the interval [My, Ma,, —1[= [0, 3T'S,, [ and in the same manner
as in the figure 4.1, where

(pn =13) < (n = 6)
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Figure 4.2: The under intervals |A:, B[ on the circular representation of the
interval [0, 1T'S,, |

For the sake of clarity, the figure only shows the endpoint A; of each under-
interval | Ay, By|.

Furthermore, the set of the under-intervals |A;, B[ contains itself two sub-
sets the elements of which are respectively the under-intervals ]As,, Ba,[ and
JA2; 41, Bar41], and we have for g e Net 0 < g <7 <p, —1

(VT) (Vq) (A2‘r+2q — Ao = gTSpnﬂ)

(V1) (Vq) (A2T+1+2q —Aori1 = gTSpnfl)

These two relations show that for two natural integers t; et to with the same
parity, where
0§t1<t2§pn—1

Atz 5—'5 At1 [p"]

Let us then consider the subset of the under-intervals |A;, B[ inside the interval
[0, %TSpn[, where ¢ is chosen even. This set contains p, under-intervals. The
same goes for the other subset of the under-intervals | A¢, B[, where ¢ is chosen
odd. There exists then p, natural integers A; with a given parity. Lastly, we
note

(V1 € Z/paZ) (Vg € Z/pnZ) (¢ < 7)) (Amzq — Ay + gTSpnfl)
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(V7 € Z/puZ) (¥ € Z/puZ) (4 < 7)) (A2p,—1-2r+20 = Azp,—1-27 + 3TS), _, )

and thus

(V7 € Z/paZ) (Vg € Z/paZ) (4 < 7)) (VP € Tp, 1) (Azri2g = —Azp,—1-2r+20  [P])
We can now enunciate the following lemma

Lemme 1 Let [0, 1TS,,[ be the interval Let the interval [0, 1T'S,, [, where p,, >
13 is the prime number of rank n in the set of the prime numbers. Let in this
interval the set of the 2p, under-intervals [%TSpn,l, HjTlTSpn,l[: [My, M1
and let us assume that there exists at least one under-interval |A:, By[, where
By = At + pp, in which the function S, vanishes at all the natural integers
it contains, then

n—1

o this under-interval is entirely included in the under-interval [My, My 1]
with M; < A,

e there exists one under-interval Ay, Bi| in each of the 2p,, under-interval
[éTSpn_l,lTTlTSpn_l[: [My, Mj41]. We number these under-intervals
JAo, Bol, A1, Bil,..., |At, Bel,-.., |A2p, 5, Bop, [, [Aop, 1 Bop, [, with

(Vt (S {0, 1, 2, s ,2pn — 2, 2pn — 1}) (At c [Mt, Mt+1[@ Mt < At < Mt+1)
o The set of these under-intervals | A¢, B[ contains itself two subsets the ele-

ments of which are respectively the under-intervals | Aay, Bag[ et | Aok+1, Bok+1],
and we have

(Vpj € mp,) (At = —Azp, -1+ [p5])
In particular, for a given natural integer a; chosen in the set

each of these two subsets contains one and only one under-interval | A, By,
where

At = Q¢ [pn]
and
(At =ar [pn]) <= (Azp, -1+ = —ar  [pa])

Let us pose

1
§T,5’pn_1 =a [p)

Aozao [ n]

then, for the index 7 varying from 1 to p,_1

1
A2:A0+§T5pn,1za2:ao+oz [pn]
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2
Ay = Ao+ §T5pn—1 =a4=ao+2a [p)

3
Ag = Ao+ 5TSpn-1 = ag = ao + 3 [Pn]

-
Agry = Ao + ElTSpnfl =agr, = ao + T [y

(pn — 1)

5 TSpn_1= a2(p,—1) = Qo + (pn — 1) [pn]

Ag(p,—1) = Ao +
Similarly, let us pose
A2pn—1 = agzp,—-1 = —QQ [Pn]

then, for the index 75 varying from —1 to — (p, — 1)
1
Apr—1)—2 = Aop, 1 — iTspnfl = agp,—3 = G2p,—1 — Q@ [Pp]
2
Apn—1)—4 = Azp, -1 — §T5pn—1 = agp,—5 = G2p,—1 — 20 [pp]

3
Apn—1)—6 = Azp, -1 — §T5Pn—1 = agp,—1-7 = Q2p,—1 — 3@ [Pn]

T2
14(2;7n—1)—272 = A2pn71 - ETSpnfl = A2p,—1-21, = A2p,—1 — T2CX [ n]

n — 1
p TSpr—1=a1 =agp,—1— (pn — 1) [pn]

Apn—1)—2(pp—1) = A2p, -1 —

and
azp, -3 = — (a0 + ) [pn]

azp,—5 = — (a0 +2a)  [pn]
azp,—1-7 = — (ao +3a)  [py)

a2p,—1-2r, = — (a0 + T2)  [p]

a1 = Q2p, —1-2(p,—1) = — (a0 + (pn — 1))  [pn]

One of the natural integers as,,, which we denote a2y, and only one is equal to

zero, and
agyx =ag+ =0 [py]
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In the case where agp = 0, we then notice that

AO = 0 [ n]
and
A(2pn71)727'2 = G(2p,—1)—215 — — T2 [Pn]
Let us pose now 75 =p, — 711
Ap,—1)=2(pp—m1) = A27, -1 = A2r, 1 = ja  [pn]
We can finally write
(VT € Z/pnZ) (Ao =0 [pn]) <= (Aor — A2:—1 =0 [pn])) (4.2)

Let us consider again the set of the under-intervals {]A;, B:[}. Let us choose
three pair-wise distinct integer indices t1, t2 et t3 such that

2t
Moy, = TlTSpn—l

Pn — 1t
Msp, —1)—2t, = flTSpnfl

2t
Moy, = TQTSpnfl

pn_l_tQ

TSpp—
1 Pn—1

My(p, —1)-2t, =
2t
Moy, = T3T5pn71
Ppn—1—1
M2(pn—1)—2t3 = fBTSpnfl

then of
Aoy, = TITSpnfl + Ag

2(pp—1—1t
A2(pn71)72t1 = %Tspn—l — A4y

2t
Aoy, = fTSpnfl + Ag

2(pp —1—1t
AQ(?n*U*Qtz = %Tspn—l — A4y

2t
Aoy, = TBTSpnfl + Ag

2(pp—1—1t
A2(pn71)72t3 = %Tspn—l — A4y

We get
2(ta — t1)

Moy, — Moy, = Aoy, — Aoy, = 1

TSpn-1
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2(ts —t
Moy, — Moy, = Aoy, — A, = %TSpn,l
2(t1 — ¢t
Moy, — Moy, = Aoy, — Aoy, = %T‘S’pn—l
and likewise
2(tg —t
Moy, —1)—20, = Moy, —1) 20, = Ao(p,—1)—20,—A2(pr—1)—20; = —%TSpn_l
2(tz —t
My, —1)—2t5—Ma(p, —1)—2t, = Ao(p, —1)—265 —Ao(p,—1)—2t, = —%TSpn_l
2(t1 — ¢t
M2(pn—1)—2t1*M2(pn,—1)—2t3 = AQ(pn—l)—Qtl7A2(pn—1)_2t3 = 7¥T5pn,1
Let us now assume
A2t1 =0 [pn]
then )
to — t
Az, = %TSpn_l
2(ts —1t
A2t3 = 7( 34 1)TSpnq

and we have
((A2e, =0 [pn]) A (Azty + A2, =0 [pn])) = (L2 +ts =281 [pa]) (4.3)
Let us pose now t; = 0. We already showed that (see the equation 4.2 page 57)
(Vj € Z/pnZ) (Azty, = Ao =0 [pn] <= Az, — A2t,-1 =0 [py])

and in this case
Aop,1 = AQ(pn—l)—th

and thus
2t 2(pp—1—1
A2t2 - A2t271 = A2t2 - A2(pn,—1)—2t3 = TQTSpnA - wTSpnfl
and finally
2ty —(pp —1—1¢ 2ty —pn+1+t
Aoty — Aggy 4 = 2222 N gy, = 227t 1l g,

4 4

We should therefore have
ta+ts+1=0 [pn)
This leads us to a contradiction as we also showed (see the equation 4.3 page 58)
((A2e; =0 [pn]) A (Aze, + A2, =0 [pn])) = (L2 +t3 =261 =0 [pn])
Consequently
(VIAe, Bil€ {JAs, Be[}) (A =0 [pn]) <= (¢ #0)) (4.4)

This result, obtained for a given family {]A;, B¢[.}, is valid for each and every
of these families and we can enunciate the following theorem
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Theorem 6 For all prime integer p, and its associated function Sy, , let the
set of the intervals

[k, (K + 1) pn

where k is any natural integer, and let the natural integer

1
M1 == ZTSp" 1

then
(Vk € N) (k < M1) (3a € ([kpn, (k + 1) pa[NN)) (Sp,, (a) # 0)

Among other consequences, the conjecture that we set out above is verified and
we can enunciate what is now a theorem

Theorem 7 Let p, be a given prime integer, there exists at least one prime
integer in each interval [kp,, (k + 1) pn[ for all non-zero natural integer k such
that (k+ 1) pn < p2.;.

A formula can be derived from the latter theorem. Let us consider the following
sequence of the under-intervals

[pn; 2pn[

(2P, 3pn |
[kpn, (k + 1) pu

[(pn — 1) pn, i

Each of these under-intervals contains at least one prime integer that we respec-
tively denote py41, Pv+2, =y Potk+1, s Pvtp,, and we of course have

pn+1 S pu-‘,—l S 2pn

Pn+2 S Prv+2 S 3pn
Pkl < Potkt1 < (K +1)py

2
DPntpn < Prtp, < Dy

and finally
Jj=n+pn J=n+pn

pi<pat | = | [ »i<a-1Di0kn (4.5)
j=n+1 j=n+1
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Chapter 5

Some thoughts on two other
conjectures.

5.1 A conjecture proposed by Jean Marie legen-
dre.

Jean Marie Legendre proposed the following conjecture.

Conjecture 6 of Legendre For all natural integer n > 2, there exists at least
a prime integer that belongs to the interval [n?, (n + 1)2].

We give an approach that could lead to a rigorous proof of this conjecture. We
recall the definition of the function S,
Sp, R — [-1,1]
x— Sp,x

with

Sp. (@) = [ 9, (@)

and -

sp; () = sin o (x)
We will use the following theorem, which we previously proved (see the theo-
rem 7 page 59).

Theorem 8 Let p, be a given prime number, there exists at least one prime
integer in each interval [kp,, (k + 1) pn[ for all non-zero natural integer k such
that (k+1)pn, <p2 ;.

Each and every divisor of both the natural integers k and k£ + 1 belongs to mp,, .
Neither of these two natural integers is divisible by a prime number greater
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than p,,. The union of the intervals Uj; [pj, pj+1] is the set of the real numbers
greater than or equal to 2. We have

U pia[=RT = {1}
j=1
We check first of all that

12 <3< 22
22 <5<7<3?
32 <11 < 13 < 42

Let us consider, which is always possible, the natural integer m such that
p; <m<m+1<pjpq. Then

2
p2<m? < (m+1)° <p?,

The interval [p?,p3, ] contains a finite set of intervals [kp;, (k + 1) p;[, where
k € N. There then exists a natural integer K such that

Kpj < pjiq < (K +1)p;
Let us consider m? and
(m+1)>=m?+2m+1

It is clear that
(3k € N) (m® € [kpj, (k+ 1) p;])

In order for the Legendre’s conjecture to be true, we simply have to show that
(vk € N) (m? € kpy, (k + Dps[) = ((m+1)° = (k+2)p; )

and then invoke the here-above mentioned theorem (see the theorem 7 page 59).
We just have to show that.

2m+1>2pj

One can see that the latter inequality is always true. Indeed
2m+1 > 2p; <= m > p;
which is our prerequisite. The conjecture is therefore proved whenever

m+1<Kp]
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Kp; being the largest natural integer multiple of p; less than pfﬂ.

We now have to look into the intervals

(K —1)pj, Kpj|
and
[Kpj, (K + L)p;]
where
i1 € [Kpj, (K + 1py
We have

Kpj < piiy < (K +1)p;
and thus the natural integers
p?—i—l —(2m+1)

and
(m+1)*—(2m+1)

that is to say m?, are both strictly less than Kp;. Indeed
(m > p;j) <= (pis1 —2m < piyy — 2p;)
= (pi — @m+1) <piy,y —2p;)

and thus
(m+1)*—(2m+1) <pi, — (2m+1) < Kp;

This completes the proof of this conjecture and allows to enunciate what is now
a theorem

Theorem 9 of Legendre For all natural integer n > 2, there exists at least a
prime integer that belongs to the interval [n?, (n + 1)?].

5.2 A conjecture proposed by Henri Brocard.

For his part, Henri Brocard proposed this other conjecture

Conjecture 7 of Brocard For all prime integer p, > 2, there exists at least
four prime integers that belong to the interval [p%,p?nﬂ)].

We will show that there exists at least four under-intervals [kpy,, (k+1)py[, with
k € N, that are included in the interval [p%,p%H[, for each prime integer p,,.
these under-intervals are explicitly of the form

(D + E)pns (D + k + Dpn|  (k € N¥)
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We know that
(Vn € N*) (Dps1 — P > 2) <= (Phy1 > P+ dpn + 1)
but p2 + 4p,, is the upper endpoint of the fourth under-interval

Each of these under-interval contains at least one prime integer, further to the
here-above mentioned theorem (see the theorem 7 page 59). The conjecture is
therefore proved and we end up with the following theorem

Theorem 10 of Brocard For all prime integer p, > 2, there exists at least
four prime integers that belong to the interval [p%,p?nﬂ)].



Chapter 6

Lemma relating to the
function S;n.

The functions S, et S;n vanish at the same odd natural integers in the interval
[0,TS,,[- The study of some properties of the function S} may thus give us
an insight on the behaviour of the function S, itself.

6.1 One property of the function S;n.

Given a prime number p,, > 13, let us consider the function S;n in the closed
interval [kp,,, (k + 1) p,]

j=n
S;n (x) = H sin <1z>
j=2 P

and let us assume that this function vanishes at all the odd natural integers my,
in this interval, with h € N*. These natural integers are of the form

k=n k=v
k=2 k=n+1

Thus, there exists at least one function s,,, that vanishes at each of these natural
integers myp. We have

.
5p; (mp) = sin — (mp,) =0
pj

As my, is odd, we have for each prime integer p; that divide p;

o= m-0) = o () -5 (3) )
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1 1
Sp; (§mh> =+1 <— Cp; (§mh> =0

Let us consider then the function C;n such that

j=n
™
C;n (x) = cos (—x)

and we can write

This function vanishes at each number %mh in the closed interval

1 1
[Skpns 5 (k1))

All these numbers are strictly rational and we have

2 2

1
i) (2 2) )
Furthermore, we note that

Cl (z)=0C} x—i—l—l —ﬁcos Ul x—l—l 1
pn XS TP 2 2) p; 2) 2

Let us now consider

os(Z (s 1)) e (2 (+- 1) vt T -4 7)

with ; € N. Then

(Vh) ((mh+1 —mp =2) < (lmh-i-l - lmh = 1))

and
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Let us pose
1
a=g (2 +1)p; —1)
and let us chose « such that « is independent from the index j, then « can be

equal to
j=n

a:% ]:[pj—l

Jj=2

o3 - 2) -+ fi G o)

Jj=2 Jj=2

and we write

In particular, whenever the function Sl vanishes at each of the odd natural
integers my, in the interval [k:pn, (k+1) pn] then the functlon C}, vanishes at
each of the rational numbers 1my, in the interval [$k,, , 3 (k + 1) pn] and, in this
same interval, we have

T (5m)) = Thon (G (3 0

This means that the function S, 1 vanishes at each of the integers in the interval
(L (kpn+1)+a, 2 ((k+1)p,+ 1) + . Hence the following lemma

n’Q

Lemme 2 Let a prime number p, > 13 and the function S; , if this function
vanishes at all the odd natural numbers of the interval [kpy, (k+ 1) py], then

there exists a number o = (H] o Dj — 1) such that the function Sl . vanishes
at all the natural integers of the interval [& (kp, + 1)+, 3 (k+ 1) p, + 1) +0].
Let us pose

%(k:pn—i—l)-i-a:a

1
5((k+1)pn+1)+oz:b

It is clear that one and only on of the two numbers a and b is a natural integer
depending on the parity of the natural integer k. Let now my, and my, be
two distinct natural integers chosen in the interval [kp,, (k4 1)p,] such that
mp, < Mp,, then their respective images in the interval [a, b] are a+ 1 (mp, + 1)
and a + 1 (my, + 1). These images are distinct and we have
1 1

o+ 5 ( 2mh2 3
Thus, the function S{; vanishes at all the odd natural integers in the inter-
val [2184,2197[, where k = 168, and all the natural integers of the interval
[8599.5, 8606] (see figure 6.1 page 68). Similarly, the same function vanishes at
all the odd natural integers in the interval [9113,9126[, where k = 701, and all
the natural integers of the interval [12064,12070.5] (see figure 6.2 page 68).

1
mh2+1)—a+§(mh1+1): mp, >0
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2184 21 2186 2187 2188 2192 2193 2194 2095 2196x

8596 8597 8598 8599 8600 sevioz SGW 86&5\ 8606 8607 8608 X

Figure 6.1: The function Si; on the intervals [2184,2197[ et [8599.5, 8606]

9114 —e115 9116 9117 9118 19 9120 9l 0122 9123 9124 9125— 9126 x

12062 12063 12064 12W66 12067 12068 12069 12070 12071 12072 12073 12074 x

Figure 6.2: The function S}, on the intervals [9113,9126[ et [12064, 12070.5[
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