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Abstract 

In this paper, we attempt to derive the Born rule from the many-worlds interpretation. 

 

Many researchers have attempted to derive the Born rule (probability interpretation) from Many-

Worlds Interpretation (MWI), but it has not resulted in the success. Thus the derivation of the Born 

rule had become an important issue for MWI. We attempt to derive the Born rule by introducing an 

elementary event of probability theory to the quantum theory as a new method. 

 

We interpret the wave function as a manifold like a torus, and interpret the absolute value of the 

wave function as the surface area of the manifold. We suppose that the manifold exists in the 

discrete space which has lattice points. We interpret each point on the surface of the manifold as a 

state that we cannot divide any more, an elementary state. We draw an arrow from any point to any 

point. We interpret each arrow as an event that we cannot divide any more, an elementary event. 

 

Probability is proportional to the number of elementary events, and the number of elementary 

events is the square of the number of elementary state. The number of elementary states is 

proportional to the surface area of the manifold, and the surface area of the manifold is the absolute 

value of the wave function. Therefore, the probability is proportional to the absolute square of the 

wave function. 
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1 Introduction 

1.1 Subject 

According to Born rule, an observed probability of a particle is proportional to the absolute 

square of the wave function. On the other hand, according to the many-worlds interpretation, we 

observe the particle of the various places in the various events. It is the subject of this paper to 

derive the Born rule by counting the number of the events. 

 

1.2 The importance of the subject 

Wave function collapse and Born rule are principle of the quantum mechanics. We can eliminate 

the wave function collapse from the quantum mechanics by Many-Worlds Interpretation (MWI), 

but we cannot eliminate the Born rule. 

 

For this reason, many researchers have tried to derive the Born rule from MWI. However, it has 

not resulted in the success. Therefore, it has become an important subject to derive the Born rule. 

 

1.3 Past derivation method 

Hugh Everett III2 claimed that he derived the Born rule from Many-Worlds Interpretation (MWI) 

in 1957. After that, many researchers claimed that they derived the Born rule from the method that 

is different from the method of Everett. James Hartle3 claimed in 1968, Bryce DeWitt4 claimed in 

1970 and Neil Graham5 claimed in 1973 that they derived the Born rule. 

 

However, Adrian Kent pointed out that their method of deriving Born rule was insufficient6 in 

1990. Though David Deutsch7 in 1999, Sumio Wada8 in 2007 tried to derive the Born rule, many 

researchers do not agree the method of deriving the Born rule in 2012. 

 

1.4 New derivation method of this paper 

In the probability theory, we explain the probability by the concept of the elementary event. 

Therefore, we might be able to explain the probability of the quantum theory by the same concept. 

We attempt to derive the probability of the quantum theory by introducing a concept of the 

elementary event to the quantum theory as the new method of this paper. 

 

2 Traditional method of deriving and the problem 

2.1 Born rule 

Max Born9 proposed Born rule in 1926. It is also called probability interpretation. Born rule is a 

principle of quantum mechanics. We express the state of the particle by the wave function ψ(x) in 

quantum mechanics. We show an example of the wave function in the following figure. 
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Figure 2.1: An example of a wave function 

 

The observed probability of a particle is proportional to the absolute square of the wave function. 

We express the observed probability P(x) of a particle at the position x as follows. 

 

 𝑃(𝑥) = |𝜓(𝑥)|2 (2.1) 

 

According to the Copenhagen interpretation that is a general interpretation of quantum 

mechanics, we cannot mention the state of the particle before observation because the wave 

function does not exist physically. However, the wave function might exist physically. One of the 

interpretations based on the existence of a wave function is a many-worlds interpretation. 

 

2.2 Everett's many-worlds interpretation 

Everett proposed Many-Worlds Interpretation (MWI) in order to deal with the universal wave 

function. He tried to derive the Born rule from the measure theory. 

 

We express a ket vector |ψ> in the Hilbert space that represents the state of the system by basis 

vectors |ψk > as follows. 

 𝑎|𝜓⟩ = ∑ 𝑎𝑘|𝜓⟩

𝑛

𝑘=1

  (2.2) 

 

Here, we have normalized |ψ> and |ψk>. The coefficients a and ak are complex number. In order 

to derive the probability Everett introduced a new concept, measure. He expressed the measure by a 

positive function m(a). He requested the following equation for the measure. 

 

 𝑚(𝑎) =  ∑ 𝑚(𝑎𝑘)

𝑛

𝑘=1

 (2.3) 

 

He adduced the probability conservation law to justify the request. We write the function m(a) 

satisfying the above equation by using a positive constant c as follows. 

 

-0.5

 0

 0.5

 1

 1.5

-4 -2  0  2  4

exp(-x**2)



5/64 

 𝑚(𝑎) =  𝑐|𝑎|2 (2.4) 

 

Andrew Gleason10 generally proved the above equation in 1957. His proof is called Gleason's 

theorem. Everett considered the infinite time measurement, and concluded that the measure behaves 

like the probability. However, MWI of Everett has basis problem and probability problem. I will 

explain them in the following sections. 

 

2.2.1 Basis problem of many-worlds interpretation 

If we define the measure by using a particular basis, we need to show how to select a particular 

basis. However, Everett did not show how to select a particular basis in his paper. 

 

For example, we consider the Stern–Gerlach experiment.  

We express the wave function of an electron by the basis of the spin eigenstate of z-axis as 

follows. 

 |𝜓⟩ = 𝑎|𝑧 +⟩ + 𝑏|𝑧 −⟩ (2.5) 

We express the measure of the spin eigenstate of z-axis as follows. 

 𝑚(𝑧 +) = |𝑎|2 (2.6) 

 𝑚(𝑧 −) = |𝑏|2 (2.7) 

On the other hand, we also express the wave function of an electron by the basis of the spin 

eigenstate of x-axis as follows. 

 |𝜓⟩ = 𝑐|𝑥+⟩ + 𝑑|𝑥 −⟩ (2.8) 

We express the measure of the spin eigenstate of x-axis as follows. 

 𝑚(𝑥 +) = |𝑐|2 (2.9) 

 𝑚(𝑥 −) = |𝑑|2 (2.10) 

If the measure of Everett is a quantity which has physical meaning, it should not change by 

choice of a basis of eigenstate. Therefore, we need a method to choose a specific basis. Everett did 

not show the method. 

 

2.2.2 Probability problem of many-worlds interpretation 

Everett tried to derive the Born rule from the measure theory. Then, Everett did not give the 

physical meaning to the measure. However, to request the conservation law of the probability for 

the equation of measure is equivalent to define the measure as the probability. Therefore, it is 

circular reasoning to show that measure acts like a probability for infinite time measurement. 

 

If the number of each world is proportional to the measure, it is necessary to clarify the 

mechanism by which each number is proportional to the measure of the world. If the number of 

each world is not proportional to the measure, it is necessary to explain how the probability of 

occurrence of each world is proportional to the measure. 
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3 Review of existing ideas 

3.1 Universal Wave function of Wheeler and DeWitt 

John Wheeler and Bryce DeWitt11 proposed the Universal wave function in 1967. We have the 

wave function by the Hamiltonian operator H and the ket vector |ψ> as follows. 

 

 𝐻|𝜓⟩  =  0 (3.1) 

 

This ket vector |ψ> is not a normal function but a functional. 

 

A functional is mathematically almost equivalent to a function of many variables. Since the 

discussion based on the functional is difficult, we use a function of many variables for discussion in 

this paper. The following sections describe the many-particle wave function, which is a function of 

many variables. 

 

3.2 Barbour's many-particle wave function of the universe 

Julian Barbour12 expressed the universe by using the many-particle wave function in his book 

The End of Time in 1999. 

 

We suppose that the number of the particles in the universe is n, and the k-th particle's position is 

rk = (xk, yk, zk). Then we express the many-particle wave function ψ as follows. 

 

 𝜓 = 𝜓(𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟𝑛) (3.2) 

 

The many dimensional space expressing the positions of all the particles is called configuration 

space. 

 
 

x2 

x1 

|| 

 

Figure 3.1: Many-particle wave function 

 

The configuration space expresses all the possible worlds that exist physically in the past, the 

present and the future, because a point in the configuration expresses the positions of all the 

particles. In other words, many-particle wave function expresses all the possible worlds in many-

worlds interpretation. 

 

If the combination of the positions of the all particles of a world is decided, the state of the clock 

of the world will be decided. If the state of the clock of the world is decided, the time of the clock of 

the world is decided. Therefore, many-particle wave function does not need time as the argument of 

the function. 
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It is possible to choose a position or a momentum as a basis of a wave function. This paper 

chooses the position as a basic basis, since we always observe a position finally by an experiment. 

 

The number of particles changes in the quantum field theory. Therefore it is impossible to express 

the quantum field by the many-particle wave function. We need a functional in order to express the 

quantum field. On the other hand, it is possible to express the functional by many-variable function 

approximately. Then, we use many-variable function, many-particle wave function in order to argue 

easily in this paper. 

 

The probability P that we observe each world in the configuration space is shown below. 

 𝑃 = |𝜓(𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟𝑛)|2 (3.3) 

 

In order to consider the reason why we express the probability by this equation, we will review 

the probability theory in the following section. 

3.3 Laplace's Probability Theory 

Pierre-Simon Laplace13 summarized the classical probability theory in 1814. He defined 

probability as follows. 

 

If equally possible case exists, the probability of the expected event is the ratio of the number of 

the suitable cases for the expected event to the number of all cases. 

 

This "equally possible case" is an elementary event in probability theory. All the elementary 

events have a same probability of occurrence. 

 

An elementary event is also called an atomic event. In this paper, we call "equally possible case" 

an elementary event. 

 

We suppose that the number of all elementary events is Na, and the number of elementary events 

of an event is N. Then, we express the probability P of occurrence of the event as follows. 

 

 𝑃 =
𝑁

𝑁𝑎
∝ 𝑁 (3.4) 

 𝑁 ≪ 𝑁A (3.5) 

 

For example, we suppose that the five balls are in the bag. Three of five balls are red and two 

balls are blue. We suppose that the probability of the event that we take out the red ball is P. Then, 

the probability is 3/5. 
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r-1 

r-2 

b-1 

b-2 

r-3 

Event R 

Event B 

Elementary event 

Elementary event 

 

Figure 3.2: Event is a set of elementary events 

 

We explain the reason by the concept of an elementary event. According to the probability 

theory, we interpret the event that we take out each ball as an elementary event. We interpret an 

event as a set of elementary events. 

 

In order to derive the Born rule, we need to find elementary event of quantum theory. An 

elementary event of probability theory generally we cannot divide anymore, so it is expected that an 

elementary event of quantum theory also cannot be divided anymore. 

 

3.4 Penrose's spin networks 

Roger Penrose14 proposed spin networks in 1971. According to the spin networks, we express the 

space as a graph with a line that connects a point and the other point. This graph is called spin 

network. Since the space-time is discrete, the space-time has a minimum length and minimum time. 

 
 

Point 

Line 
 

Figure 3.3: Penrose's spin network 

 

In this paper, though we do not use a spin network, we assume that space-time is discrete as well 

as by this theory and the space is a graph that connects the points. In this paper, we assume that the 

minimum length is Planck length ℓP and the minimum time is Planck time tP. 
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 ℓ𝑃 = √
ℏ𝐺

𝑐3
≈ 1.6 × 10−35[𝑚] (3.6) 

 𝑡𝑃 = √
ℏ𝐺

𝑐5
≈ 5.4 × 10−44[𝑠] (3.7) 

 

We call the minimum domain that is constructed by the Planck length elementary domain. 

 

If the space-time is discrete, we need to review the theory that has been constructed based on the 

continuous space-time. Therefore, in the next section, we review what happens in the path integral 

in the case of discrete space-time. 

3.5 Feynman's path integral 

Richard Feynman15 proposed path integral in 1948. It provides a new quantization method. In the 

path integral, we need to take the sum of all the possible paths of the particle. 

We express the probability amplitude K(b, a) from the position a to the position b as follows. 

 

 𝐾(𝑏, 𝑎) = ∫ 𝐷𝑥(𝑡) exp (
𝑖

ℏ
𝑆[𝑏, 𝑎])

𝑏

𝑎

 (3.8) 

 

The probability amplitude K(b, a) is called propagator. The symbol Dx(t) represents the sum of 

the probability amplitudes for all paths. We express the wave functions by the propagator as 

follows. 

 

 𝜓(𝑏, 𝑡𝑏) = 𝐾(𝑏, 𝑎)𝜓(𝑎, 𝑡𝑎) (3.9) 

 

In the path integral, an event that a particle moves from a position a to the other position b is 

made to correspond to the propagator K(b, a). We get the wave function of time tb by multiplying 

the propagator K(b, a) to a wave function of time ta. 

 

As shown in the following figure, there is not only a normal path of α but also the other path of β 

to travel long distance in short period of time. Such path might have a speed that is greater than the 

speed of light. Since the path is contrary to the special relativity, the path is not allowed. In this 

paper, we call such a movement of the path long-distance transition. 
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ta 

t 

x a 

K(b,a) 

ta 

b 

tP 

Path β Path α 

 

Figure 3.4: Feynman's path integral 

 

Generally, the textbook of a path integral explains as follows.  

 

The sum of a minutely different path near a path α becomes large. On the other hand, the sum of 

a minutely different path near a path β becomes small. For this reason, long-distance transition is 

suppressed and the path β does not remain.  

 

Then, what happens after the minimum time tP? We express the propagator from a position a to a 

position b after minimum time tP as follows. 

 

 𝐾(𝑏, 𝑎) = exp (
𝑖

ℏ
𝑆[𝑏, 𝑎]) (3.10) 

 

In this paper, we assume the discrete time. Since we cannot divide minimum time any more, 

when the departure point and the point of arrival are decided, it cannot take a minutely different 

path near a path β. For this reason, we cannot suppress long-distance transition and the path β 

remains. 

 

Therefore, if we apply path integral to the discrete space-time and the position of a particle is 

determined like a delta function of the Dirac, long-distance transition occurs after the minimum 

time tP. 

 

 𝜓(𝑥′, 𝑡𝑏) = 𝐾(𝑥′, 𝑥)𝛿(𝑥 − 𝑎) (3.11) 
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ta 

t 

x a 

ψ(x',tb)=K(x',x)δ(x-a) 

tb 

tP Path β 
Path α 

 

Figure 3.5: Long-distance transition in the path integral 

 

However, we do not observe the long-distance transition. We deduce the reason is that the 

position of the particle is distributed with a normal distribution like the following figure. 

 

Figure 3.6: A wave function of a localized state 

 

Therefore, position x is distributed with deviation Δx, momentum p is also distributed with 

deviation Δp. According to the Uncertainty Principle, the product of Δx and Δp is close to Planck 

constant ħ/2. 

 

 𝛥𝑥 𝛥𝑝 ≈
ℏ

2
 (3.12) 

 

We call the state of the wave function with a normal distribution localized state. 

 

We express a wave function of a particle with momentum p as follows. 
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 𝜓(𝑥) = exp (
𝑖

ℏ
𝑝𝑥) (3.13) 

We suppose that this particle has a mass m and the velocity v. The momentum is shown below. 

 𝑝 = 𝑚𝑣 (3.14) 

We obtain the following formula by substituting this formula to the wave function. 

 𝜓(𝑥) = exp (
𝑖

ℏ
𝑚𝑣𝑥) (3.15) 

We express the velocity v by the moving distance x and the Planck length tP. 

 𝑣 =
𝑥

𝑡𝑃
 (3.16) 

We obtain the following formula by substituting this formula to the wave function. 

 𝜓(𝑥) = exp (𝑖
𝑚

ℏ𝑡𝑃
𝑥2) (3.17) 

From the above formula, the wave length of the wave function is long at the short range. On the 

other hand the wave length of the wave function is short at the long range. 

 

In the short distance, the sum of the path integral of localized state becomes large. On the other 

hand, in long distance, the sum of the path integral of localized state becomes small. We call this 

phenomenon “suppression of long-distance transition due to localized states.” 

 

If the state is localized state, the long-distance transition does not occur after the minimum time 

tP. Therefore, the localized state is localized near place after the time tP. For this reason, we deduce 

that network structure of the path integral is realized, as shown in the following figure. 

 
 

t’ 

t’’=t’+tP 

t 

x 

x 

x’’ 

x’ 

(x,t’) 

(x,t’’) 

Network structure of 

path integral 

 
Figure 3.7: Network structure of path integral 

 

In this paper, we call the network structure of “path network structure of path integral.” 
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We suppose that there is an event AB that is a transition from a state A to a state B. If the state A 

has three positions and the state B has three positions, the event AB has 3 × 3 = 9 paths. 

 

In "network structure of the integral path", the number of paths is the square of the number of 

positions. On the other hand, according to the Born rule, the probability becomes the absolute 

square of the wave function. In this paper, we discuss the similarities of these square. 

3.6 Dirac's quantum field theory 

Paul Dirac16 proposed the quantum field theory to explain the emission and absorption of 

electromagnetic waves in 1927. We express the fundamental commutation relation17 of the quantum 

field theory in the case of one-dimensional space as follows. 

 

 [𝜓(𝑥), 𝜋(𝑦)] = 𝑖ℏ𝛿(𝑥 − 𝑦) (3.18) 

 

Then ψ is the field and π is the conjugate operator of the field ψ. The variable x and y are 

position. The function δ is Dirac's delta function. 

 

This commutation relation is similar to the following commutation relation between position x 

and momentum p. 

 

 [𝑥, 𝑝] = 𝑖ℏ (3.19) 

 

This indicates that field ψ is a physical quantity that has a property similar to the position x. In 

this paper, we call the physical quantity “positional physical quantity.” 

 

We got a field ψ(x) by the first quantization for the position x. On the other hand, the field ψ(x) is 

"positional physical quantity" like the position x. Therefore, we get a new field Ψ(x, ψ(x)) by the 

second quantization for the field ψ. We call the field Ψ(x, ψ(x)) "second wave function." We 

express the second wave function Ψ(x, ψ(x)) in the following figure. 
 

x 

ψ(x) 

Ψ(x,ψ(x)) 

 

Figure 3.8: The second wave function 

 

It is possible to interpret the second wave function Ψ(x, ψ(x)) as a functional Φ[ψ(x)]. We express 

the functional Φ[ψ(x)] by the many-particle wave function ψ(x1,x2,x3,…,xn) approximately. To argue 

a point easily, we use many-particle wave functions by this paper. 

 

3.7 Kaluza-Klein theory 

Theodor Kaluza18 proposed in 1921 and Oskar Klein19 proposed in 1926 the extra space like a 

one-dimensional circle, in order to unify the electromagnetic field and gravity. This theory is called 

Kaluza-Klein theory. 
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We express a new space M4×S1 by using a normal four-dimensional space-time M4 and an extra 

space S1 like a one-dimensional circle as follows. 

 

 M × S1 (3.20) 

 
 

M4 
S1 

M4×S1 

 

Figure 3.9: Kaluza-Klein theory 

 

 

3.8 Euler’s formula 

Euler published the following formula in 1748. 

(Euler’s formula) 

 exp(𝑖𝜙) = cos(𝜙) + sin(𝜙) (3.21) 

Imaginary number i satisfies the following equation. 

 𝑖2 = −1 (3.22) 

We express the complex number as follows.  

 𝑠 = 𝜏 + 𝑖𝑥 ∈ ℂ (3.23) 

 𝜏, 𝑥 ∈ ℝ (3.24) 

The complex conjugate is shown below. 

 𝑠̅ = 𝜏 − 𝑖𝑥 ∈ ℂ (3.25) 

The complex function is shown below. 

 𝑓(𝑠) ∈ ℂ (3.26) 

We express the absolute square as follows. 

 |𝑠|2 = 𝑠𝑠̅ (3.27) 

We use the following symbols as follows. 

 Re(𝑠) =
1

2
(𝑠 + 𝑠̅) = 𝜏 (3.28) 

 Im(𝑠) =
1

2
(𝑠 − 𝑠̅) = 𝑖𝑥 (3.29) 
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3.9 Cauchy–Riemann equation 

Augustin Louis Cauchy20 introduced the following equation in 1814 for complex analysis. 

Riemann21 used the following equation in 1851. 

(Cauchy–Riemann equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
= 0 (3.30) 

We express the above equation shortly as follows. 

(Cauchy–Riemann equation) 

 
𝜕𝑓

𝜕𝑠̅
= 0 (3.31) 

We call the above equation path differential equation in this paper.  

 

Cauchy introduced the following formula. 

(Cauchy's integral formula) 

 𝑓(𝑠) = ∮
𝑑𝑡

2𝜋𝑖𝑆1

𝑓(𝑡)

(𝑡 − 𝑠)
 (3.32) 

S1 is contour path. We call the above formula path integral equation in this paper. 

 

3.10 Hamilton’s Quaternion 

William Rowan Hamilton22 proposed the quaternion in 1843. 

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (3.33) 

We express the quaternion as follows. 

 𝑠 = 𝜏 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 ∈ ℍ (3.34) 

 𝜏, 𝑥, 𝑦, 𝑧 ∈ ℝ (3.35) 

The quaternion conjugate is shown below. 

 𝑠̅ = 𝜏 − 𝑖𝑥 − 𝑗𝑦 − 𝑘𝑧 ∈ ℍ (3.36) 

The quaternion function is shown below. 

 𝑓(𝑠) ∈ ℍ (3.37) 

We express the absolute square as follows. 

 |𝑠|2 = 𝑠𝑠̅ (3.38) 

We use the following symbols as follows. 

 Re(𝑠) =
1

2
(𝑠 + 𝑠̅) = 𝜏 (3.39) 

 Im(𝑠) =
1

2
(𝑠 − 𝑠̅) = 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (3.40) 

 

3.11 Cauchy–Riemann–Fueter equation 

Fueter 23 introduced the following equation in 1934 for quaternionic analysis. 

(Cauchy–Riemann–Fueter equation) 
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𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
+ 𝑗

𝜕𝑓

𝜕𝑦
+ 𝑘

𝜕𝑓

𝜕𝑧
= 0 (3.41) 

We express the above equation shortly as follows. 

(Cauchy–Riemann–Fueter equation) 

 
𝜕𝑓

𝜕𝑠̅
= 0 (3.42) 

We call the above equation path differential equation in this paper.  

 

Fueter introduced the following formula. 

(Cauchy–Fueter integral formula) 

 𝑓(𝑠) = ∮
(𝑡 − 𝑠)−1

|𝑡 − 𝑠|2
𝑓(𝑡)

𝑆3

𝐷𝑡

2𝜋2
 (3.43) 

Here, S 3 is three-dimensional closed surface. The detail of the quaternionic analysis is described 

in the A. Sudbery’s paper24 in 1979. 

 

We introduce the following new formula.  

(Quaternionic integral formula) 

 𝑓(𝑠) = ∮
−𝑑𝑡3

2𝜋2

𝑓(𝑡)

(𝑡 − 𝑠)3
𝑆3

 (3.44) 

Here, S 3 is three-dimensional closed surface. We call the above formula path integral equation 

in this paper. 

 

3.12 Jacobian 

Carl Gustav Jacob Jacobi25 introduced the Jacobian in 1841. 

Jacobian |J| of the functions f and g are shown below. 

 𝑢 = 𝑓(𝑥, 𝑦) (3.45) 

 𝑣 = 𝑔(𝑥, 𝑦) (3.46) 

 |𝐽| = |
∂(𝑢, 𝑣)

∂(𝑥, 𝑦)
| = ||

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

|| (3.47) 

 

We express a surface area of a manifold by integration of a solid angle in this paper. 

We transform the polar coordinates and complex number and quaternion to the solid angle by 

Jacobian. 

 

3.12.1 One-dimensional sphere (Circular polar coordinates) 

We express the position (x, y) on the surface of the one-dimensional sphere S by the following 

circular polar coordinates. 
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 𝑥 = 𝑟 cos(𝜙) (3.48) 

 𝑦 = 𝑟 sin(𝜙) (3.49) 

Jacobian of the circular polar coordinates is shown below. 

 |𝐽| = |
∂(𝑥, 𝑦)

∂(𝑟, 𝜙)
| = 𝑟 (3.50) 

We express the surface area |S| of the one-dimensional sphere S as follows. 

 |𝑆| = ∫ |𝑑𝑆|
𝑆

 (3.51) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

|𝐽| (3.52) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

𝑟 = 2𝜋𝑟 (3.53) 

 

Here we introduce the solid angle ω. 

 𝑑𝜔 = 𝑑𝜙 (3.54) 

We express the surface area |S| by the solid angle ω as follows.  

 |𝑆| = ∫ 𝑟𝑑𝜔
𝑆

 (3.55) 

If we suppose that the radius r is the function of the solid angle ω we have the following formula. 

 |𝑆| = ∫ 𝑟(𝜔)𝑑𝜔
𝑆

 (3.56) 

Here we introduce the following new spherical harmonics. 

 ℎ(𝜔) = 𝑟(𝜔) (3.57) 

We express the surface area |S| by the spherical harmonics as follows. 

 |𝑆| = ∫ ℎ(𝜔)𝑑𝜔
𝑆

 (3.58) 

 

 

3.12.2 One-dimensional sphere (Complex number) 

We express the position (x, y) on the surface of the one-dimensional sphere S by the following 

complex number. 

 𝑆 = 𝑥 + 𝑖𝑦 (3.59) 

On the other hand, we have the following formula. 

(Euler’s formula) 

 exp(𝑖𝜙) = cos(𝜙) + sin(𝜙) (3.60) 

Therefore we have the following equations. 
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 𝑆 = 𝑟 exp(𝑖𝜙) (3.61) 

 𝑥 = 𝑟 cos(𝜙) (3.62) 

 𝑦 = 𝑟 sin(𝜙) (3.63) 

 

Jacobian of the complex number is shown below. 

 |𝐽| = |
∂(𝑥, 𝑦)

∂(𝑟, 𝜙)
| = 𝑟 (3.64) 

 

We express the surface area |S| of the one-dimensional sphere S as follows. 

 |𝑆| = ∫ |𝑑𝑆|
𝑆

 (3.65) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

|𝐽| (3.66) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

𝑟 = 2𝜋𝑟 (3.67) 

Here we introduce the solid angle ω of a complex number. 

 𝑑𝜔 = 𝑑𝜙 (3.68) 

We express the surface area |S| by the solid angle ω as follows.  

 |𝑆| = ∫ 𝑟𝑑𝜔
𝑆

 (3.69) 

If we suppose that the radius r is the function of the solid angle ω we have the following formula. 

 |𝑆| = ∫ 𝑟(𝜔)𝑑𝜔
𝑆

 (3.70) 

Here we introduce the following new spherical harmonics. 

 ℎ(𝜔) = 𝑟(𝜔) (3.71) 

We express the surface area |S| by the spherical harmonics as follows. 

 |𝑆| = ∫ ℎ(𝜔)𝑑𝜔
𝑆

 (3.72) 

Though the solid angle is scalar we change it to the complex number as follows. 

 𝑑𝜔 = 𝑖 exp(𝑖𝜙) 𝑑𝜙 (3.73) 

We call the solid angle complex solid angle in this paper. 

 

Therefore we express the surface area |S| as follows. 

 |𝑆| = ∫ ℎ(𝜔)|𝑑𝜔|
𝑆

 (3.74) 
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3.12.3 Two-dimensional sphere (Spherical polar coordinates) 

We express the position (x, y, z) on the surface of the two-dimensional sphere S by the following 

spherical polar coordinates. 

 𝑥 = 𝑟 sin 𝜒 cos 𝜙 (3.75) 

 𝑦 = 𝑟 sin 𝜒 sin 𝜙 (3.76) 

 𝑧 = 𝑟 cos 𝜒  (3.77) 

Jacobian of the spherical polar coordinates is shown below. 

 |𝐽| = |
∂(𝑥, 𝑦, 𝑧)

∂(𝑟, 𝜙, 𝜒)
| = 𝑟2 sin 𝜒 (3.78) 

We express the surface area |S| of the two-dimensional sphere S as follows. 

 |𝑆| = ∫ |𝑑𝑆|
𝑆

 (3.79) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

∫ 𝑑𝜒
𝜋

0

|𝐽| (3.80) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

∫ 𝑑𝜒
𝜋

0

𝑟2 sin 𝜒 = 4𝜋𝑟2 (3.81) 

Here we introduce the solid angle ω. 

 𝑑𝜔 = sin 𝜒 𝑑𝜒𝑑𝜙 (3.82) 

We express the surface area |S| by the solid angle ω as follows.  

 |𝑆| = ∫ 𝑟2𝑑𝜔
𝑆

 (3.83) 

If we suppose that the radius r is the function of the solid angle ω we have the following formula. 

 |𝑆| = ∫ (𝑟(𝜔))
2

𝑑𝜔
𝑆

 (3.84) 

Here we introduce the following new spherical harmonics. 

 ℎ(𝜔) = (𝑟(𝜔))
2

 (3.85) 

We express the surface area |S| by the spherical harmonics as follows. 

 |𝑆| = ∫ ℎ(𝜔)𝑑𝜔
𝑆

 (3.86) 

 

3.12.4 Three-dimensional sphere (Spherical polar coordinates) 

We express the position (τ, x, y, z) on the surface of the three-dimensional sphere S by the 

following spherical polar coordinates. 
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 𝜏 = 𝑟 sin 𝜓 sin 𝜒 cos 𝜙 (3.87) 

 𝑥 = 𝑟 sin 𝜓 sin 𝜒 sin 𝜙 (3.88) 

 𝑦 = 𝑟 sin 𝜓 cos 𝜒  (3.89) 

 z = 𝑟 cos 𝜓  (3.90) 

Jacobian of the spherical polar coordinates is shown below. 

 |𝐽| = |
∂(𝜏, 𝑥, 𝑦, 𝑧)

∂(𝑟, 𝜙, 𝜒, 𝜓)
| = 𝑟3 sin(𝜒) sin2(𝜓) (3.91) 

We express the surface area |S| of the three-dimensional sphere S as follows. 

 |𝑆| = ∫ |𝑑𝑆|
𝑆

 (3.92) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

∫ 𝑑𝜒
𝜋

0

∫ 𝑑𝜓
𝜋

0

|𝐽| (3.93) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

∫ 𝑑𝜒
𝜋

0

∫ 𝑑𝜓
𝜋

0

𝑟3 sin(𝜒) sin2(𝜓) = 2𝜋2𝑟3 (3.94) 

Here we introduce the solid angle ω. 

 𝑑𝜔 = sin(𝜒) sin2(𝜓) 𝑑𝜙𝑑𝜒𝑑𝜓 (3.95) 

We express the surface area |S| by the solid angle ω as follows.  

 |𝑆| = ∫ 𝑟3𝑑𝜔
𝑆

 (3.96) 

If we suppose that the radius r is the function of the solid angle ω we have the following formula. 

 |𝑆| = ∫ (𝑟(𝜔))
3

𝑑𝜔
𝑆

 (3.97) 

Here we introduce the following new spherical harmonics. 

 ℎ(𝜔) = (𝑟(𝜔))
3

 (3.98) 

We express the surface area |S| by the spherical harmonics as follows. 

 |𝑆| = ∫ ℎ(𝜔)𝑑𝜔
𝑆

 (3.99) 

 

 

3.12.5 Three-dimensional sphere (Hopf fibration) 

We express the position (τ, x, y, z) on the surface of the three-dimensional sphere S by the 

following Hopf fibration. 
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 𝑆 = 𝜏 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (3.100) 

 𝑆 = sin 𝜙 exp(𝑖𝜒) + cos 𝜙 exp(𝑖𝜓) 𝑗 (3.101) 

 𝜏 = 𝑟 sin 𝜙 cos 𝜒 (3.102) 

 𝑥 = 𝑟 sin 𝜙 sin 𝜒 (3.103) 

 𝑦 = 𝑟 cos 𝜙 cos 𝜓 (3.104) 

 z = 𝑟 cos 𝜙 sin 𝜓 (3.105) 

This is Hopf fibration which Heinz Hopf found in 1931. 

  

Jacobian of the Hopf fibration is shown below. 

 |𝐽| = |
∂(𝜏, 𝑥, 𝑦, 𝑧)

∂(𝑟, 𝜙, 𝜒, 𝜓)
| = 𝑟3 cos(𝜙) sin(𝜙) (3.106) 

We express the surface area |S| of the three-dimensional sphere S as follows. 

 |𝑆| = ∫ |𝑑𝑆|
𝑆

 (3.107) 

 |𝑆| = ∫ 𝑑𝜙
𝜋/2

0

∫ 𝑑𝜒
2𝜋

0

∫ 𝑑𝜓
2𝜋

0

|𝐽| (3.108) 

 |𝑆| = ∫ 𝑑𝜙
𝜋/2

0

∫ 𝑑𝜒
2𝜋

0

∫ 𝑑𝜓
2𝜋

0

𝑟3 cos(𝜙) sin(𝜙) = 2𝜋2𝑟3 (3.109) 

Here we introduce the solid angle ω. 

 𝑑𝜔 = cos(𝜙) sin(𝜙) 𝑑𝜙𝑑𝜒𝑑𝜓 (3.110) 

We express the surface area |S| by the solid angle ω as follows.  

 |𝑆| = ∫ 𝑟3𝑑𝜔
𝑆

 (3.111) 

If we suppose that the radius r is the function of the solid angle ω we have the following formula. 

 |𝑆| = ∫ (𝑟(𝜔))
3

𝑑𝜔
𝑆

 (3.112) 

Here we introduce the following new spherical harmonics. 

 ℎ(𝜔) = (𝑟(𝜔))
3

 (3.113) 

We express the surface area |S| by the spherical harmonics as follows. 

 |𝑆| = ∫ ℎ(𝜔)𝑑𝜔
𝑆

 (3.114) 
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3.12.6 Three-dimensional sphere (Quaternion) 

We express the position (τ, x, y, z) on the surface of the three-dimensional sphere S by the 

following quaternion. 

 𝑆 = 𝜏 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 (3.115) 

 𝑆 = exp(𝑖𝜙 + 𝑗𝜒 + 𝑘𝜓) (3.116) 

 𝜏 = 𝑟(cos 𝜙 cos 𝜒 cos 𝜓 − sin 𝜙 sin 𝜒 sin 𝜓) (3.117) 

 𝑥 = 𝑟(sin 𝜙 cos 𝜒 cos 𝜓 + cos 𝜙 sin 𝜒 sin 𝜓) (3.118) 

 𝑦 = 𝑟(cos 𝜙 sin 𝜒 cos 𝜓 − sin 𝜙 cos 𝜒 sin 𝜓) (3.119) 

 𝑧 = 𝑟(cos 𝜙 cos 𝜒 sin 𝜓 + sin 𝜙 sin 𝜒 cos 𝜓) (3.120) 

 

Jacobian of the quaternion is shown below. 

 |𝐽| = |
∂(𝜏, 𝑥, 𝑦, 𝑧)

∂(𝑟, 𝜙, 𝜒, 𝜓)
| = 𝑟3 cos(2𝜒) (3.121) 

We express the surface area |S| of the three-dimensional sphere S as follows. 

 |𝑆| = ∫ |𝑑𝑆|
𝑆

 (3.122) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

∫ 𝑑𝜒
𝜋/4

0

∫ 𝑑𝜓
2𝜋

0

|𝐽| (3.123) 

 |𝑆| = ∫ 𝑑𝜙
2𝜋

0

∫ 𝑑𝜒
𝜋/4

0

∫ 𝑑𝜓
2𝜋

0

𝑟3 cos(2𝜒) = 2𝜋2𝑟3 (3.124) 

Here we introduce the solid angle ω. 

 𝑑𝜔 = cos(2𝜒) 𝑑𝜙𝑑𝜒𝑑𝜓 (3.125) 

We express the surface area |S| by the solid angle ω as follows. 

 |𝑆| = ∫ 𝑟3𝑑𝜔
𝑆

 (3.126) 

If we suppose that the radius r is the function of the solid angle ω we have the following formula. 

 |𝑆| = ∫ (𝑟(𝜔))
3

𝑑𝜔
𝑆

 (3.127) 

Here we introduce the following new spherical harmonics. 

 ℎ(𝜔) = (𝑟(𝜔))
3

 (3.128) 

We express the surface area |S| by the spherical harmonics as follows. 

 |𝑆| = ∫ ℎ(𝜔)𝑑𝜔
𝑆

 (3.129) 

Though the solid angle is scalar we change it to the quaternion as follows. 
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 𝑑𝜔 = − exp3(𝑖𝜙 + 𝑗𝜒 + 𝑘𝜓) cos(2𝜒) 𝑑𝜙𝑑𝜒𝑑𝜓 (3.130) 

We call the solid angle quaternion solid angle in this paper. 

 

Therefore we express the surface area |S| as follows. 

 |𝑆| = ∫ ℎ(𝜔)|𝑑𝜔|
𝑆

 (3.131) 

 

3.13 Cartan's differential form 

Elie Cartan26 defined differential form in 1899 in order to describe manifold by the method that is 

independent to the coordinates.  

Though the differential form dω is infinitesimal, we use difference form δω of finitesimal  

 

We express the surface area |S| of the manifold S as follows. 

 |𝑆| = ∫ ℎ(𝜔)|𝑑𝜔|
𝑆

 (3.132) 

We express the difference form δS of the surface area of the manifold S as follows. 

 𝛿𝑆(𝜔) = ℎ(𝜔) 𝛿𝜔 (3.133) 

 

 
 

Manifold S 

Solid angle ω 

Difference form 

δS(ω)=h(ω)δω 

 

Figure 3.10: Manifold 

 

 

Here, we express the difference form δS1 of the surface area of the manifold S1 as follows. 

 𝑑𝑆1(𝜔) = ℎ1(𝜔) 𝛿𝜔 (3.134) 

Then, we express the difference form δS2 of the surface area of the manifold S2 as follows. 

 𝑑𝑆2(𝜔) = ℎ2(𝜔) 𝛿𝜔 (3.135) 
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We obtain the following manifold S as the superposition of the manifold S1 and S2. 

 𝑆 = 𝑆1 + 𝑆2 (3.136) 

 

We sum the complex numbers of wave functions every position for the superposition of a wave 

function. Therefore, we deduce that we sum the surface areas of manifolds at every solid angle for 

the superposition of manifolds. 

 

Then, we express the difference form δS of the manifold S as follows. 

 𝛿𝑆(𝜔) = 𝛿𝑆1(𝜔) + 𝛿𝑆2(𝜔) (3.137) 

Therefore, we have the following formula for the spherical harmonics. 

 ℎ(𝜔) = ℎ1(𝜔) + ℎ2(𝜔) (3.138) 

We define the superposition of the manifolds by the above formula. 
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4 A new method of deriving 

4.1 Universe of Two-dimensional space-time 

4.1.1 Wave function of complex number 

We consider the Minkowski space U of the universe of two-dimensional space-time. We express 

the world line C of the particle by complex number. 

 𝐶 = 𝑇 + 𝑖𝑋 ∈ ℂ (4.1) 

We suppose that particles are generated by pair production and destroyed by pair annihilation. 

 

 

 

 

Figure 4.1: pair production and pair annihilation 

 

 

We express the closed path C by the circle C of the radius R as follows. 
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Figure 4.2: Closed path C 

 

We express the closed path as follows. 

 𝐶 = 𝑅 exp(𝑖𝛷)  (4.2) 

We express the circumference |C| of this circle C as follows. 

 |𝐶| = ∫ 𝑅
2𝜋

0

|𝑖 exp(𝑖𝛷) |𝑑𝛷 (4.3) 

Here we introduce the complex solid angle. 

 𝑑𝛺 = 𝑖 exp(𝑖𝛷) 𝑑𝛷 (4.4) 

Then we express the circumference |C| of this circle C as follows. 

 |𝐶| = ∫ 𝑅
𝐶

| 𝑑𝛺| (4.5) 

We express the difference form of the circumference |C| as follows. 

 𝛿𝐶(𝛺) = 𝑅 𝛿𝛺 (4.6) 

We introduce a circle S as an extra space like Kaluza-Klein theory. 

We call the circle amplitude circle or amplitude 1-sphere. 

C = T+iX 

Re(C) = T 

O 

C 

Im(C) = iX 

Φ 
R 
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Figure 4.3: Amplitude 1-sphere S 

 

We express the circumference |C| of the amplitude 1-sphere S by the radius r and the solid angle 

ω as follows. 

 |𝑆| = ∫ 𝑟
𝑆

 |𝑑𝜔| (4.7) 

We express the difference form δS of the sphere S. 

 𝛿𝑆(𝜔) = 𝑟 𝛿𝜔 (4.8) 

We rotate the sphere S. We transform the sphere S to the new sphere S’ by the rotational 

transform. 

 𝑃: 𝑆 → 𝑆′ (4.9) 

We define the rotational transform of the rotational transform angle θ as follows. 

 𝑃(𝜃) = exp(𝑖𝜃) (4.10) 

We transform the sphere by the rotational transform as follows. 

 𝛿𝑆′(𝜔) = exp(𝑖𝜃) 𝛿𝑆(𝜔) (4.11) 

 

We define the superposition of the superposition of a sphere S1 and a sphere S2 as follows. 

 𝛿𝑆(𝜔) = 𝛿𝑆1(𝜔) + 𝛿𝑆2(𝜔) (4.12) 

The superposition of the sphere and the sphere which is rotated by the angle 180 degrees is zero. 

Re(S) = τ 

O 

S 

Im(S) = ix 

ϕ 
r 
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 𝛿𝑆′(𝜔) = exp(𝑖𝜋) 𝛿𝑆(𝜔) (4.13) 

 0 = 𝛿𝑆(𝜔) + 𝛿𝑆′(𝜔) (4.14) 

 

The direct product of the closed path C of the particle and the amplitude circle S is a torus T. 

 𝑇 = 𝐶 × 𝑆 (4.15) 

 δ𝑇(𝛺, 𝜔) = 𝛿𝐶(𝛺) × 𝛿𝑆(𝛺, 𝜔) (4.16) 

 δ𝑇(𝛺, 𝜔) = 𝑅(𝛺)𝛿𝛺 𝑟(𝛺, 𝜔) 𝛿𝜔 (4.17) 

 
 

Torus T 

Solid angle (Ω,ω) 
δT(Ω,ω) 

 

Figure 4.4: Torus 

 

 

Here we introduce the following new solid angle. 

 𝜈 = (𝛺, 𝜔) (4.18) 

Here we introduce the following new solid radius. 

 𝜌 = (𝑅, 𝑟) (4.19) 

Here we introduce the following new function. 

 𝑓(𝜌, 𝜈) = 𝑅(𝛺) 𝑟(𝛺, 𝜔) (4.20) 

We express the torus T by the function f(ρ, ν) as follows. 

 δ𝑇(𝜌, 𝜈) =  𝑓(𝜌, 𝜈)𝛿𝜈 (4.21) 

We interpret the absolute value of the function f as the absolute value of the wave function. 

 

We transform the torus T to the new torus T’ by the rotational transform P. 

 𝑃: 𝑇 → 𝑇′ (4.22) 

We define the rotational transform of the rotational angle θ as follows. 

 𝑃(𝜃) = exp(𝑖𝜃) (4.23) 

We transform the difference form of the torus T by the rotational transform as follows. 
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 𝛿𝑇′(𝜔) = exp(𝑖𝜃) 𝛿𝑇(𝜔) (4.24) 

We obtain the following formula from the above formula. 

 𝑓′(𝜌, 𝜈) = exp(𝑖𝜃) 𝑓(𝜌, 𝜈) (4.25) 

We interpret the rotational angle θ as the phase of the wave function. 

Then we define the wave function as follows. 

 𝑔(𝜌, 𝜈, 𝜃) = exp(𝑖𝜃) 𝑓(𝜌, 𝜈) (4.26) 

 

We suppose that the amplitude circle rotates by the angle 360 degrees when the particle goes the 

circuit of the closed circle C. We express the torus T by the angle Φ of the closed circle C as 

follows. 

 𝛿𝑇(𝜌, 𝜈) = 𝑔(𝜌, 𝜈, 𝛷) 𝛿𝜈 (4.27) 

 𝑔(𝜌, 𝜈, 𝛷) = exp(𝑖𝛷) 𝑓(𝜌, 𝜈) (4.28) 

 

We call the torus helical torus. 

 

 

Figure 4.5: Helical torus 

 

The helical torus is manifold.  

The dimension of the torus is same as the dimension of the universe because the universe is two-

dimensional space-time. 

 

Here we use a surprising idea. 

 

We interpret the helical torus as the space-time. We call the space-time toric space-time.  

We interpret the toric space-time an independent universe. We call the universe the second 

universe. 

 

It is possible to construct the third and the forth universe in the same way that we construct the 

second universe. We construct many universe by repeating in the same way. We call these universe 

hierarchical universe. 

 

We call the principle to construct the hierarchical universe hierarchical principle. 
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4.1.2 Hierarchical universe 

We show the hierarchical universe as follows. 

 

Figure 4.6: Hierarchical universe 

 

We express the above hierarchical universe by the following symbol. 

 ⋯ → 𝑈1 → 𝑈2 → 𝑈3 → ⋯ (4.29) 

 

4.1.3 Equations 

We express the position s by the complex number as follows. 

 𝑠 = 𝜏 + 𝑖𝑥 ∈ ℂ (4.30) 

Then the wave function becomes complex function. 

 𝑓(𝑠) ∈ ℂ (4.31) 

We assume that the complex function is analytic function. 

Analytic function satisfies the Cauchy–Riemann equation. 

(Cauchy–Riemann equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
= 0 (4.32) 

We call the equation path differential equation. 

 

We define the complex conjugate as follows. 

 𝑠̅ = 𝜏 − 𝑖𝑥 ∈ ℂ (4.33) 

Then we express the path differential equation shortly as follows. 

 
𝜕𝑓

𝜕𝑠̅
= 0 (4.34) 

We obtain the following Laplace equation by differentiating the path differential equation. 

(Laplace equation) 

 
𝜕

𝜕𝑠

𝜕𝑓(𝑠)

𝜕𝑠̅
= 0 (4.35) 

We call this equation the harmonic equation. 

The function which satisfies the harmonic equation is the harmonic function. 

Therefore the analytic function is harmonic function. 

 

Analytic function satisfies the Cauchy's integral formula. 

(Cauchy's integral formula) 

U1 U2 U3 
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 𝑓(𝑠) = ∮
𝑑𝑡

2𝜋𝑖

𝑓(𝑡)

(𝑡 − 𝑠)𝑆1

 (4.36) 

We interpret the Cauchy's integral formula as the path integral equation of the Feynman’s path 

integral. 

 

 

 

Im(t)=ix 

Re(t) = τ 

O 

f(t) 

f(t) 

f(t) 

f(t) 

 f(t) 

 

f(t) 

f(t) 

f(t) 

f(t) 

f(t) 

 

f(t) 

f(t) 

S1 

f(s) 

 

 

Figure 4.7: Path integral equation of the Feynman’s path integral 

 

We interpret that the particle on the circle S1 transit from the position t to the position s for the 

long-distance directly. 

We call the new interpretation path integral of space-time view which is different from the 

traditional Feynman’s path integral. 

 

It is possible to use these equations for the wave function of the hierarchical universe because the 

wave function is complex function.  

 

4.2 Universe of four-dimensional space-time 

4.2.1 Wave function of quaternion 

We consider the Minkowski space U of the universe of four-dimensional space-time. We express 

the world line C of the particle by quaternion. 
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 𝐶 = 𝑇 + 𝑖𝑋 + 𝑗𝑌 + 𝑘𝑍 ∈ ℍ (4.37) 

We suppose that particles are generated by pair production and destroyed by pair annihilation. 

 

 

 

Figure 4.8: pair production and pair annihilation 

 

 

We express the closed path C by the circle C of the radius R as follows. 

 

 

Figure 4.9: Closed path C 

 

C = T+iX+jY+kZ 

Re(C) = T 

O 

C 

Im(C) = iX+jY+kZ 
 

Φ 
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We express the closed path as follows. 

 𝐶 = 𝑅 exp(𝑖𝛷)  (4.38) 

We express the circumference |C| of this circle C as follows. 

 |𝐶| = ∫ 𝑅
2𝜋

0

|𝑖 exp(𝑖𝛷) | 𝑑𝛷 (4.39) 

Here we introduce the quaternionic solid angle. 

 𝑑𝛺 = 𝑖 exp(𝑖𝛷) 𝑑𝛷 (4.40) 

Then we express the circumference |C| of this circle C as follows. 

 |𝐶| = ∫ 𝑅
𝐶

 |𝑑𝛺| (4.41) 

We express the difference form of the circumference |C| as follows. 

 𝛿𝐶(𝛺) = 𝑅 𝛿𝛺 (4.42) 

We introduce a circle S as an extra space like Kaluza-Klein theory. 

We call the circle amplitude 3-sphere. 

 

 

Figure 4.10: Amplitude 3-sphere S 

 

We express the circumference |C| of the amplitude 3-sphere S by the radius r and the solid angle 

ω as follows. 

 |𝑆| = ∫ 𝑟3

𝑆

 |𝑑𝜔| (4.43) 

We express the difference form δS of the sphere S. 

S = τ+ix+jy+kz 

Re(S) = τ 

O 

S 

ϕ 
r 

Im(S) = ix+jy+kz 
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 𝛿𝑆(𝜔) = 𝑟3 𝛿𝜔 (4.44) 

This amplitude circle S is a manifold. We rotate the manifold. 

We transform the manifold S to the new manifold S’ by the rotational transform. 

 𝑃: 𝑆 → 𝑆′ (4.45) 

We define the rotational transform of the rotational transform angle θ as follows. 

 𝑃(𝜃) = exp(𝑖𝜃) (4.46) 

We transform the manifold by the rotational transform as follows. 

 𝛿𝑆′(𝜔) = exp(𝑖𝜃) 𝛿𝑆(𝜔) (4.47) 

 

We define the superposition of the superposition of a sphere S1 and a sphere S2 as follows. 

 𝛿𝑆(𝜔) = 𝛿𝑆1(𝜔) + 𝛿𝑆2(𝜔) (4.48) 

 

The superposition of the sphere and the sphere which is rotated by the angle 180 degrees is zero. 

 0 = 𝛿𝑆(𝜔) + 𝛿𝑆′(𝜔) (4.49) 

 𝛿𝑆′(𝜔) = exp(𝑖𝜋) 𝛿𝑆(𝜔) (4.50) 

 

The direct product of the closed path C of the particle and the amplitude circle S is a torus T. 

 𝑇 = 𝐶 × 𝑆 (4.51) 

 δ𝑇(𝛺, 𝜔) = 𝛿𝐶(𝛺) × 𝛿𝑆(𝛺, 𝜔) (4.52) 

 
 

Torus T 

Solid angle (Ω,ω) 
δT(Ω,ω) 

 

Figure 4.11: Torus 

 

 

Here we introduce the following new solid angle. 

 𝜈 = (𝛺, 𝜔) (4.53) 

Here we introduce the following new solid radius. 
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 𝜌 = (𝑅, 𝑟) (4.54) 

Here we introduce the following new function. 

 𝑓(𝜌, 𝜈) = 𝑅(𝛺) 𝑟(𝛺, 𝜔) (4.55) 

We express the torus T by the function f(ρ, ν) as follows. 

 δ𝑇(𝜈) =  𝑓(𝜌, 𝜈)𝛿𝜈 (4.56) 

We interpret the absolute value of the function f as the absolute value of the wave function. 

 

We transform the torus T to the new torus T’ by the rotational transform P. 

 𝑃: 𝑇 → 𝑇′ (4.57) 

We define the rotational transform of the rotational angle θ as follows. 

 𝑃(𝜃) = exp(𝑖𝜃) (4.58) 

We transform the difference form of the torus T by the rotational transform as follows. 

 

 𝛿𝑇′(𝜔) = exp(𝑖𝜃) 𝛿𝑇(𝜔) (4.59) 

We obtain the following formula from the above formula. 

 𝑓′(𝜌, 𝜈) = exp(𝑖𝜃) 𝑓(𝜌, 𝜈) (4.60) 

We interpret the rotational angle θ as the phase of the wave function. 

Then we define the wave function as follows. 

 𝑔(𝜌, 𝜈, 𝜃) = exp(𝑖𝜃) 𝑓(𝜌, 𝜈) (4.61) 

 

We suppose that the amplitude circle rotates by the angle 360 degrees when the particle goes the 

circuit of the closed circle C. We express the torus T by the angle Φ of the closed circle C as 

follows. 

 𝛿𝑇(𝜌, 𝜈) = 𝑔(𝜌, 𝜈, 𝛷) 𝛿𝜈 (4.62) 

 𝑔(𝜌, 𝜈, 𝛷) = exp(𝑖𝛷) 𝑓(𝜌, 𝜈) (4.63) 

We call the torus helical torus. 

 

 

Figure 4.12: Helical torus 
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The helical torus is manifold.  

The dimension of the torus is same as the dimension of the universe because the universe is 2-

dimensional space-time. 

 

Here we use a surprising idea. 

 

We interpret the helical torus as the space-time. We call the space-time toric space-time.  

We interpret the toric space-time an independent universe. We call the universe the second 

universe. 

 

It is possible to construct the third and the forth universe in the same way that we construct the 

second universe. We construct many universe by repeating in the same way. We call these universe 

hierarchical universe. 

 

We call the principle to construct the hierarchical universe hierarchical principle. 

 

4.2.2 Hierarchical universe 

We show the hierarchical universe as follows. 

 

 

Figure 4.13: Hierarchical universe 

 

We express the above hierarchical universe by the following symbol. 

 ⋯ → 𝑈1 → 𝑈2 → 𝑈3 → ⋯ (4.64) 

 

4.2.3 Equations 

We express the position s by the quaternion number as follows. 

 𝑠 = 𝜏 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 ∈ ℍ (4.65) 

Then the wave function becomes quaternionic function. 

 𝑓(𝑠) ∈ ℍ (4.66) 

We assume that the quaternionic function is analytic function. 

Analytic function satisfies the Cauchy–Riemann- Fueter equation. 

(Cauchy–Riemann- Fueter equation) 

 
𝜕𝑓

𝜕𝜏
+ 𝑖

𝜕𝑓

𝜕𝑥
+ 𝑗

𝜕𝑓

𝜕𝑦
+ 𝑘

𝜕𝑓

𝜕𝑧
= 0 (4.67) 

We call the above equation path differential equation in this paper.  

 

U1 U2 U3 
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We define the quaternionic conjugate as follows. 

 𝑠̅ = 𝜏 − 𝑖𝑥 − 𝑗𝑦 − 𝑘𝑧 ∈ ℍ (4.68) 

Then we express the path differential equation shortly as follows. 

 
𝜕𝑓

𝜕𝑠̅
= 0 (4.69) 

We obtain the following Laplace equation by differentiating the path differential equation. 

(Laplace equation) 

 
𝜕

𝜕𝑠

𝜕𝑓(𝑠)

𝜕𝑠̅
= 0 (4.70) 

We call this equation the harmonic equation. 

The function which satisfies the harmonic equation is the harmonic function. 

Therefore the analytic function is harmonic function. 

 

Analytic function satisfies the quaternionic integral formula. 

(Quaternionic integral formula) 

 𝑓(𝑠) = ∮
−𝑑𝑡3

2𝜋2

𝑓(𝑡)

(𝑡 − 𝑠)3
𝑆3

 (4.71) 

We interpret the quaternionic integral formula as the path integral equation of the Feynman’s path 

integral. 
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Figure 4.14: Path integral equation of the Feynman’s path integral 

 

We interpret that the particle on the 3-sphere S3 transit from the position t to the position s for the 

long-distance directly. 

We call the new interpretation space-time view path integral which is different from the 

traditional Feynman’s path integral. 

 

It is possible to use these equations for the wave function of the hierarchical universe because the 

wave function is quaternionic function.  

 

 

4.2.4 Spin of 3-sphere 

We introduced the 3-sphere as the wave function in 3-space in this paper. 

We express the 3-sphere by quaternion as follows.  

 𝑓(𝜙, 𝜒, 𝜓) = sin 𝜙 exp(𝑖𝜒) + cos 𝜙 exp(𝑖𝜓) 𝑗 ∈ ℍ (4.72) 

This is the Hopf fibration. 

 

Now we fix the angle as follows. 

 𝜒 = 0 (4.73) 

 𝜓 = 0 (4.74) 

We suppose that the real part of the function f is the radius of the circle.  
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We express the radius of the circle for the rotational angle ϕ in the following figure. 

 

  

Figure 4.15: Wave function of the particle of spin 1 

 

If the rotational angle is 180 degrees, the sign of the phase becomes negative. 

 𝑓(𝜙, 𝜒, 𝜓) = −𝑓(𝜙 + 𝜋, 𝜒, 𝜓) (4.75) 

If the rotational angle is 360 degrees, the sign of the phase becomes positive. 

 𝑓(𝜙, 𝜒, 𝜓) = 𝑓(𝜙 + 2𝜋, 𝜒, 𝜓) (4.76) 

We interpret the manifold as the wave function of a particle of spin 1. 

 

Here we change the angles to the half angles. 

 𝜙 →
𝜙

2
 (4.77) 

 𝜒 →
𝜒

2
 (4.78) 

 𝜓 →
𝜓

2
 (4.79) 

Then we express the wave function as follows.  

 𝑓(𝜙, 𝜒, 𝜓) = sin (
𝜙

2
) exp (𝑖

𝜒

2
) + cos (

𝜙

2
) exp (𝑖

𝜓

2
) 𝑗 ∈ ℍ (4.80) 

Now we fix the angle as follows. 

 𝜒 = 0 (4.81) 

 𝜓 = 0 (4.82) 

We suppose that the real part of the function f is the radius of the circle.  

We express the radius of the circle for the rotational angle ϕ in the following figure. 
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Figure 4.16: Wave function of a particle of spin1/2 

 

 

If the rotational angle is 360 degrees, the sign of the phase becomes negative. 

 𝑓(𝜙 , 𝜒, 𝜓) = −𝑓(𝜙 + 2𝜋, χ, 𝜓) (4.83) 

If the rotational angle is 720 degrees, the sign of the phase becomes positive. 

 𝑓(𝜙, χ, 𝜓) = 𝑓(𝜙 + 4𝜋, χ, 𝜓) (4.84) 

We interpret the manifold as the wave function of a particle of spin 1/2. 

 

Please refer to the following paper about the spin.  

・Derivation of two-valuedness and angular momentum of spin-1/2 from rotation of 3-sphere 

(2013/5) 

http://www.geocities.jp/x_seek/Spin_e.htm 

 

 

 

4.3 Normal space 

We express the surface area of the normal space U as follows.  

 |𝑈| = ∫ 𝑟3𝑑𝛺
𝑆

 (4.85) 

We express the difference form of the normal space U as follows. 

 𝛿𝑈(𝛺) = 𝑟3𝛿𝛺 (4.86) 

Here we replace the r3 to the function F(Ω). 

 𝐹(𝛺) = 𝑟3 (4.87) 

Then we express the following formula. 

 𝛿𝑈(𝛺) = 𝐹(𝛺)𝛿𝛺 (4.88) 

We interpret the above formula like the following figure.  

We call the interpretation manifold view. 
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Figure 4.17: manifold view of the normal space U 

 

Here we replace the formula as follows. 

 𝛿𝑈(𝑅, 𝛺) = 𝐹(𝑅, 𝛺)𝛿𝛺 (4.89) 

We interpret the above formula like the following figure.  

We call the interpretation spherical harmonics view. 

 

 

Figure 4.18: Spherical harmonics view of the normal space U 
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In the spherical harmonics view, we interpret the function F as the spherical harmonics. 

The spherical harmonics is the harmonic function of the spheric polar coordinates. 

Therefore the spherical harmonics satisfies the following harmonic equation. 

 (
𝜕2

𝜕𝑇2
+

𝜕2

𝜕𝑋2
+

𝜕2

𝜕𝑌2
+

𝜕2

𝜕𝑍2
) 𝐹(𝑅, 𝛺) = 0 (4.90) 

 

 

4.4 Wave space-time 

We express the normal space-time U by the radius R and the solid angle Ω as follows. 

 𝛿𝑈(𝑅, 𝛺) = 𝐹(𝑅, 𝛺)𝛿𝛺 (4.91) 

We express the amplitude 3-sphere S by the radius r and the solid angle ω as follows. 

 𝛿𝑇(𝑟, 𝜔) = 𝑓(𝑟, 𝜔)δω (4.92) 

We define the wave space-time W as the direct product of the normal space time U and the 

amplitude 3-sphere S as follows. 

 𝛿𝑊(𝑅, 𝛺, 𝑟, 𝜔) = 𝛿𝑈(𝑅, 𝛺) × 𝛿𝑇(𝑅, 𝛺, 𝑟, 𝜔) (4.93) 

 𝛿𝑊(𝑅, 𝛺, 𝑟, 𝜔) = 𝐹(𝑅, 𝛺)𝑓(𝑅, 𝛺, 𝑟, 𝜔)𝛿𝛺δω (4.94) 

Here we introduce the new solid angle. 

 𝜈 = (𝛺, 𝜔) (4.95) 

Here we introduce the new radius.  

 𝜌 = (𝑅, 𝑟) (4.96) 

Here we introduce the new function. 

 𝑔(𝜌, 𝜈) = 𝐹(𝑅, 𝛺)𝑓(𝑅, 𝛺, 𝑟, 𝜔) (4.97) 

Then we express the wave space-time shortly.  

 𝛿𝑊(𝜌, 𝜈) = 𝑔(𝜌, 𝜈)𝛿𝜈 (4.98) 

 



43/64 

 

 

Nomal 4-spacetime U 

Amplitude 

3-sphere S 

Wave spacetime 

W=U×S 

 

Figure 4.19: Wave space-time 

 

The spherical harmonics is the harmonic function of the spheric polar coordinates. 

Therefore the spherical harmonics satisfies the following harmonic equation. 

 (
𝜕2

𝜕𝑇2
+

𝜕2

𝜕𝑋2
+

𝜕2

𝜕𝑌2
+

𝜕2

𝜕𝑍2
+

𝜕2

𝜕𝜏2
+

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) 𝑔 = 0 (4.99) 

 

 

4.5 Elementary event of many-worlds interpretation 

In the case of the Copenhagen interpretation, we cannot introduce an elementary event to the 

quantum theory, because we always observe one event at one observation. 

 

Therefore, we introduce the elementary events to quantum mechanics by embracing the Many-

Worlds Interpretation (MWI) in this paper. In MWI all the events those occur in one observation 

occur. However, one observer cannot observe all the events at the same time, because the observer 

itself is involved in each event. 

 

If we interpret an event of quantum theory as a set of elementary events, we can derive the 

probability that each event occurs from the number of the elementary events. If the event R or event 

B occurs in some observations, a world branched to the world that event R occurs and the other 

world that event B occurs in the MWI. 

 

For example, if the number of elementary events of the event R is three, and B is two, the 

probability of occurrence of the event R is 3/5. We call a world that an elementary event occurs 

elementary world. We interpret a world as a set of elementary worlds. 
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Figure 4.20: World is a set of elementary world in many-worlds interpretation 

 

The concrete implementation method of the elementary events is described in the following 

sections. 

 

4.6 Elementary state of many-worlds interpretation 

In the wave function of a many-particle system in configuration space (many-particle wave 

function), we call the position certain state that positions of all particles are decided "position 

certain state." 

 

However, in the actual experiment, each particle spreads in the narrow range. Therefore, actual 

state diffuses in the narrow range in configuration space. We can regard the state as the set of the 

position certain states. We call the state "localized state." 

 
 

x2 

x1 

Position certain state 

Localized state 

|ψ| 
Elementary state 

 

Figure 4.21: Elementary state in configuration space 

 

In addition, we interpret a wave function of the position certain state (position eigenstate) as a 

manifold. We interpret an absolute value of the wave function as the surface area of the manifold. 

We put a point on the surface of the manifold at a fixed interval. We interpret the point as 

"elementary state." The number of the elementary events is proportional to an absolute value of the 
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wave function, because the number of the elementary events is proportional to the surface area of 

the manifold. 

 

In the discussion of this paper, there is no difference between the discussion using the many-

particle wave function and the discussion using the wave function of one particle. Therefore, in the 

discussion of this paper, we do not use the many-particle wave function but the wave function of 

one particle. 

 

4.7 Introduction of an elementary state to the quantum theory 

We express the wave function ψ(x, t) by Dirac delta function as follows. 

 

 𝜓(𝑥, 𝑡) = ∫ 𝜓(𝑦, 𝑡)𝛿(𝑥 − 𝑦)𝑑𝑦 (4.100) 

 

We interpret the state ψ(y, t) as the state that the position y of the particle is fixed, "position 

certain state." Then we compose the elementary state that cannot be separated any more by 

dividing the "position certain state." 

 

We divided the virtual high-dimensional Euclidean space by using "elementary domain" and we 

suppose that each lattice point is an elementary state. The position certain state is a circle and the 

lattice point on the circle is an elementary states of the position certain state. 
 

Elementary 

state 
Planck length 

Planck length 

 

Elementary 

domain 

Position certain state 

 

Figure 4.22: Elementary state of many-worlds interpretation 

 

 Since the surface area S of the manifold is the absolute value |ψ(y, t)| of the wave function, we 

describe the number M(y, t) of the elementary state by using Planck length ℓP as follows. 

 

 𝑀(𝑦, 𝑡) =
𝑆

ℓ𝑃
2 =

|𝜓(𝑦, 𝑡)|

ℓ𝑃
2  (4.101) 
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4.8 Application of path integral to the field 

In quantum field theory, we quantize the field itself.  

 

We interpret the field is an independent universe according to the hierarchical principle of this 

paper. Therefore we apply the path integral to the field. 

 

We were able to apply the path integral to the position x that is the "positional physical quantity." 

Therefore, we deduce that we can apply the path integral to the field ψ that is "positional physical 

quantity." Then, we apply the path integral to the following new function. 

 𝛹(𝑥, 𝑡, 𝜓(𝑥, 𝑡)) (4.102) 

 

There was a network structure of the path integral for the position x that is "positional physical 

quantity." Therefore, we apply a network structure of the path integral for the field ψ that is 

"positional physical quantity" like the following figure. 

 
 

t' 

t''=t'+tp 

t 

ψ 

ψ'' 

ψ' 

Δψ 

Ψ(x,t',ψ(x,t')) 

Ψ(x,t''ψ(x,t'')) 
 

Network structure of 

path integral 

x 

 
Figure 4.23: Application of network structure of path integral to field itself 

 

We call the space-time that the new wave function Ψ exists is the second universe. 

In the above figure, we apply "network structure of the path integral" to the region that is smaller 

than Δψ. 

 

4.9 Introduction of elementary event to the quantum theory  

We introduce a new concept, elementary event to the quantum theory in this paper. 

  

We express an event as a transition from one state to the other state in quantum theory. Therefore, 

we express an elementary event as a transition from one elementary state to the other elementary 

state. 
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We interpret an elementary state as a point. We interpret an elementary event as an arrow from a 

point to the other point. Since we can draw a line from any point to any point, we deduce that an 

elementary event from any elementary state to any elementary state exists. 

 

If the arrow from the point A to the point B exists, the arrow from the point B to the point A also 

exists conversely. If the number of points is M, the number of arrows becomes M2. In other words, 

if the number of elementary states is M, the number of elementary events becomes M2. 

 

Though there is no clear evidence of the existence of an elementary event, we deduce it by the 

following reasons. 
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Figure 4.24: Elementary event and elementary state of many-worlds interpretation 

 

We assume that an elementary event of quantum theory has the same properties as elementary 

events of probability theory. In other words, the probability of occurrence of an event is 

proportional to the number of elementary events those are included in the event. 

 

In addition, we define the event that is transition from any position certain state to any position 

certain state "path certain event." The path certain event is a set of elementary events. 

 

Actual state is localized by the uncertainty principle. We call the state "localized state. We call 

the event from any localized state to any localized state "localized event." 

 

If we apply the path integral to the discrete space-time, the long-distance transition from position 

certain state occurs. However, "long-distance transition" is suppressed due to the localized states. It 
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means that the number of elementary events of localized event that is Long-distance transition is 

very rare. 

 

The existence of an elementary state and an elementary event suggests that an existence 

probability and a probability of occurrence are different concepts. If the number of elementary 

states of a state is m, the state's existence probability is proportional to m. If the number of 

elementary events of an event is n, the event's existence probability is proportional to n. 

 

4.10 Derivation of the Born rule 

This section describes how to derive this probability. 

 

We express the observation probability P (x, t) of the particle by the wave function ψ (x, t) as 

follows. 

 

 𝑃(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 (4.103) 

 

On the other hand, we express the probability P based on the Laplace's definition of probability 

as follows. 

 

 𝑃 =
𝑁

𝑁𝑎
 (4.104) 

 

Here NΏ is the number of all elementary events and N is the number f the elementary events those 

are expected. If Na is sufficiently larger than N, P is proportional to N. 

 

 𝑃 ∝ 𝑁 (4.105) 

 

Actual state is localized state. We apply the "network structure of path integral" to the localized 

state. Since "long-distance transition" does not occur for localized state, the length of transition is 

small after minimum time tP. 
 

The number N (x', t') of elementary events of the localized state ψ (x', t') Δx is proportional to the 

surface area of the manifold. We apply the "network structure of path integral" to the position on 

the surface area of the manifold. 

 

 Since the manifold after the minimum time almost same as the original manifold, we 

approximate it by the same manifold. We express the number M (x, t) of elementary states on the 

surface area of the manifold as follows. 

 

 𝑀(𝑥, 𝑡) =
𝑆

ℓ𝑃
2

Δ𝑥

ℓ𝑃

=
|𝜓|Δ𝑥

ℓ𝑃
3  (4.106) 

 

The number N of elementary events is the number of the transition from all elementary states at 

time t' to all elementary states at time t''. Therefore, the number N of the elementary events is the 

square of the number M of the elementary states. 

 



49/64 

 𝑁 = 𝑀2 (4.107) 

 

We express those elementary events in the following figure. 
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Figure 4.25: The number of elementary events is the square of the number of elementary states 

 

According to the uncertain ty principle, deviation Δp of momentum is almost constant if Δx is 

almost constant. Therefore, the number of elementary events is proportional to the absolute square 

of the wave function. 

 

 𝑃 ∝ 𝑁 = 𝑀2 = (
𝑆

ℓ𝑃
2

Δ𝑥

ℓ𝑃

)

2

=
(Δ𝑥)2|𝜓|2

ℓ𝑃
6 ∝ |𝜓|2 (4.108) 

 

 

The probability of occurrence of an event is proportional to the number of the elementary events 

that is involved in the event. The number of the elementary events is proportional to the absolute 

square of the wave function. Therefore, the probability of occurrence of an event is proportional to 

the square of the absolute value of the wave function. 
 

5 Conclusion 

We explained the method to derive the Born rule from many-worlds interpretation and 

probability theory. 
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Probability is proportional to the number of the elementary events. The number of the elementary 

events is the square of the number of elementary state because we apply the "network structure of 

path integral" to the elementary state. The number of the elementary states is proportional to the 

absolute value of the wave function. Therefore, the probability is proportional to the absolute value 

of the wave function. 

 

 

6 Supplement 

6.1 Supplement of the many-particle wave function 

We call an elementary state, a position certain state and a localized state for the universe 

"elementary world", "position certain world" and "localized world" respectively. 

 

In addition, we call an elementary event, a path certain event and a localized event for the 

universe "elementary history", "path certain history" and "localized history" respectively. 
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Figure 6.1: Elementary history and elementary world of many-worlds interpretation 

 

We interpret one point of the configuration space of the many-particle wave function as the state 

that the positions of all particles are determined. The state is "position certain world." 

 

In the view of classical mechanics, the point is our world. In the view of the quantum mechanics, 

localized world is our world. 

 

I guess that the absolute value of the many-particle wave function of the universe is most nearly 

zero in the almost area. The domain that the absolute value is large is localized like a network 

structure. 
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6.2 Supplement of the method of deriving the Born rule 

The simplest way to derive the Born rule from Many-Worlds Interpretation (MWI) is that we 

connect the number of the world to the probability. 

 

If the probability of occurrence of event A is higher than the probability of occurrence of event B, 

we deduce that the number of the world that event A occurred is greater than the number of the 

world that event B occurred. 

 

For example, we suppose that we make the 100 planets those are exactly same as Earth. If the 

event A occurred on 80 planets and the event B occurred on 20 planets, then we interpret that the 

probability of the occurrence of the event A is 80%. 

 

However, it is not clear how to count the world. Therefore, we count the number of elementary 

worlds of the localized world that event A occurred.  

 

We express the number M of elementary worlds of the localized world by the wave function ψ 

(A) that event A occurred as follows. 

 

 𝑀 =
|𝜓(𝐴)|

ℓ𝑃
2 ×

(Δ𝑥)3𝑛

ℓ𝑃
3𝑛 =

|𝜓(𝐴)|(Δ𝑥)3𝑛

ℓ𝑃
2+3𝑛  (6.1) 

 

Δx is the position deviation, and n is the number of all particles. The number of elementary world 

is proportional to the absolute value of the wave function. On the other hand, the probability is 

proportional to the absolute square of the wave function. Therefore, we cannot explain the 

probability by using the number of the elementary worlds. 

 

To solve this problem, we explain the probability by using the number of the history. We express 

the number N of the elementary history of the localized history that event A occurred as follows. 

 

 𝑁 = 𝑀2 (6.2) 

 

The probability is proportional to the number of the elementary history. The number of the 

history is the square of the number of the elementary world. On the other hand, the number of the 

elementary worlds is proportional to the absolute values of wave functions. Therefore, the 

probability is proportional to the absolute square of wave functions. 

 

 𝑃 ∝ 𝑁 = 𝑀2 = (
|𝜓(𝐴)|(Δ𝑥)3𝑛

ℓ𝑃
2+3𝑛 )

2

=
(Δ𝑥)6𝑛

ℓ𝑃
4+6𝑛

|𝜓(𝐴)|2 ∝ |𝜓(𝐴)|2 (6.3) 

 

 

6.3 Supplement of basis problem in many-worlds interpretation 

In many-worlds interpretation, there is a problem that a particular basis of the wave function does 

not exist. 

 



52/64 

For example, we consider the Stern-Gerlach experiment of the spin of electrons. In this 

experiment, we measure the spin by using a magnetic field gradient. Since the basis of the spin is 

determined by the direction of the gradient magnetic field, there is no particular basis for the spin. 

 

In this paper, we chose position as the particular basis. We could also choose the momentum as 

the particular basis, but we did not do so, because we express the basis of the momentum by using a 

set of the elementary state that the position is basis. 

 

For spin, there is no way to select a particular basis. In this paper, we are considering the 

manifold of a particle of spin 1/2. We might be able to express the spin by using the manifold. 

 

6.4 Interpretation of time in many-worlds interpretation 

The position of all particles is different for each point in the configuration space of many-particle 

wave function. Therefore, we define the time for each point in the configuration space. Since a 

point corresponds to a position certain world, we interpret the time as a parameter to classify the 

position certain worlds. 

 

A position certain world transits the minimum length continuously in the configuration space. I 

guess that we feel the transition as a time.  

 
 

t''=t’+tP 

t'''=t''+tP 
t 

t' 

Elementary world 

Elementary history 

x 
 

Figure 6.2: Many-worlds interpretation and arrow of time 

 

If a transition of a direction exists, the transition of the opposite direction also exists. However, 

since there are many "elementary worlds" of future more overwhelmingly than the number of 

elementary worlds of past, we feel that our elementary world always transits to elementary world of 

the future. In this way, many-worlds interpretation explains the arrow of time by. 

 

6.5 Supplement of Long-distance transition 

In this paper, we have been thinking about one particle is localized in one place. Here we 

consider the wave function of one particle that was localized in one place at a time. We suppose that 



53/64 

the wave function was separated and localized in two places. We call the state "many localized 

states." In this case, what would happen? 

 

Elementary event exists between any two elementary states. The world does not become disorder 

because long-distance transition is suppressed due to the "localized state". We determine the 

number of elementary events between two localized states only by the number of elementary states 

of the two localized states. 

 

Therefore, if there are "many localized states", the transition between the states those are 

localized in two places will occur. 

 
 

t''+tP 

t'' 

t 

x 

t' 

 

Figure 6.3: Long-distance transition between localized states 

 

I call the phenomenon "localized long-distance transition" or "localized shift." 

 

Then, will localized shift between localized states those have different time occur? 

 

In this case, since the elementary event exists between any two elementary states, the localized 

shift occurs, too. 

 

I do not deduce that the localized teleport send information, because we cannot send any 

information by using EPR correlation. 

 

7 Future Issues 

Future issues are shown as follows. 

 

(1) Consideration of the principle 

(2) Formulation for the quantum field theory 

(3) Consideration of the discrete space 

(4) Formulation for the relativistic mechanics 

(5) Formulation for the gravity theory 

 

We consider some of these issues in the following chapters. 
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8 Consideration of the future issues 

 

 

8.1 Consideration of principles 

We consider the hierarchical principle and the event principle. 

 

8.1.1 Hierarchical principle 

I propose the following hierarchical principle. 

 

- A wave function is quaternionic function. 

- The direct product of the closed path of a particle and the wave function is the other universe. 

- A wave function in the other universe is also quaternionic function. 

 

We call the theory based on the hierarchy principle the hierarchy theory. 

 

8.1.2 Event principle 

I propose the following event principle. 

 

- An elementary event is the transition from an elementary state to the other elementary state. 

- Event probability of an event is proportional to the number of the elementary event which the 

event includes. 

 

We call the theory based on the event principle the event theory. 

 

8.2 Consideration of formulation for the quantum field theory 

A position certain state has a phase and an absolute value of the wave function. Therefore, it is 

possible to use “suppression of long-distance transition due to localized states” for the position 

certain state. On the other hand, an elementary state does not have a phase and an absolute value of 

the wave function. Therefore it is impossible to use “suppression of long-distance transition due to 

localized states” for the elementary state. In order to solve the problem, we consider the quantum 

field theory. 

 

In the quantum mechanics the position and the momentum of a particle have a commutation 

relation. It means that the position of the particle is distributed. On the other hand, in the quantum 

field theory the amplitude and the general momentum of the wave function have a commutation 

relation. It means that the amplitude of the wave function is distributed. 

 

Then I propose the following new function. 

 𝛹(𝑥, 𝜓(𝑥)) (8.1) 

We call the function the second wave function because we obtain the wave function by the 

second quantization of the field. The second wave function exists in the second universe. The 

elementary state of the first universe is the position certain state of the second universe. Therefore it 

is possible to use “suppression of long-distance transition due to localized states” for the elementary 

state. 
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8.3 Consideration of discrete space 

8.3.1 Discrete space from 24-hypercube 

In this paper, we call the discrete space of the elementary state event space. 

 

For example we consider the 24-hypercube as the model of the event space. 24-hypercube γ24 is 

the direct product of the 24 one-dimensional cube γ1. 

 𝛾24 = 𝛾1 × 𝛾1 × 𝛾1 × ⋯ × 𝛾1 (8.2) 

We show the vertices, edges, faces, and cells of the 24-hypercube as below. 

 

Table 8.1: The number of vertices, edges, faces, and cells of the 24-hypercube 

Event space Faces Number 

𝐸0 Vertices (
24
0

) 224−0 

𝐸1 Edges (
24
1

) 224−1 

𝐸2 Faces (
24
2

) 224−2 

𝐸3 Cells(3-faces) (
24
3

) 224−3 

𝐸𝑘 k-faces (
24
𝑘

) 224−𝑘 

𝐸23 23-faces (
24
23

) 224−23 

𝐸24 24-faces (
24
24

) 224−24 

 

 

 

We use the following abbreviation. 

E-state: Elementary state 

E-event: Elementary event 

 

- 0-event space: Vertices is e-state. Edge is e-event and vertices in the 1-event space. 

- 1-event space: Vertices is e-state. Edge is e-event and vertices in the 2-event space. 

- 2-event space: Vertices is e-state. Edge is e-event and vertices in the 3-event space. 

 

We construct the following sequence of the event space by repeating the above process. 

 𝐸0 → 𝐸1 → 𝐸2 → 𝐸3 → ⋯ → 𝐸24 (8.3) 

 

 

 

 

8.3.2 Discrete space Consideration from finite group  

We construct the discrete space from the finite group. 

 

The representation on the vector space V of the group G is the map from the group G to the 

general linear matrix GL(V). 



56/64 

 𝜌: 𝐺 → 𝐺𝐿(𝑉) (8.4) 

 𝜌(𝑔ℎ) = 𝜌(𝑔)𝜌(ℎ) (8.5) 

 𝑔, ℎ ∈ 𝐺 (8.6) 

 𝜌(𝑔), 𝜌(ℎ) ∈ 𝜌(𝐺) (8.7) 

 

We use the symbol g as the abbreviation for the representation ρ(g) of the element of the group in 

this paper. We use the symbol G as the abbreviation for the set ρ(G) of the representation of the 

element of the group. 

 

We consider one fixed vector v1 in the vector space V. We transform the vector v1 to the vector v 

by the element g of the finite group G. Then vector v and element g have one-to-one onto mapping. 

Therefore we interpret the element g as the vector v. 

 𝑣1 ∈ 𝑉 (8.8) 

 𝑔 ∈ 𝐺 (8.9) 

 𝑣 = 𝑔𝑣1 (8.10) 

We interpret an element g as an elementary state. We call the group world group. 

 

We consider the element of the direct product of the two world groups. 

 (𝑔1, 𝑔2) ∈ 𝐺 × 𝐺 (8.11) 

We interpret an element as an elementary event. 

 

We construct a new group as the direct product of two world groups. 

 𝐻 = 𝐺 × 𝐺 (8.12) 

We call the group history group. 

 

8.3.3 Discrete space from the direct product of 26 sporadic finite simple groups 

In this paper, we call the discrete space of the elementary state event space. 

 

We construct the discrete space from the finite simple groups. 

 

We consider the direct product of 26 sporadic finite simple groups Sk. as a model of the event 

space. 

 𝑇26 = 𝑆1 × 𝑆2 × 𝑆3 × ⋯ × 𝑆26 (8.13) 

We call the direct product group 26-torus group. 

We suppose that the order |T 26|of the group is M  ≈ 2m. 

We show the vertices, edges, faces, and cells of the 26-torus group as below. 
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Table 8.2: The number of vertices, edges, faces, and cells of the 26-torus group 

Event space Faces Number 

𝐸0 Vertices (
𝑀
1

) 

𝐸1 Edges (
𝑀
2

) 

𝐸2 Faces (
𝑀
4

) 

𝐸3 Cells(3-faces) (
𝑀
8

) 

𝐸𝑘 k-faces (
𝑀
2𝑘) 

𝐸𝑚−1 (m-1)-faces (
𝑀

2𝑚−1) 

𝐸𝑚 m-faces (
𝑀
2𝑚) 

 

We use the following abbreviation. 

E-state: Elementary state 

E-event: Elementary event 

 

- 0-event space: Vertices is e-state. Edge is e-event and vertices in the 1-event space. 

- 1-event space: Vertices is e-state. Edge is e-event and vertices in the 2-event space. 

- 2-event space: Vertices is e-state. Edge is e-event and vertices in the 3-event space. 

 

We construct the following sequence of the event space by repeating the above process. 

 𝐸0 → 𝐸1 → 𝐸2 → 𝐸3 → ⋯ → 𝐸𝑚 (8.14) 

 

Detail is shown in the following paper. 

 

・Construction of the zeta functions of the quaternion and the simple groups (2013/3) 

http://www.geocities.jp/x_seek/Riemann_hypothesis_e.htm 

 

 

 

8.3.4 Quantization of the discrete space by zeta function 

We quantize the natural number n as the lattice point of the discrete space as follows.  

 

(Natural function) 

 `n`𝑧 ∶= 𝑒𝑧 + 𝑒2𝑧 + 𝑒3𝑧 + ⋯ + 𝑒𝑛𝑧 (8.15) 

 `𝑛`𝑧 = ∑ 𝑒𝑘𝑧

𝑛

𝑘=1

 (8.16) 

 𝜈𝑛𝑧: = `𝑛`𝑧 (8.17) 

We define the following natural derivative by differentiating the natural function by the variable z 

s times  

(Natural derivative) 

http://www.geocities.jp/x_seek/Riemann_hypothesis_e.htm
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 `𝜈𝑛`𝑧(𝑠): = ∑ 𝑘𝑠𝑒𝑘𝑧

𝑛

𝑘=1

 (8.18) 

 𝜈𝑛𝑧(𝑠): = `𝜈𝑛`𝑧(𝑠) (8.19) 

We show the relation between the natural derivative and the zeta function as follows. 

 𝜈∞0(𝑠) = 𝜁(−𝑠) (8.20) 

 

The natural derivative satisfies the path differential equation and the path integral equation. The 

following reflection integral equation gives the boundary condition.  

 

(Reflection integral equation of complex number) 

 𝜈𝑛𝑧(𝑠 + 1) = ∮
𝑖𝑑𝑡

2𝜋
B(𝑠, 𝑡)𝜈𝑛𝑧(−𝑡)

𝑆1

 (8.21) 

(Reflection integral equation of quaternion) 

 𝜈𝑛𝑧(𝑠 + 1) = ∮
𝑑𝑡3

2𝜋2

B(𝑠, 𝑡 + 2)

(𝑡 + 1)𝑡
𝜈𝑛𝑧(−𝑡)

𝑆3

 (8.22) 

Here B(x, y) is Beta function.  

 

We obtain the following harmonic natural derivative by making the natural derivative the 

uncertain status.  

 (Harmonic natural derivative) 

 "𝑛"𝜀(𝑠) ∶= ∮
𝑑𝑧

2𝜋𝑖𝑧
 𝜈𝑛𝑧(𝑠)

|𝑧|=𝜀

 (8.23) 

 𝜈𝑛𝜀(𝑠): = " 𝜈𝑛"𝜀 (𝑠): = "𝑛"𝜀(𝑠) (8.24) 

 

Detail is shown below.  

 

・New proof that the sum of natural number is -1/12 of zeta function (2014/3) 

http://www.geocities.jp/x_seek/Regularization_e.htm 

 

8.3.5 Consideration of the uncertain status 

We consider the uncertain status of the natural derivative.  

 

We define the certain information entropy H for the observed information as follows. 

(Certain information entropy) 

 𝐻 = − ∑ 𝑃(𝑥𝑘) log 𝑃(𝑥𝑘)

𝑛

𝑘=1

 (8.25) 

 

We define the uncertain information entropy Q for the unobserved wave function as follows. 

(Uncertain information entropy) 

http://www.geocities.jp/x_seek/Regularization_e.htm


59/64 

 𝑃(𝑥) = |𝑓(𝑥)|2 (8.26) 

 𝑄 = − ∫ 𝑃(𝑥) log 𝑃(𝑥) 𝑑𝑥 (8.27) 

 

We define the uncertain information entropy Q for the unobserved angular momentum of k-th 

particle as follows. 

(Uncertain information entropy) 

 𝑃1(𝑘) = |⟨𝑓|𝑥 +⟩ + ⟨𝑓|𝑥 −⟩|2 (8.28) 

 𝑃2(𝑘) = |⟨𝑓|𝑦 +⟩ + ⟨𝑓|𝑦 −⟩|2 (8.29) 

 𝑃3(𝑘) = |⟨𝑓|𝑧 +⟩ + ⟨𝑓|𝑧 −⟩|2 (8.30) 

 𝑄 = − ∑ ∑ 𝑃𝑠(𝑘) log 𝑃𝑠(𝑘)

𝑛

𝑘=1

3

𝑠=1

 (8.31) 

 

We define the general information entropy G. 

(General information entropy)  

 𝐺 = 𝐻 + 𝑄 (8.32) 

This general information entropy conserves. 

 

(Law of general information entropy conservation) 

 δ𝐺 = δ𝐻 + δ𝑄 = 0 (8.33) 

 

The certain information entropy always increases by a thermodynamics second law. 

(Law of entropy increase) 

 δ𝐻 > 0 (8.34) 

 

However, the certain information entropy has the following upper limit because of the uncertainty 

principle. 

(Upper limit of the certain information entropy) 

 𝐻 <
1

3
𝑄 (8.35) 

All the particle’s angular momentums of y-direction and z-direction become uncertain, when all 

the particle’s angular momentums of x-direction are observed. 

 

The certain information entropy increases when the wave function collapses. 

The uncertain information entropy increases when the wave function diffuses (anti-collapses). 

 

If we make a status the uncertain status, the uncertain information entropy increase. 
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8.3.6 Time in the hierarchical universe 

To consider time in the hierarchy universe, we consider the one-dimensional universe which has 

only one photon. The circumference is 1 meter. We make a stationary state of a photon in the 

universe. 

 

We suppose that the speed of light and the Planck’s constant is 1. 

 

Table 8.3: Constant 

Quantity Before expansion After expansion 

Speed of light 1 [m/s] 1 [m/s] 

Planck’s constant 1 [g m2/s] 1 [g m2/s] 

 

Now, we suppose that the universe expands slowly. The circumference is 2 meters. The each 

quantity changes as follows. 

 

Table 8.4: Variation of the momentum of photon in the expansion of the universe 

Quantity Before expansion After expansion 

Circumference of the universe 1 [m] 2 [m] 

Wave number of the photon 1 1 

Wave length of the photon 1 [m] 2 [m] 

Frequency of the photon 1[1/s] 0.5[1/s] 

Momentum of the photon 1 [g m/s] 0.5 [g m/s] 

Time to go around the universe 1[s] 2 [s] 

 

I deduce the frequency of the photon is proportional to the radius of the universe from the above 

table. 

 

Next, we consider the one-dimensional universe which has only one electron. The circumference 

is 1 meter. We make a stationary state of an electron in the universe. For easy calculation we 

suppose that the electron’s mass is 1 gram.  

 

Now, we suppose that the universe expands slowly. The circumference is 2 meters. The each 

quantity changes as follows. 

 

Table 8.5: Variation of the momentum of electron in the expansion of the universe 

Quantity Before expansion After expansion 

Circumference of the universe 1 [m] 2 [m] 

Wave number of the electron 1 1 

Wave length of the electron 1 [m] 2 [m] 

Frequency of the electron 0.1[1/s] 0.05[1/s] 

Momentum of the electron 0.1 [g m/s] 0.05 [g m/s] 

Time to go around the universe 10[s] 20 [s] 

Velocity of the electron 0.1 [m/s] 0.1 [m/s] 

Mass of the electron 1[g] 0.5[g] 

 

I deduce the mass of the electron is reverse proportional to the radius of the universe from the 

above table. 
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9 Appendix 

9.1 Definition of Terms 

We define terms in the following table. 

 

Table 9.1: Normal space, etc. 

TERM DEFINITION 

Normal space Three-dimensional normal space 

Normal space-time Fore-dimensional normal space-time 

Closed path Closed path of the particle generated by pair production and 

destroyed by pair annihilation 

Amplitude shpere Extra space like shpere that describes the amplitude of the wave 

function 

Torus space Direct product space of the phase circle and the amplitude circle 

Wave space-time Direct product space of the normal space-time and amplitude shpere 

 

Table 9.2: Elementary domain, etc. 

TERM DEFINITION 

Elementary domain The minimum domain of the wave space 

Elementary position Position of the wave space 

Elementary path An arrow from any elementary position to any elementary position 

Normal domain The minimum domain of the normal space 

Normal position Position of the normal space 

Normal path An arrow from any normal position to any normal position 

 

Table 9.3: Elementary state, etc. 

TERM DEFINITION 

Elementary state Point of the wave space 

Position certain state State having a certain position (position eigenstate) 

Localized state State that the distribution is a normal distribution 

Elementary event A transition from any elementary state to any elementary state 

Path certain event A transition from any position certain state to any position certain 

state 

Localized event A transition from any localized state to any localized state 

Elementary world Elementary state of the universe 

Position certain 

world 

Position certain state of the universe 

Localized world Localized states of the universe 

Elementary history Elementary event of the universe 

Path certain history Path certain event of the universe 

Localized history Localized events of the universe 
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Table 9.4: Localized displacement, etc. 

TERM DEFINITION 

Localized displacement Localized transition of short-distance 

Localized transition Localized transition 

Localized shift Localized transition of long-distance 

Localized teleportation Localized transition of ultra-long-distance 

 

9.2 Arrangement of Terms 

We arrange terms in the following table. 

 

Table 9.5: Elementary domain, etc. 

CATEGORY ELEMENTARY NORMAL 

Domain Elementary domain Normal domain 

Position Elementary position Normal position 

Path Elementary path Normal path 

 

Table 9.6: Wave space, etc. 

CATEGORY ELEMENTARY CERTAIN  LOCALIZED 

State Elementary state Position certain state Localized state 

Event Elementary event Path certain event Localized event 

World Elementary world Position certain 

world 

Localized world 

History Elementary history Path certain history Localized history 

 

Table 9.7: Hierarchical universe. 

CATEGORY First universe Second universe Third universe 

Normal space-time First normal space-

time 

Second normal 

space-time 

Third normal space-

time 

Particle First particle Second particle Third particle 

Position First position Second position Third position 

Path First path Second path Third path 

Wave function First wave function Second wave 

function 

Third wave 

function 
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