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1. Introduction

Hyperbolic Geometry appeared in the first half of the 19th century as an attempt
to understand Euclid’s axiomatic basis of Geometry. It is also known as a type of
non-Euclidean Geometry, being in many respects similar to Euclidean Geometry.
Hyperbolic Geometry includes similar concepts as distance and angle. Both these
geometries have many results in common but many are different.

There are known many models for Hyperbolic Geometry, such as: Poincaré
disc model, Poincaré half-plane, Klein model, Einstein relativistic velocity model,
etc. The hyperbolic geometry is a non-euclidian geometry. Menelaus of Alexandria
was a Greek mathematician and astronomer, the first to recognize geodesics on a
curved surface as natural analogs of straight lines. Here, in this study, we present
a proof of Menelaus’s theorem in the Poincaré disc model of hyperbolic geometry.
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The well-known Menelaus theorem states that if l is a line not through any vertex
of a triangle ABC such that l meets BC in D, CA in E, and AB in F , then
DB

DC
· EC

EA
· FA

FB
= 1 [1]. This result has a simple statement but it is of great

interest. We just mention here few different proofs given by A. Johnson [2], N.A.
Court [3], C. Coşniţă [4], A. Ungar [5]. F. Smarandache (1983) has generalized
the Theorem of Menelaus for any polygon with n ≥ 4 sides as follows: If a line l
intersects the n-gon A1A2...An sides A1A2, A2A3, ..., and AnA1 respectively in the

points M1,M2, ..., and Mn, then
M1A1

M1A2

· M2A2

M2A3

· ... · MnAn

MnA1

= 1 [6].

We begin with the recall of some basic geometric notions and properties in
the Poincaré disc. Let D denote the unit disc in the complex z-plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ
z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transformation
of the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the
complex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the grupoid
(D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that
obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties.
For all real numbers r, r1, r2 ∈ R and all points a ∈ G:

(G1) 1⊗ a = a

(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a

(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a)
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(G4)
|r| ⊗ a

∥r ⊗ a∥
=

a

∥a∥
(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

(3) Real vector space structure (∥G∥ ,⊕,⊗) for the set ∥G∥ of one-dimensional
”vectors”

∥G∥ = {±∥a∥ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R
and a,b ∈ G,

(G7) ∥r ⊗ a∥ = |r| ⊗ ∥a∥
(G8) ∥a⊕ b∥ ≤ ∥a∥ ⊕ ∥b∥.

Theorem 1 (The law of gyrosines in Möbius gyrovector spaces). Let
ABC be a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with vertices
A,B,C ∈ Vs, sides a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s), a = ⊖B⊕C,
b = ⊖C ⊕A, c = ⊖A⊕B, a = ∥a∥ , b = ∥b∥ , c = ∥c∥ , and with gyroangles α, β,
and γ at the vertices A,B, and C. Then

aγ
sinα

=
bγ

sin β
=

cγ
sin γ

,

where vγ =
v

1− v2

s2

[7, p. 267].

Definition 2 The hyperbolic distance function in D is defined by the equation

d(a, b) = |a⊖ b| =
∣∣∣∣ a− b

1− ab

∣∣∣∣ .
Here, a⊖ b = a⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A.Ungar [5].

2. Main results

In this section, we prove the Menelaus’s theorem in the Poincaré disc model of
hyperbolic geometry.

Theorem 3 (The Menelaus’s Theorem for Hyperbolic Gyrotriangle).
If l is a gyroline not through any vertex of an gyrotriangle ABC such that l meets
BC in D, CA in E, and AB in F, then

(AF )γ
(BF )γ

· (BD)γ
(CD)γ

· (CE)γ
(AE)γ

= 1.
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Proof. In function of the position of the gyroline l intersect internally a side of
ABC triangle and the other two externally (See Figure 1), or the line l intersect
all three sides externally (See Figure 2).

If we consider the first case, the law of gyrosines (See Theorem 1), gives for
the gyrotriangles AEF, BFD, and CDE, respectively

(1)
(AE)γ
(AF )γ

=
sin ÂFE

sin ÂEF
,

(2)
(BF )γ
(BD)γ

=
sin F̂DB

sin D̂FB
,

and

(3)
(CD)γ
(CE)γ

=
sin D̂EC

sin ÊDC
,

where sin ÂFE = sin D̂FB, sin ÊDC = sin F̂DB, and sin ÂEF = sin D̂EC, since

gyroangles ÂEF and D̂EC are suplementary. Hence, by (1), (2) and (3), we have

(4)
(AE)γ
(AF )γ

· (BF )γ
(BD)γ

· (CD)γ
(CE)γ

=
sin ÂFE

sin ÂEF
· sin F̂DB

sin D̂FB
· sin D̂EC

sin ÊDC
= 1,

the conclusion follows. The second case is treated similar to the first.
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Naturally, one may wonder whether the converse of the Menelaus theorem
exists.

Theorem 4 (Converse of Menelaus’s Theorem for Hyperbolic Gyro-
triangle). If D lies on the gyroline BC, E on CA, and F on AB such that

(5)
(AF )γ
(BF )γ

· (BD)γ
(CD)γ

· (CE)γ
(AE)γ

= 1,

then D,E, and F are collinear.

Proof. Relabelling if necessary, we may assume that the gyropoint D lies beyond
B on BC. If E lies between C and A, then the gyroline ED cuts the gyroside
AB, at F ′ say. Applying Menelaus’s theorem to the gyrotriangle ABC and the
gyroline E − F ′ −D, we get

(6)
(AF ′)γ
(BF ′)γ

· (BD)γ
(CD)γ

· (CE)γ
(AE)γ

= 1.

From (5) and (6), we get
(AF )γ
(BF )γ

=
(AF ′)γ
(BF ′)γ

. This equation holds for F = F ′.

Indeed, if we take x := |⊖A⊕ F ′| and c := |⊖A⊕B| , then we get c ⊖ x =
|⊖F ′ ⊕B| . For x ∈ (−1, 1) define

(7) f(x) =
x

1− x2
:

c⊖ x

1− (c⊖ x)2
.

Because c⊖x =
c− x

1− cx
, then f(x) =

x(1− c2)

(c− x)(1− cx)
. Since the following equality

holds

(8) f(x)− f(y) =
c(1− c2)(1− xy)

(c− x)(1− cx)(c− y)(1− cy)
(x− y),

we get f(x) is an injective function and this implies F = F ′, so D,E, F are
collinear.

There are still two possible cases. The first is if we suppose that the gyropoint
F lies on the gyroside AB, then the gyrolines DF cuts the gyrosegment AC in
the gyropoint E ′. The second possibility is that E is not on the gyroside AC, E
lies beyond C. Then DE cuts the gyroline AB in the gyropoint F ′. In each case
a similar application of Menelaus gives the result.
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