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 In this section is presented a new integer number algorithm for linear equation. 

This algorithm is more “rapid” than W. Sierpinski’s presented in [1] in the sense that it 

reaches the general solution after a smaller number of iterations. Its correctness will be 

thoroughly demonstrated. 

 

INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS 

 

 Let’s us consider the equation (1); (the case ai ,b ,  i 1,n  is reduced to the 

case (1) by reducing to the same denominator and eliminating the denominators). Let 

d (a1,...,an) . If d | b  then the equation does not have integer solutions, while if  |d b  

the equation has integer solutions (according to a well-known theorem from the number 

theory).  

 If the equation has solutions and d  we divide the equation byd . Then d 1  

(we do not make any restriction if we consider the maximal co-divisor positive). 

 Also, 

(a) If all ai  the equation is trivial; it has the general integer solution 

xi ki ,  i 1,n , when b 0  (the only case when the general solution is 

n -times undetermined) and does not have solution whenb 0 . 

(b) If i,  1 i n  such that ai 1 then the general integer solution is: 

xi ai a jk j b
j 1
j i

n

 and  ,  1,..., \s sx k s n i  

The proof of this assertion was given in [4]. All these cases are trivial, therefore 

we will leave them aside. The following algorithm can be written: 

  

 Input  

 A linear equation:  

(2)  ai
i 1

n

xi b,  ai ,b ,   ai 1,  i 1,n ,  

with not all ai 0  and (a1,...,an ) 1. 
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 Output 

 The general solution of the equation  

 

 Method 

 1. h : 1,  p : 1  

 2. Calculate 
1 ,
min ,  (mod ),  i j j

i j n
r r a a r a  and determine r  and the pair 

(i, j)  for which this minimum can be obtained (when there are more possibilities we have 

to choose one of them). 

 3. If r  go to step 4. 

     If r 1 , then  

 

   1
,

   1
,

:

:

n

i j h s s

s
s i j

n
i i

j i h s s

sj j
s i j

x r a t a x b

a r r a
x r a t a x b

a a

 

 

(A) Substitute the values thus determined of these unknowns in all the 

statements (p),  p 1,2,... (if possible). 

(B) From the last relation (p)  obtained in the algorithm substitute in all 

relations: p 1 , p 2 ,...,(1)  

(C) Every statement, starting in order from p 1  should be applied the 

same procedure as in (B): then p 2 ,...,(3)  respectively. 

(D) Write the values of the unknowns xi ,  i 1,n , from the initial 

equation (writing the corresponding integer number parameters from 

the right term of these unknowns with k1,...,kn 1
), STOP. 

4. Write the statement (p) : x j th
ai r

a j
xi  

5. Assign  x j : th   h : h 1 

   ai : r  p : p 1  

The other coefficients and variables remain unchanged go back to step 2. 

 

 The Correctness of the Algorithm 

 

 Let us consider linear equation (2). Under these conditions, the following 

properties exist: 
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 Lemma 1. The set  ,  (mod ),  0<i j jM r r a a r a  has a minimum. 

 Proof:  

 Obviously M *  and M  is finite because the equation has a finite number of 

coefficients: n , and considering all the possible combinations of these, by twos, there is 

the maximum ARn
2  (arranged with repetition) = n2  elements. 

 Let us show, by reduction ad absurdum, that  M Ø . 

  M Ø   ai 0(modaj )  i,  j 1,n . Hence aj 0(modai )  i,  j 1,n . Or this 

is possible only when ai a j ,  i,  j 1,n , which is equivalent to 

(a1,..,an ) ai ,  i 1,n . But (a1,..,an) 1 are a restriction from the assumption. It 

follows that ai 1,n,  i 1,n  a fact which contradicts the other restrictions of the 

assumption. 

 M 0  and finite, it follows that M has a minimum. 

 

 Lemma 2. If r min
1 i, j n

M , then r ai ,  i 1,n . 

 Proof: 

 We assume conversely, that i0,  1 i0 n  such that r ai0 . 

Then 
01

min  1j j
j n

r a a ,  1 j0 n . Let ap0
,  1 p0 n , such that ap0

a j0  and 

ap0
 is not divided by a j

0 . 

There is a coefficient in the equation, a j0  which is the minimum and the coefficients 

are not equal among themselves (conversely, it would mean that (a1,..,an) a1 1 

which is against the hypothesis and, again, of the coefficients whose absolute value is 

greater that aij0  not all can be divided by a j0 (conversely, it would similarly result in 

(a1,..,an ) a j0 1 . 

 We write ap0
/ a j0 q0  (integer portion), and r ap0

q0a j0 . We have 

ap0
r0 (moda j0 )  and 0 r0 a j0 ai0 r . Thus, we have found an r0  which r0 r  

contradicts the definition of minimum given to r . 

Thus r ai , i 1,n . 

 

 Lemma 3. If r minM 1 for the pair of indices (i, j) , then: 
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   1
,

   1
,

,  1,..., \ ,

n

i j h s s

s
s i j

n
i i

j i h s s

sj j
s i j

s s

x r a t a k b

a r r a
x r a t a k b

a a

x k s n i jZ

 

is the general integer solution of equation (2). 

 Proof: 

 Let xe xe
0,  e 1,n , be a particular integer solution of  equation (2). Then 

ks xs
0 ,  s 1,...,n \ i, j  and th x j

0 ai r

a j
xi

0  (because ai r Ma j ) such 

that:   

0 0 0

   1
,

n
i

i j j i s s i

sj
s i j

a r
x r a x x a x b x

a
 

 
0 0 0 0

   1
,

n
i i i

j j j i s s i

sj j j
s i j

a r a r r a
x r a x x a x b x

a a a
 

and 
0 ,  1,..., \ ,s s sx k x s n i j . 

 

 Lemma 4. Let r  and i, j  be the pair of indices for which this minimum can 

be obtained. Again, let’s consider the system of linear equations: 

 

(3) 
   1

,

n

j h i s s

s
s i j

i
h j i

j

a t rx a x b

a r
t x x

a

 

 

Then xe xe
0,  e 1,n  is a particular integer solution for (2) if and only if xe xe

0
, 

1,..., \e n j  and th th
0 x j

0 ai r

a j
xi  is the particular integer solution of (3). 

Proof: 

xe xe
0,  e 1,n  is a particular solution for (2) if and only if  
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 0 0 0 0 0

1    1
,

n n
i

e e s s j j i i

e s j
s i j

a r
a x b a x a x x rx b

a
 

0 0 0

   1
,

n

j h i s s

s
s i j

a t rx a x b  and th
0 x j

0 ai r

a j
xi

0  xe xe
0 , 

1,..., \e n j  and th th
0  is a particular integer solution for (3). 

 

 Lemma 5.  The previous algorithm is finite. 

 Proof: 

 When r 1  the algorithm stops at step 3. We will discuss the case when 

r 1 . According to the definition of r,  r * . We will show that the row of 

r s  successively obtained by following the algorithm several times is 

decreasing with cycle, and each cycle is not equal to the previous, by 1. Let r1  be 

the first obtained by following the algorithm one time. r1 1  then go to step 4, 

and then step 5. According to lemma 2, r1 ai ,  i 1,n .  

Now we shall follow the algorithm a second time, but this time for an 

equation in which r1  (according to step 5) is substituted by ai . Again, according 

to lemma 2, the new r  written r2  will have the propriety: r2 r1 . We will get 

to r 1  because r 1  and r , and if r 1 , following the algorithm once 

again we get r r1  and so on. Hence, the algorithm has a finite number of 

repetitions. 

 

 Theorem of Correctness. The previous algorithm calculates the general 

solution of the linear equation correctly (2). 

 Proof: 

 According to lemma 5 the algorithm is finite. From lemma 1 it follows 

that the set M has a minimum, hence step 2 of the algorithm has meaning. When  

r 1  it was shown in lemma 3 that step 3 of the algorithm calculates the general 

integer solution of the respective equation correctly the equation that appears at 

step 3). In lemma 4 it is shown that if r 1 the substitutions steps 4 and 5 

introduced in the initial equation, the general integer solution remains unchanged. 

That is, we pass from the initial equation to a linear system having the same 

general solution as the initial equation. The variable h  is a counter of the newly 

introduced variables, which are used to successively decompose the system in 

systems of two linear equations. The variable p is a counter of the substitutions of 

variables (the relations, at a given moment between certain variables). 

 When the initial equation was decomposed to r 1 , we had to proceed in 

the reverse way, i.e. to compose its general integer solution. This reverse way is 

directed by the sub-steps 3(A), 3(B) and 3(C). The sub-step 3(D) has only an 

aesthetic role, i.e., to have the general solution under the form: xi fi (k1 ,...,kn 1) , 
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i 1,n , fi  being linear functions with integer number of coefficients. This “if 

possible” shows that substitutions are not always possible. But when they are we 

must make all possible substitutions. 

 

 Note 1. The previous algorithm can be easily introduced into a computer 

program. 

 

 Note 2. The previous algorithm is more “rapid” than that of W. 

Sierpinski’s [1], i.e., the general integer solution is reached after a smaller number 

of iterations (or, at least, the same) for any linear equation (2).  

In the first place, both methods aim at obtaining the coefficient 1  for at least 

one unknown variable. While Sierpinski started only by chance, decomposing the 

greatest coefficient in the module (writing it under the form of a sum between a 

multiple of the following smaller coefficient (in the module) and the rest), in our 

algorithm this decomposition is not accidental but always seeks the smallest r  

and also choose the coefficients ai  and a j  for which this minimum is achieved. 

That is, we test from the beginning the shortest way to the general integer 

solution. Sierpinski does not attempt to find the shortest way; he knows that his 

method will take him to the general integer solution of the equation and is not 

interested in how long it will take. However, when an algorithm is introduced into 

a computer program it is preferable that the process time should be as short as 

possible. 

 

Example 1. 

Let us solve in 3  the equation 17x 7y 10z 12 . 

We apply the former algorithm. 

1. h 1, p 1 

2. r 3,  i 3,  j 2  

3. 3 1  go on to step 4. 

4. (1) y t1
10 3

7
z t1 z  

5. Assign 

 
1

3

:        : 2

: 3     : 2

y t h

a p
 

with the other coefficients and variables remaining unchanged, go back to  

step 2. 

2. 1,  1,  3r i j  

3. 1 1  

 

x 1( 3t2 ( 7t1) 12) 3t2 7t1 12

z 1 17t2 ( 7t1)
17 ( 1)

3

1 17

3
( 12) 17t2 42t1 72
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(A) We substitute the values of x  and z  thus determined into the only 

statement (p)  we have: 

(1) 1 2 117 43 72y t z t t  

 

(B) The substitution is not possible. 

(C) The substitution is not possible. 

(D) The general integer solution of the equation is: 

 

x 3k1 7k2 12

y 17k1 43k2 72

z 17k1 42k2 72;       k1,k2
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