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Abstract

Since,  at RHIC and LHC heavy-ion colliders the  classical color field play an important 
role to study production of quark-gluon plasma, we propose a theory to describe strong-
field inside the nucleons based on Dual Ginzburg-Landau-Pitaevski (DGL) theory .

We provide a detailed analysis of physically important quantities as regarding the 
nucleons substructure as: the uniform chromoelectric field (vortex)  strength inside a 
nucleon, the mass of monopole viewed as  gluons which are the propagators of the QCD 
and carry colour and anti-colour, with an hedgehog-like configuration, or as a results of 
interaction of spin-orbit of the monopole current , or of Rashba field  interaction, all 
giving the same result; the quantification of the interaction energies of one vortex ( ±W ) 
and  of a giant vortex (GV ), ),( HiggsZ  as to be encapsulated by the  Abrikosov 
triangular lattice generated by  the coalescence of the flux lines. Therefore, it is proved 
for the first time,  that in  the nucleon exist  sufficiently high electromagnetic fields  that 
permit to continue extract (with a rate of  1≅  pair) from vacuum of pairs −+ − ee  (virtual) 
of high energy electrons,   of ±W ,  Higgs bosons, quarks,    by a Schwinger effect, etc, to 
transform its into real one of very short time life, just like in a veritable laboratory. Thus, 
it  was discovered for the first time that ... vev  is in fact the Schwinger critical field crE  

for the pair   
±W creation from vacuum.  These pairs decay or annihilate into electrons, 

which passes  the monopole condensate barrier as beta-electrons by quantum tunneling 

due of the phase slip with ϕπ −2  and of a 0Φ  energy release, the entire model is proved 
for a free neutron decay life-time.
Equally, the same   Schwinger pairs-production rates are enhanced by a thermal 
Boltzmann factor  in place of  quantum tunneling, when this  thermalization due  of  the 
incidence of an high thermal spike of a photon with nucleons destroys the 
superconductivity. 
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This effect is proved in the  case of Al26
, through its β-decay to 1.809 MeV γ-ray, when 

at high temperatures ( GKT 42.09 =  ) equilibrium is reached between Algs26
 and Alm26

 
which is relevant to some high temperature astrophysical events such as novae.
In the applications, as based on these data, there are calculated: the Higgs boson energy 
release due of two gluons fusion during the pp  collision at LHC,  gluon pair production 
from space-time dependent chromofield due of the collision of pp  and of heavy nuclei; 
the −+ − ee  pairs creation due of  the thermally-induced vacuum instability as induced by 
a laser pulse  in a crossed field  of a single plane wave generated by a  single high energy 
photon. 
A proposal to use a laser pulse to reduce the half life of  beta decay nuclides is discussed.

Keywords-beta decay;  photonuclear reactions; high energy lasers; W,Z,H bosons;
 G-L theory; Schwinger effect pairs creation;  ELI; gluons; monopoles condensate. 
PACSS
11.15.Ex;12.38.Mh;13.38.Be

1.Introduction

The  nuclear power in order to be considered sustainable needs firstly,  the elimination of 
radioactive waste,  but not by  storage in definitive repositories, as is now in the intention 
of the world. 
Secondary, also,  it needs to eliminate nuclear insecurity by  making nuclear power plants 
that can not physically melt down following sever accidents, by design  [1], and not 
probabilistically as is now considered.
The Photonuclear reactions in range of Giant Dipole Resonance (GDR)  are proven to be 
of potential interest for nuclear transmutation[2]. The dominant mechanism for nuclear 
photoabsorption at intermediate energies (>20MeV) is is based on  the quasideuteron 
model . Accelerated radioactive decay has been proposed by bombarding spent fuel with 
electromagnetic (photon) rays.
Due to the interaction of physics and astrophysics we are witnessing in these years a 
splendid synthesis of theoretical, experimental and observational results originating from 
three fundamental physical processes. They were originally proposed by Dirac, by Breit 
and Wheeler and by Sauter, Heisenberg, Euler and Schwinger. For almost seventy years 
they have all three been followed by a continued effort of experimental verification on 
Earth-based  experiments.  The  Dirac  process, γ2→−ee ,  has  been  by  far  the  most 
successful. It has obtained extremely accurate experimental verification and has  led as 
well  to  an  enormous  number  of  new  physics  in  possibly  one  of  the  most  fruitful 
experimental avenues by introduction of storage rings in Frascati and followed by the 
largest accelerators worldwide: DESY, SLAC etc.
The Breit–Wheeler process, −→ eeγ2 , although conceptually simple, being the inverse 
process  of  the  Dirac  one,  has  been  by  far  one  of  the  most  difficult  to  be  verified 
experimentally. Only recently, through the technology based on free electron X-ray laser 
and its numerous applications in Earth-based experiments, some  first indications of its 
possible verification have been reached.
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The vacuum polarization process in strong electromagnetic  field, pioneered  by Sauter, 
Heisenberg,  Euler  and  Schwinger,  introduced  the  concept  of  critical  electric  field 

ecmE ec
32= ,  em -electron mass. It has been searched without success for more than 

forty  years  by  heavy-ion  collisions  in  many  of  the  leading  particle  accelerators 
worldwide.
The QCD-monopole has an intrinsic structure relating to a large amount of off-diagonal 
gluons around its center, similar to the ’t Hooft-Polyakov monopole [3]. At a large scale 
where this structure becomes invisible, QCD-monopoles can be regarded as point-like 
Dirac monopoles.
In the Maximally Abelian  (MA) gauge, the off-diagonal gluon contribution can be 
neglected and monopole condensation occurs at the infrared scale of QCD. Therefore, the 
QCD vacuum in the MA gauge can be regarded as the dual superconductor described by 
the DGL theory, and quark confinement can be understood with the dual Meissner effect.
Therefore, in the first part we proceed to a review of our  analytical model based on the 
Dual Ginzburg-Landau theory,  already presented in [4], and where we  insist more on 
the equivalence of our model with that described in the works from RCNP-Japan [5-7], 
and  where, also,  is proved  the connection between QCD and the dual superconductor 
scenario. In the next parts, as based on  these data obtained,  are calculated: the Higgs 
boson energy release due of two gluons fusion during the pp  collision at LHC, the gluon 
pairs and quarks pairs production from space-time dependent chromofield, in high energy 
collisions where jets are the signatures of quark and gluon production. 
It will be demonstrated  based on  the results of DGLP theory, respectively: the  value of 
the maximum  chromoelectrical field of the Giant Vortex )(GV  of 

)1018.2 28
0 CNE ×= ,  and of  magnetic field  of 2171028.1 AmJB ×=  due of  the 

monopole condensate current inside the nucleon or of spin-orbit interaction. These values 
are shown  as being near  of Schwinger critical electric field and of parallel magnetic 
field   for  heavy −+ − ee pairs creation by Schwinger effect, all that making possible of 
one pair per nucleon to be obtained. This pair  supplies the charges balance (now, not 
very clear) making possible the quarks conversion ( du → ). 
Thus,  a new understanding of beta decay process it will be proposed,  when, also,   a pair 
of  boson +− − WW  is simultaneously created due of the Schwinger  effect in the  giant 
vortex )(GV  where  the electrical field is CNE 291058.6 ×≅ ,  and near equally with 

GeVCNEvevE W
cr 247105.3... 28

0 ↔×==≥
±

.
Also, it is  given for the first time the demonstration of the  discovery, that ... vev  is in fact 
the Schwinger critical field crE  for a pair of 

±W creation from vacuum.
This pair decays  in beta-electrons during quantum tunneling   due of the phase slip with 

ϕπ −2  and of a 0Φ  energy release,  and this ad-hoc bias current  produces a 
spontaneous  suppression of the superconducting order parameter,  all the model is 
proved for a free neutron decay.
Also, it is shown that, equally, the same   Schwinger pair-production rate is enhanced by 
a thermal  Boltzmann factor,  when the  quantum tunneling  is substituted by a 
thermalization which destroy the superconductivity due  of  the incidence of an high 
thermal spike of a photon with valence nucleons.
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For that, is given  a numerical application, when  is considered   the case of Al26 , through 
its β-decay to 1.809 MeV γ-ray, when  at high temperatures ( GKT 42.09 =  ) equilibrium 

is reached between Algs26
 and Alm26

 which is relevant to some high temperature 
astrophysical events such as novae, this being proved by our model.

2. The DGL model for  nucleon substructure (review)

About 20 years ago, Y. Nambu  proposed an interesting picture for the
color confinement based on the analogy between the superconductor and the QCD
vacuum. In the superconductor, magnetic field is excluded due to the Meissner
effect, which is caused by Cooper-pair condensation. As the result, the magnetic
flux is squeezed like the Abrikosov vortex in the type II superconductor [5]. On the
other hand, the color-electric  flux is excluded in the QCD vacuum, and therefore the 
squeezed color-flux tube is  formed between color  sources.  In  this  analogy,  the color 
confinement  is  brought  by  the  dual  Meissner  effect  originated  from  color-magnetic 
monopole  condensation,  which  corresponds  to  Cooper-pair  condensation  in  the 
superconductivity. As for the appearance of color-magnetic monopoles in QCD, ’t Hooft 
[3] proposed an interesting idea of the abelian gauge fixing,  which is defined by the 
diagonalization of a suitable gauge-dependent variable.
 In this gauge, QCD is reduced into an abelian gauge theory with magnetic monopoles, 
which will be called as QCD-monopoles in order to distinguish from GUT-monopoles. 
The QCD-monopoles appear from the hedgehog-like configuration corresponding to the 
nontrivial homotopy class on the nonabelian manifold. Then, the abelian gauge fixing is 
expected to provide the basis of the analogy between the superconductor and the QCD 
vacuum. We compare the dual Higgs mechanism in the QCD vacuum with the ordinary 
Higgs mechanism in the superconductor.. In the superconductor, there are two kinds of 
degrees of freedom, the gauge field (photon) and the matter field corresponding to the 
electron  and  the  metallic  lattice,  whose  interaction  provides  the  Higgs  mechanism 
through Cooper-pair condensation. On the other
hand, there is only the gauge field in the pure gauge QCD, and therefore it seems difficult  
to find the analogous point between these two systems. However, in the abelian gauge, 
the  diagonal  part  and the  off-diagonal  part  of  gluons  play  different  roles.  While  the 
diagonal gluon behaves as the gauge field, the off-diagonal gluon behaves as the charged 
matter and provides QCD-monopoles. Condensation of QCD-monopoles leads to mass 
generation of the dual gauge field through the dual Higgs mechanism [5-7], which is the 
dual  version  of  the  Higgs  mechanism.  Thus,  QCD  can  be  regarded  as  the  dual 
superconductor in the abelian gauge.
From,  the  abelian  monopoles  arise  from non-abelian  gauge  fields  as  a  result  of  the 
abelian projection suggested by ‘t Hooft. The abelian projection is a partial gauge fixing 
under which the abelian degrees of freedom remain unfixed. For example, the abelian 
projection of a theory with SU(N) gauge symmetry leads to a theory with [U(1)]N−1 
gauge symmetry.
Since the original SU(N) gauge symmetry group is compact, the remaining abelian gauge
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group is  also compact.  But the abelian gauge theories with compact  gauge symmetry 
group possess abelian monopoles. Therefore SU(N) gauge theory in the abelian gauge 
has abelian monopoles.

In our model  is  adopted a basic  dual form of Ginzburg-Landau (G-L) theory,   [4], 
which generalizes the London theory to allow the magnitude of the condensate density to 
vary in space . As before, the superconducting  order parameter is a complex function 

)(xψ , where 2)(xψ   is the condensate density sn . Also is defined  the wave function 

))(exp()( xinx s
 ϕψ = , or QCD monopole field  )3,2,1( =αχ α , [5-7], and where  sn  is 

the London (bulk)  condensate  density, and  ϕ are real  functions  describing the spatial 
variation of the condensate.
 The  characteristic  scale  over  which  the  condensate  density  varies  is  ξ ,  the  G-L 
coherence length or the vortex core dimension . The  x  denote the radial  distance of 
points from the z -axis, the superconductor occupying the half space 0x  . Outside of 
the  superconductor  in  the  half  space  0x  ,  one  has  0HHEB === ,  where,   “the 
external” vector  0H  is parallel to the surface and correspond to E  the external color-
electric field inside the hadron flux tube assumed as )( 8833 TETEE +=  which is formed 
between  valence  quarks  for   the  qq  pair  creation  rate  [5-7],.  The  Ψ theory  of 
superconductivity  [8]  is  an  application  of  the  Landau  theory  of  phase  transitions  to 
superconductivity.  In this case, some scalar complex  ψ  function fulfils the role of the 
order parameter. 
First  of all,  we write  the magnetic  induction the  AcurlAB ×∇== ,  where  A  is  the 
electromagnetic field potential , or the diagonal gluon ),( 83

µµ
µ AAA = and the dual gauge 

field ),( 83
µµ

µ BBB ≡ , as in [5,6,7], see also the appendix A. To obtain the full system of 
equations we must incorporate the Maxwell equation 

j
c

j
c

B CGS
0

2

14
ε

π ==×∇                                                           (1)                       

and the divergence
0=⋅∇ B                                                                        (2)

The extended  Maxwell’s equations (in cgs ) which allow for the possibility of “magnetic 
charges”  analog  with  electric  charges  (  monopoles  condensate),  the  Gauss’  law  for 
magnetism is mdivB π ρ40 =≠ ,and  the Faraday’s law of induction contains a new term 

c
π4

 or,  in  SI ,  
0

200
1,
ε

µµ
c

wherejm =→ ;  mjct
B

c
E π41 +

∂
∂=×∇− ,  also, the Ampere 

law is identical to the one without monopoles: ejct
E

c
B π41 +

∂
∂=×∇

The Ampere's law, expressed as the integral over any arbitrary loop, where  sJ  is the 
current enclosed by this loop, is:

∫ =⋅ sJdlB 0µ                                                                        (3)
A charged particle moving in a −B field experiences a sideways force that is proportional 
to the strength of the magnetic field , the component of velocity that is perpendicular to 
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the magnetic field and the charge of the particle. This force is known as Lorentz’ force 
and is given by (in ).( mA convention) :

))(()( 2cEvBqvBEqF mL −++=                                        (4)

, where, 
e

m q
c

q
2

02 π ε
= -the magnetic charge, B  in ][Teslas , LF in ][N )                          

In absence of a magnetic field. one gets for free energy of the superconductor, J.Pitaevski 
[8]:

dVba
m

ff n ∫ 





++∇+= 422

2

24
ψψψ

                            (5)

Here, nf  is the free energy at 0=ψ , i.e. nf  is the free energy of the normal state.
 
Let us consider the behavior in presence of a magnetic field. The density of the magnetic 
field is π82B  must be added to the integrand (5). But this is insufficient in the gradient 
term in (5) is not invariant with respect of gauge transformations:

γ∇+→ AA                                                                            (6)
And for phase transformation

ce γϕϕ 2+→                                                                      (7)
The gradient of phase ϕ defines the velocity of the superconductive pairs  (in our case of 
the monopoles condensate!)

ϕ∇=
m

v s 2


                                                                            (8)

Equation  (8)  is  not  invariant  under  a  such  transformation.  To  restore  the  required 
invariance , one must include a further term containing the vector potential 






 −∇= Ae

m
vs



 2
2

ϕ                                                              (9)

Finally, one gets for the  superconducting current density 






 −∇== Aen

m
eevnj ssss



 2
2

ϕ   or, 

ϕ
ε

λϕ ∇−=∇−=
e

j
ce

j
ne

mA ss
s 222 0

2

2

2


,  eeg

2
21 α==          (10)

Or from [16, see appendix A, eq. (A.7), it  is  f
g

kf
g

k
g

B
L

µµµ
µ

µ λφ
∂−=∂−= − ~

1
2

1
ˆ
1

ˆ2
1

222 , 

that  resulting  from  the  following  correspondence:  AB →µ ;  22 vns →→ φ , 
1ˆ −== Lvgm λ ; ϕµ ∇→∂ f

eg →ˆ . 
1ˆ −==± LW vgm λ ;  

ϕµ ∇→∂ f

π α4ˆ 2 =g ; Wge θ222 sinˆ= . 
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For ( ) 21222 365.5)(4247 mecvGeVv L −≅=→= −
π αλ   , or ][183.2 meL −≅λ , which is 

the Compton length for  
±W  bosons,  see the section 4.2,  below. Therefore,  a  perfect 

equivalence exists between both models.
The magnetic induction is 

AB ×∇=                                                  (11)
Applying the curl operator to both sides of (10) and using (11) , we obtain the London 
equation 

B
c

B
c

c
mc

ne
j s

s 2

2
0

0

2
0

2

λ
ε

ε
ε

==×∇                                                   (12)

Therefore,  to restore the invariance in (5), one substitute for 2ψ∇  the combination 

[ ] 2)2( Aei −∇ , which is obviously gauge invariant. The final expression for the free 
energy then takes the form

∫ 











+++




 −∇+= dVBbaAei

m
ff n π

ψψψ
82

2
2

2
42

22




   (13)

Here,  the magnetic induction must be expressed as in (11). One can obtain the basic 
equations of Ginzburg-Landau theory by varying this functional with respect to  A  and 

∗ψ . Carrying first variation with respect to A , we find after a simple calculation:

( ) 0
4

4
2)(

2
2

2

=×+

+







++∇−∇=

∫

∫ ∗∗

π
δ

δ
π

ψψψϕψδ

dVBAdiv

AdVcurlBA
m
e

m
iecf 

 (14)

The  second  integral  can  be  transformed  into  an  integral  over  remote  surface  and 
disappears. To minimize the free  energy, the expression in the brackets must be equal to 
zero.  This results in the Maxwell equation 

)_(14

0
2 SIinj

c
j

c
curlB ss ε

π ==                                           (14.1)

,or

ss j
c

j
c

A
0

2

1.4
ε

π ==×∇×∇                                                   (15)

, provided that the current density is given by 

( ) A
m
e

m
iejs .

.
2

2
2

2*
** ψψψψψ +∇−∇=                                   (15.1)

In  appendix A, eq. (23), the equivalent construction being:
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χχχχχχ µµµµµ ν
ν ∗∗∗∗∗ +∂−∂−=≡∂ BggikF 2ˆ2)(ˆ                      (23)

According  to  the  definition  of  sn we  can  substitute  )exp( ϕψ ins= .  Then  (15.1) 
becomes 

                                                    (16)

Equation  (16)  coincides  with  (10).  This  justifies  our  identification  of  2ψ  with  sn

.Variation of (13) with respect ∗ψ  gives, after simple integration by parts, 

∫

∫

=⋅




 −∇+

+











++





 −∇−=

∗

∗

02
4

2
4

2

2
22

dSAei
m

dVbaAei
m

f

δ ψψϕ

δ ψψψψψδ









         (17)

The second integral is over the surface of the sample. The volume integral vanishes when 

02
4

2
22

=++




 −∇− ψψψψ baAei

m 

                               (18)

Equations (15) and (18) form the complete system of the Ginzburg-Landau(G-L) theory. 

In  equation  (16),  to  emphasize: ][1617.1
.
..

2/1

2

2
0 me

en
cm

s

−=





=

ε
λ , I  did  a  lot  of 

multiplications ,  and  I  used  the   quantized  flux:  
e
π=Φ 0 ,  and  sn=Ψ 2 ; 

345.1*_3 meVmonopolesns −= ,  ][4545.134 33 merV −== π ,  ][7.0 fmr =  
]..[128.8 212

0
−−−= mNCeε . 

Since,   the  magnetic  charge  of  monopole  being  [17] 

eee
e

c
e
cg d 5.68

2
1374

2
4 2

0
0 ====

 π ε
π ε , and assuming that the classical electron radius 

be equal  to  “the classical  monopole  radius” from which one has  the monopole  mass 
eedM memgm 470022 == ,  the  value  of  λ  remains  unmodified.  In  appendix  B  is 

presented a fully calculation modality for monopole mass. 
Thus, we obtain

A
m

ne
m
ne

j ss
s

22
2
.

−∇= ϕ
                                                        (19)
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




 −∇Ψ= Ae

m
ejs



 2
2

2 ϕ

Ac
mc

nec
mc

en
c
e

e
cj ss

s
2

02
0

2

0
2

2
0

2
2

ε
ε

ϕε
ε

−∇= 



,or

Acc
e
cjs

2
020

2
2

21
2

ε
λ

ϕε
λπ

π −∇= 
             

,or

Accjs
2

020
2

20
21

2
1 ε

λ
ϕε

λπ
−∇Φ=                                            (20)  

We can assume that the induction vector B  is directed along  the z -axis. Then the vector 
potential A  can be chosen along the y -axis and 

dx
dAB =                                                                                     (21)

We must solve the G-L equations (15) and (18) for this one-dimensional problem subject 
to the ns −  boundary conditions:

cHBx →→− ∞→ ,0,ψ ,                                                       (22)
0,)/(, 21 →→∞→ Bbax ψ

 The quantity 
2ψ



 −∇



ei  is gauge invariant, J.Pitaevski [8],  when ϕ∇+→ AA .

If we transforming the equation dimensionless by:

λ
xx =  , λcH

AA = , 
cH

BAB =×∇=                                      (23)

Substituting these variables into  G-L equations (18) and (15).  The G-L equations  for 
our one-dimensionally problem take the form (here are omitted the hats):

01
2
1 322 =







 +




 −−′′ ψψκψ A                                              (24)

, and
03 =−′′ ψAA                                                                          (25)

The boundary conditions (22) are:
1,0 =′== AEψ  for − ∞→x

0,1 =′= Aψ  for ∞→x  
Note that the boundary condition 0=A
Equations (24) and (25) give

constntAA =−−−′+′ 42222
2 )2(2 ψψψ

κ
                            (26)

This expression is an “energy”, and as follows from boundary conditions that this energy 
must equal unity.

1)2(2 42222
2 =−−−′+′ ψψψ

κ
AA                                        (27)

For  1ξλκ =  when  ξλ   the  electrical  field  penetrates  only  slightly  into 
superconducting phase, and the penetration is of order κ1 , the wave function is small 
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in this region and gives only  a small contribution. Let us consider the distance 
κ
1

x  

and 122 Aκ . Then one can neglect the right-hand  side (r.h.s) of (24) and the solution 
matched to (29) bellow is 2xκψ = . Substituting this in (25), we find 222 xA κ=′′ .

The main contribution arises from the region where ψ  changes rapidly, which is of the 

order of 
κ
1

.

There is not electric  field in this  region and one can put  0=A  in (27). Solving this 
equation for ψ ′ , we have

)1(
2

2ψκψ −=′                                                                      (28)

This equation have a simple solution

2tanh( xκψ = )                                                                     (29)
The superconductors of second kind are those with 21κ , and ξλ  .
We now consider the phase transition in  superconductors of the second kind. 
For this we can omit the non-linear )( 2ψψ  term  in (18), we have

02
4

2
22

=++




 −∇− ψψψψ baAei

m 



ψψ aAei
m

=




 −−

2

1
2

4
1

                                                      (30)

 This equation coincides with the Schrodinger equation for a particle of mass  m2  and 
charge  e2  (  in the case of dual, the factor  2  for the charge,  which is specific to the 
“pairs”, it is actually  1)  in a magnetic  field  0H (in our case the chromo-electrical flux

)0(E ). The quantity  a  plays the role of energy ( ψE ) of that equation. The minimum 
energy for a such particle in a uniform electro-magnetic field is 

][.
8
2

2
1

2
1

2
0

)0( J
smKgCs

KgmCsJ
mc
eH

B ⇒







∗

∗== ωε  , 0H -an “external” electro-magnetic 

field of a dipole created by  the pair uu (the chromoelectrical colors field)





===

C
Ne

r
deEH 2433.8

4 3
0

00 π ε  (30.1)

,where ][05.0 fmr ≅ -is the electrical flux tube radius, ][48.0 fmd = -the distance between 
the two quarks charges,  ][31.9 Kgemm e −≅= ,  usually  ][ mAH ,  but here is  used as 





= 20 Am

JHB µ

10



Hence, equation (30) has a solution only if mceHa 82 0∗  , when following power-
law conformal map is applied for complex number of the  r.h.s of (30), or equivalently if 
the electro-magnetic field is less than an upper critical field, see figures.1a;1b. 





=

=
Φ

=≤≤

C
Ne

e
c

H
e

amc
H c

2433.8
2

2
4

2

2
0

20

ξπ
π

π ξ



               (31)

, and in terms of

 



=

⋅
== 2222 167.2

2 Am
Je

ce
cHB cc ξπ

π 

The particle energy is 

,  with   ξλ  ; 

][1114.0
05.1
117.0 fm===

κ
λξ , or 05.1121 =κ (of type II-superconductor). 

One of  the  characteristic  lengths  for  the  description  of  superconductors  is  called  the 
coherence length. It is related to the Fermi velocity for the material and the energy gap (

cBTk ) associated with the condensation to the superconducting state. It has to do with the 
fact that the superconducting electron density cannot change quickly-there is a minimum 
length over which a given change can be made, lest it destroy the superconducting state. 
For example, a transition from the superconducting state to a normal state will have a 
transition layer of finite thickness which is related to the coherence length.
However, superfluids possess some properties that do not appear in ordinary matter. For 
instance,  they  can  flow  at  low  velocities  without  dissipating  any  energy—i.e.  zero 
viscosity.  At  higher  velocities,  energy  is  dissipated  by  the  formation  of  quantized 
vortices, which act as "holes" in the medium where superfluidity breaks down.

More exactly, this quantity is called the correlation or healing length [8] , and is defined 

as 0

21

0)( ξξξ 





−

≅
TT

T
T

c

c  

, where       gF Ea υξ =0                                                     (31.1)
 is  for  0→T  ,  π2=a from  [20],  gE -gap  energy,   Bk Boltzmann  constant;  at 
confinement  ][122][175 KeMeVTc →= ,  and  the  Fermi  velocity  of  electrons 
(monopoles)  is 

e

Fe
F m

Em
4700
4700*2

=υ                                                              (31.2)

,  where  as   the  Fermi  energy we have  for  monopoles  condensate  viewed as   boson 

condensate FBc
e

s
bosonCond EkT

m
n

E 7.0
4700

31.3
322

=≅=


11

][392][2528.6][0828.6
82

1
2

2

)0( GeVKgeJe
m

⇒−=−==
ξ

ε 



, where ( ) 322
2

3
4700*2 s

e
F n

m
E π=       (31.3)

, numerically, we have: 
 ][55][1232.9 MeVJeEF →−=
,where 

345.1*_3 meVmonopolesns −= , 234 3 == rV π , ][48.0 fmr =  
]..[128.8 212

0 mNCe −−=ε . 
3][5.1 fmV = , and the velocity of monopole is

 ,and  ][1602.10 me −=ξ  at 0→T      (31.4)

The best  choice  for coherence  length [8]   is  to  consider λξ ≈0   ,  when  cF <υ ,  but 
strictly ξλ ≥ , as 112.0111.0 ≤≤ ξ               
Note that, if we use only the mass of electrons (as in the case of superconductors), the 
velocity obtained is greater than the speed of light, so this  strengthens the use monopole 
condensate.

In the following we will consider the structure of the mixed state. The main problem is to  
understand  how the electric field penetrate in the bulk of the superconductor.  Let us 
again consider a superconducting cylinder in the electric field. It is natural to expect that 
the normal regions , with their accompanying electric field, are cylindrical tubes parallel 
to the field. The electrical flux inside such tube  must be integral multiple n  of the flux 

quantum  CJsTme
e

usuallyec →−=→=Φ ][1507.2 2
0




ππ  

(32)

The electrical field is concentrated inside the tube. At large distances from the tube it is 
shielded by annular superconducting flowing around the tube. This current is analog of 
the superfluid velocity field surrounding the vortex lines in the superfluid liquid. We can 
then picture the mixed state as an array of quantized vortex lines. Such vortex lines were 
predicted  by  A.A.  Abrikosov  in  1957.  Their  existence  is  crucial  for  explaining  the 
proprieties of  type II superconductors (dual in our case).  
The presence of a vortex line in the center of the tube increases the free energy of the 
superconducting media. The G-L equations are solved analytically only for ξλ   (near 

cT this means 1κ ), since, in the MA gauge, the charged gluon( chM )  effects become 
negligible and the system can be described only by the diagonal gluon component at the  
long distance as  fmMr ch 2.01 ≅> > − .  For the short  distance as  fmMr ch 2.01 ≅≤ − ,  the 
effect  of  charged  gluons  appears,  and  hence  all  the  gluon  components  have  to  be 
considered even in the MA gauge, see appendix B.  Thus, when  the electrical flux is 
applied  parallel  to  the  superconducting  cylinder,  the  first  flux  penetrating  should  be 
located  along the axis  of the cylinder.
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Substituting sj from Maxwell equation, we can rewrite   (10) as:

From Maxwell equation (in SI ):

curlBj
c

A s
2

0
2

2
0

2
2

λ
ε

λ
π

ϕ ==




 −

Φ
∇

, or
πϕλ 2/2 0

2 ∇Φ=×∇+ BA                                                   (33)

The phase ϕ  in presence of vortex line is not a single-valued function of the coordinates. 
For a vortex line with minimum flux  0Φ ,  the phase increase by  π2 on traversing  a 
closed contour that enclose the line. Thus the integral along such a contour is

πϕ 2∫ =⋅∇ dl                                                (34)

Integrating (33) we find

∫ Φ=⋅×∇+ 0
2 2)( dlBA λ                                                     (35)

It is not difficult to check  that in the range 
ξλ  x                                                                      (36)

The second term from l.h.s of (35) gives the main contribution. We take the contour of 
integration in (35) a circle of radius x . For this geometry the vector )( B×∇  has only one 
component ϕ)( B×∇  along the contour.
The integration is then simple and we have

2
0

2
2

)(
λπϕ xdx

dBB Φ
=−=×∇                                                      (37)

To note (in cgs ):

ϕϕ
π

ss ven
c

B 4)( =×∇

Equation  (37) then gives  mxv s 2=ϕ  for the superfluid velocity  as it  must  be for a 
vortex line in a superfluid of particles with mass m2 .
Integrating of (37) for B  gives
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sjc
curlB

0
2

1
ε

=

sjAc =




 −Φ∇

π
ϕε

λ 2
21 0

0
2

2








Φ

=
x

xB λ
π λ

log
2
2

)( 2
0                                                               (38)

This equation is valid in the interval (36) with logarithmic accuracy.

Notice also that every vortex carries the flux 0Φ  and hence the mean value of B  over the 
cross-section of the cylinder is 

                                                                              (39)
, where ν  is the number of lines per unit area. This result is invalid near the upper critical 
flux 2cH where the cores of the vortex lines begin to overlap. To calculate this number 
we have to take into account the interaction between vortex lines. As the first step we 
have to find the electrical field trough a loop of arbitrary radius surrounding   the  line 
without the restriction (36) . Let us  calculate the curl  of the both sides of (33) .
Note that 

)(2 xncurl z δπϕ ⋅⋅=∇                                                             (40)
, and BcurlA =
where

-the Dirac function

Where  r is the two-dimensional radius-vector in the yx − plane and zn  is a unit vector 
along axis  z (We assume that  the axis  of the vortex line  coincides  with  z ).  Indeed, 
integrating  ϕ∇  along the contour encircling the line and transforming the integral by 
Stokes’ theorem into an integral over a surface spanning  the contour,  we have according 
to (34)

∫ ∫ =⋅∇=⋅∇ πϕϕ 2dScurldl                                                   (41)

Since this equation must be satisfied for any such contour of integration , we have (40). 

Finally,  we obtain 

)(2 0
2 xncurlcurlBB z δλ Φ=+                                                 (42)

Using the vector identity BBdivBcurlcurlB ∆−=∆−∇= , we obtain

)(2 0
2 xBB δλ Φ=∆⋅−                                                     (43)

This equation is valid only at all distances 
ξx                                                                   (44)

Throughout all the space except the line 0=x  equation (43) coincides with the London 
equation (12) 

14

02 Φ= νB

)(xδ



The )(xδ  function on r.h.s defines the character of the solution at  0→x . Actualy this 
singularity has already been defined in (38), which is valid at small x .
The  solution  of  this  equation  at  ∞→x  is  )()( 0 λxconstrB Κ⋅= ,  where  0Κ  is  the 
Hankel function of imaginary argument. The coefficient must be defined by  matching 
with the solution of (38). Using the asymptotic formula )2log()(0 xx γ≈Κ  for 1x ,
where 78.1≅= Ceγ (C is Euler’s constant), we finally have 

)(
2
2

)( 02
0 λ

π λ
xxB Κ

Φ
=                                                               (45)

Exactly, the same solution is obtained by G.Bali  et al [8], respectively the equation (2.6).
Using equation (45) we can rewrite (38) as:

x
xB

γ
λ

π λ
2log

2
2

)( 2
0Φ

= ,  λx                                                  (46)

 
In  opposite  limit  of  large  distances   one  can  use  the  asymptotic  expression 

xexx −≈Κ 21
0 )2()( π  for 1x . Thus, at large distances from the axis of the vortex line 

the field decreases according to
λ

λπ
xe

x
xB −Φ

= 213
0

)8(
2

)(  , λx                                              (47)

Accordingly the superconductive current density  decreases (in SI ):

( ) λ
ϕ λπ

ε
επ

π
xe

x
c

c
dx
dBcj −Φ

=−= 2153
00

2

0 )2(8
2

4
4

                            (48)

We can now calculate the energy ε  of the vortex line. The magnetic part of free energy 
corresponding to London equation is given by the integral.

( )[ ]∫ += dVcurlBBFB
222

8
1 λ
π

                                               (48.1)

Indeed, by varying the expression with respect to B , we immediately obtain the London 
equation (12). The main contribution to the integral is due to the second term, which 
contains a logarithmic divergence. Substituting (37) in (48.1), and integrating in the range 
(36), we obtain for the energy per unit length of  vortex line. 












 Φ

=
ξ
λ

π λ
ε log

4
2 2

0                                                                  (49)

Equation (49), explains why only vortex lines with the minimum flux  0Φ are the most 
favorable. The energy of a  line  is proportional to the square of its magnetic flux. Thus, 
the fragmentation of one line with the flux 0Φn  into n  lines with flux 0Φ results in an n-
fold gain in energy.  
A discussion of the physical background of this energy can be found, e.g. in the books 
[25-27] , as related to Dirichlet’s energy and  harmonic maps.
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Thus,  in  [26],  when is  induced a  magnetic  stray field  h which has  a  certain  energy, 
according  to  the  static  Maxwell  equation,  the  stray  field  satisfies  0)( =hcurl ; 

0)( =+ hudiv , where u , is extended by 0 outside Ω  . The first equation implies that h−  
can be written as the gradient  of function  U .  By the second equation,  this  U  is   a 
solution  of  )(udivU =∆ in  the  distribution  sense  (since,   0)( =∇ Ucurl ,  and 

UUdiv ∆=∇ )( ). There exists exactly one solution such that the integral 

∫∫ Ω
∇⋅=∇ UdxudxU

R 2
1

2
1

3

2

                                                     (49.1)     
is  finite,  and  for  this  choice  of  U ,  this  integral  gives  the  main  contribution  to  the 
micromagnetic energy. It is called the magnetostaic energy [26].
In our terms, constuB == , 

x
BcurlBU

∂
∂==∇

,
since constuudivUB =→=→=∆=∆ 0)(0 .

Substituting  2
0

2
2

π λλ

Φ
==

x
Bu   from  (46)   with  1log(...)10 ⇒ ≅→≈ λx on  the 

boundary, or the dual gauge component of the total electrical field

, when 




= 21665.4

Am
JeB monopoles                                                    (49.2) 

,and   U∇  from (37) ,  one have 












 Φ

=




 Φ

=




 Φ

=
ΦΦ

=

∫

∫

Ω

Ω

ξ
λ

π λ
ε

π λ
ε

π λ
ε

π λ
επ

π λπ
λε

λ

ξ

log
4
2

)log(
4
21

4
2

2
2

4
2
2

8
1

2
1

2
0

0
2

2
0

0
2

2
0

0
2

2
0

0
2

2
02

c

xcdx
x

c

dx
x

c

                 (49.3)

Here, the factor 04 επ c  is used to convert from )()( SIcgs → .
Because the magnetic induction of the  monopoles current which is powered by electric 
field given by a pair of quarks  ( 0H ),  202 c

monopoles HHB ≅⋅≥ , as   resulting from the 
comparison (49.2) with  (30.1) and (31), it has the raw flow consequences squeezing this 
cromoelectrical   flux  into  a  vortex  line,  followed  by  forcing  an  organization  into  a 
triangular Abrikosov latticesee figures 1a,1b
The core of every vortex can be considered to contain a vortex line, and every particle in 
the vortex can be considered to be circulating around the vortex line. Vortex lines can 
start and end at the boundary of the fluid or form closed loops.
The presence of vortex line which increases the free energy of the superconducting media 
with  Lε ,  it   is  thermodynamically  favorable  if  the  contribution  is  negative;  i.e.  if 

0400 π µε LHcL ⋅Φ−   , and 
0

0
0 µ

H
B = , 0

2
0 1 εµ c= ,or
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0

0
10

4
Φ

=
π ε µ

cHH                                                                       (49.4)

Substituting  (49.3) in (49.4) , we find the lower critical field 





==




Φ
== 222

0
10 15.1)log(log

2
2

Am
JecHB c κ

π λ
π

ξ
λ

π λ


          (49.5)

, where 1114.0=ξ , and when near the axis, for ξ≅= 116.0x  ,  when the induction is 
1215.2)( cHeB ≅≅ξ                                           (49.6)

Let us the results obtained to the calculation of the energy of interaction of vortex lines. It 
is important that equation (43), which defines the distribution of the field, is linear one. It 
means that under condition (44) the field produced by different vortex lines is additive. 
Let us consider two vortex lines placed at  1x    and  2x separated by a distance  d from 
each  other.  Then,  21 BBB += .  The  energy  of  the  lines  is  given  by  (48.1).  Let  us 
transform the first term in integrand by means of (42) (to multiply with B  ),  which gives 

[ ]
[ ])()1()(2

)(
)(

20

22

222

xxxxxB
curlBcurlcurlBB

curlBB

z −+−Φ
++⋅−

=+

δδ
λ

λ
                                                (50)

The first term in the r.h.s can be transformed into the form

                                                    (51)

The  volume  integration  of  this  term  in  (48.1)  can  be 
reduced to an integration over a remote surface. This integral disappears, because of the 
fast decrease of the field. Because we are interested here in the energy of interaction of 
the lines, we must takes into account only “the mixed terms” of the type )()( 12 xxxB z −δ . 
(Terms likes  )()( 11 xxxB z −δ  contribute to the self-energy of the vortex lines (49). Now 
the integration in (48.1) is trivial. We have for the interaction 
energy 

))2()1((
8

2
12

0
int xBxB

L
L +

Φ
=

π
ε                                                 (52)

Both terms on the right contribute equally and using (45) we have 






Κ

Φ
=

Φ
=

λλππ
ε dxBd d 022

2
00

int 8
4

)(
4

2
)(                                       (53)

One can also  use the asymptotic expression for intε (see (47)) 

λλ
λπ

εε xe
d

c −




Φ

=
21

22327

2
0

0
2

int 2
4

, λx                                        (54) 

When the distance ξλ ≈d  the cores of vortex lines overlap [8]. The equation (42) is 
no longer valid. However, (39) is still valid. 
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Let us consider a closed contour near the surface of the cylinder. The change of wave 
function on passing round the contour is Sπ ν2  , where S  is the cross-section area of the 
cylinder and ν -the number of vortex lines. One obtain from (16) that the electric flux is 

∫ ⋅−Φ=Φ dl
n
j

e
mS

s

s



22 0ν                                                             (55)          

Let us recall that a similarly relationship [8], [28],  it was introduced for the first time by 
London, called fluxoid equation.
Each fluixoid, or vortex,  is associated with a single quantum of flux represented as 0Φ

,and is surrounded   by a circulating  suppercurrent , s
j , of spatial extent,  λ  . As the 

applied field increases, the fluxoids begin to interact and as the consequence ensembles 
themselves  into  a  lattice.  A  simple  geometrical  argument  for  the  spacing,  d  of  a 
triangular lattice then gives the flux quantization condition [29], 

0
2

3
2 Φ=Bd                                                                               (56)

, where B , is the induction.
The  solution  of  Ginzburg-Landau  phenomenological  free  energy  (13)   is  useful  for 
understanding the Abrikosov flux lattice. The coordinate-dependent order parameter  ϕ
describes  the  flux  vortices  of  periodicity  of  a  triangular  lattice.  Fluctuations  from  ϕ  
change the state to  ψ , the minimization of free energy with respect to  ψ  , gives the 
ground state )0(rϕ .
The free energy is given by, 

( )
∫ 









 −

+++




 −∇+= dV

HBbaAei
m

ff n π
ψψψ

82
2

2

2
042

22




(57)

, the average magnetic induction is )0,0,( yB −


. The free energy has solutions of vortices 
of triangular form. The coordinates of the three vertices of a triangular vortex are given 

by )0,(),0,0( l , and l





2
3,

2
1

. The fluctuation from ground state corresponding to that of 

triangular lattice is that for small fluctuations. The deviation of the free energy from the 
mean-field value FMFF −  with respect to the thermal energy, Tk B , can be used to obtain 
the physical properties of the fluctuations which are useful for understanding the melted 
vortex lattices. The deviation from the triangular Abrikosov lattice is defined as 

( ) 2
1

2
1 /0 araD 〉−〈= ϕψ                                                    (58)

which  uses  the  spatial  and  thermal  averages  calculated   with  the  probability 
( )TkF B−exp . Classically, 

MF

B

FF
Tk

D
−

=
                                                                      (59)
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measures the fluctuations from the triangular vortex state. The fluctuation in the distance 
between vortexes becomes [29]:

-case 1, ( ) 32345101 BcTT cFM
−−≅−                                    (60)       

-case 2, 
4511 BcTT cFM

−≅− ;                                             (61)
-case 3, a vortex transition below the transition temperature see [29]
, where, FMT -the flux-lattice melting temperature, and 1.0=c  from  Lindemann criterion 

of  lattice  melting   when  
222 lcd = ,  and  the  flux  quantization  condition  Bl 0

2 Φ= , 
κπ nB 2= ., where )(2 2 TH

c
e

cλκ


=  , and 1ln cc HH ⋅= κκ .

For numerical values  ][175 MeVTc = ,  in case of symmetry breaking, the case 1, results 
cFM TT ≈ , and in case 2, results ][100 keVTFM ≅  or K91015.1 × ,   by using (56) in place 

of  
2

0 dB ≅Φ with  ][3982.0 fmd = (a very precisely value),  and  1≅κ ,  which is the 
temperature of  fusion (melting!) of two nucleons.

This triangular lattice corresponds to the arrangement of the quarks pairs  dduuuu ,, in 
the frame of a nucleon, see fig.1a, fig.1b.

A direct numerical analysis allows to obtain the following values for the current, force 
and energy. Thus, from (48 ) the current  for λ≅x  is given by:

]/[715.1)( 2fmAej =λϕ                         (62)

For λ⋅= 2x , the current density decreases at ][5.3 2fmAejF ≅ (62.1)
Note  that  velocity  Fυ  ,  moreover,  if  one  considers  the  monopole  current   given  by 

equation (10), as DFs gvnj =ϕ

, where the magnetic charge is: 

eee
e

c
e
cg d 5.68

2
1374

2
4 2

0
0 ====

 π ε
π ε

                              (63)
If we use the range λ≤≅ 1.0x , then the current is obtained by derivation of  (46):

][8302.0
89.9
1
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1411

4
1

2
0

2

2

sme
c
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V
n

cg
xc

c
e

c
x

j

Fi

DFi
s
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==

→===

υ

υ
λ

επ
λϕ



            (64)

The fusion temperature of  deuteron
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With  numerical  values,  in  case  2  :   KMeVTc
12102][175 ×→= ,   at   confinement, 

results  KkeVTFM
91015.1][100 ×→≅ ,   by using  

2
0 dB ≅Φ with  ][3982.0 fmd = (a 

very precisely value-the distance between neutron-proton into a deuteron), and 1≅κ , that 
is the temperature of  fusion (melting!) of two nucleons.

The Higgs boson release condition at CERN-LHC 
With the value of fmd 04.0=  as will be used bellow to Higgs boson mass calculation, 
results, in the case 2 as described  above ,  TeVKTFM 2.7103.8 16 →×=  as the  melting 
(fusion) temperature of two vortices (two gluons-monopoles) which enclose the “Higgs” 
zone in each one of  protons during the  pp − impact.  That value corresponds to the 
necessary energy  at CERN to the “release” of the Higgs energy as the γ γ2 .   Therefore, 
again  a  strong  confirmation  of  our  model  (two  gluons-monopoles  melting  with  γ γ2  
release), all that  “thanking” to  the CERN p-p collision test.  To note that,  below in 
section 4.2,  the signification of d  it could be  that of Compton length! of gluons (heavy 
electrons pair as created by Schwinger effect. 
Lorentz’ force of the flux tube
From (4 ) and (47),  the Lorentz’ force is:

][4.25.2 NeBqvF FiL ≅=              (65)    
,when B   is given by  (46) and λ≅x , for the upper limit: 

                                                      (66)

With B from (47) and for λx , we have

                                               (67)
, then,  the force becomes ][268.1 NeFL −≅ , or in terms of 
energy 

][94515.172*268.1 MeVeexFLbarrier =−−=∗= λε                                                    (68)
,or the nucleon overall. 
In case of )0(→≅ ξx , with (38)





= 21503.1)0(

Am
JeB                                                             (69)

 
, which respect (49.6).
The energy of nucleon:
The magnetic energy results from (49), and (49.3),  and    for  ( ξλ  x ) from (36):
……….

(70)
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the force on the flux tube (string tension).

1506.20 −==Φ e
e
π

Now, from (54) and  ξλ )84( ÷≈d ,  we have The energy of  pion 
+π
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  (71)

                                                    
Now, that it would be the value of the mass of the pion 

+π , composed of a pair of quarks 
du  interacting at a distance  ][66.0*65.5 fmd ≅≈ λ    of the radius of the nucleus.

 
The fields energies to create pairs  of −+ − ee , W, Z, Higgs bosons and bias current for  
beta decay are the following:
Now, others important values of energy:

][09.1][117.0*)14.0;()0( int0 Jefmxxdpair −≅=−== − λεε         (71.1)
 , and from (69)  with ][107.0 fmx =≅ ξ ;                                 (71.2)

][11.58)2( 2
10

2
0 JeHVc ch −== πεε                                        (71.3)

                                 
The vortex energy (W -boson) is: 

][0816.182
20

2 JeHVc cvortex −== πεε                                        (71.4)
,  where  V -is  the  volume,  accordingly,  the  corresponding  equivalently  masses  are 

][732 GeVcM vortex ⇒= ε   , which seems to be equal to the mass of  W  boson.
The interaction between vortexes at distance  x and of separation  λ−= xd  is given as 
from (54), see figure 1a; 1b.

(72.1)
The energy of  the 
neutral boson Ζ  is 
assimilated  with 
the  vortex-vortex 
two  pairs  of 
quarks  spins 

)12121( =+  interaction energy  ][84*2 int GeVpairZ == −εε , with  above pair−intε . When 
the   three   pairs  of   vortexes  with  the  outermost  )04.0( fmd ≅  vortices  lines  which 
interacting (repel) at the center of the triangle, that will  generate a neutral current in this 
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zone called Higgs boson ( H ). Its   spin  and  charge are both zero due of   the vortices 
coalescence,  here  into  a  giant  vortex  ( GV ),  all  that  happens  during  the  triangular 
arrangement  of  the  lattice,  see  figures.1a;1b  Thus,  it  results  another  energy  state-
maximum possible ( 0≅d ), probable that of Higgs boson (H):

][1256.413*3 int GeVpaiH →×== −εε .                      
In other words, in order to equilibrate these energies are necessarly to admit the existence 
of two particles HZ ,  of exactly these energies values.

3.  The   model  of  the  decay−β mechanism  based  on  transverse(bias)  current 
(review )

Atomic nuclei are known to exhibit changes of their energy levels and electromagnetic 
transition rates among them when the number of protons and/or neutrons is modified, 
resulting  in  shape  phase  transitions  from one kind  of  collective  behavior  to  another. 
These transitions are not phase transitions of the usual thermodynamic type. They are 
quantum phase transitions (QPT )[30] (initially called ground state phase transitions ).  
However,  since the proton-neutron quadrupole interaction  dominates  over  the  proton-
proton and neutron-neutron ones for medium-heavy and heavy deformed nuclei, the axial 
deformation parameters  β  are related by a constant  of proportionality determined by 
equating the corresponding intrinsic quadrupole moments. The geometrical variable β  is 
obtained by multiplying the boson. 
The nuclear  decay−β  provides a severe test of the nuclear model because the decay 
rates are very sensitive to the wave functions of both the initial and the final nuclei.
The description of β decay of odd-mass nuclei in the interacting boson-fermion model
(IBFM) was formulated in [30].
Thus, here  are  presented  the  results of an investigation of the effect of a fermion ( in  
our case the electron 

±e ) on QPTs in bosonic systems. That  is done in atomic nuclei by 
making use of  the  Interacting  Boson Fermion  Model  ( IBFM ),  a  model  of  odd-even 
nuclei in terms of correlated pairs with angular momentum  ),(2,0 dsJ =  and unpaired 
particles  with  angular  momentum  jJ =  (  j  fermions).  To  note,  however,  that  the 
method of  analysis  from [30]  can  also be used for  systems  with other  values  of  the 
fermion,  j , and boson,  J , angular momenta, for example the spin-boson systems, the 
simplest case of which is a fermion with 21=j  ( ..ei , a single spin) in a bath of harmonic 
oscillator one-dimensional bosons of interest in dissipation and light phenomena. Here 
the focus is on the effect of a fermionic impurity on QPTs in bosonic systems. The main 
results are that, )(a  the presence of a single fermion greatly influences the location and 
nature of the phase transition, the fermion acting either as a catalyst or a retarder of the 
QPT , and )(b  there is experimental evidence for quantum phase transitions in odd-even 
nuclei (bosonic systems plus a single fermion).
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Also, a main conclusion from [30] is  that the effect of  the fermionic impurity is to wash 
out the  phase  transition  for  states  with   quantum  numbers:  25,23,21=K  and  to 
enhance  it  for  states  with  211,29,27=K .  In  other  words,  the  fermion  acts  as  a 
catalyst  for some states and as a retarder for others. Also, when the coupling strength 
becomes very large, the minima for some large K  like 211=K , shift to negative values 
(oblate deformation). 
An important property of atomic nuclei is that they provide experimental evidence for 
shape QPTs , in particular, of the spherical to axially-deformed transition )3()95( SUU − . 
One of three  signatures have been used to experimentally verify the occurrence of shape 
phase transitions in nuclei, namely: the behavior of the gap between the ground state and 
the first excited 

+0 state [31]. 
The nucleus Sm152

, with 90=N and 62=Z , lies intermediate between nuclei of
known spherical shape and well-deformed axially-symmetric rotor structure. A sudden
change in deformation occurs at 9088 −≈N  for the Sm and neighboring isotopic chains. 
New data obtained [31]  constrain the description of this  nucleus within the  IBM  to 
parameter values near the critical point of the transition from oscillator to rotor structure. 
The  performed IBA calculations are also given in [31],  for the entire region  90≈N  
with the simple  IBA Hamiltonian which involves only one parameter, ξ , which depends 
only on the neutron number N , for all the isotopic chains.
In [4] a  new approach for  decay−β is done,   where,  it was established  a logarithmic 
equation of  the  β decay rate that  resulting in   a straight  line as a function of  the 
transverse barrier width of 

±e  )( λrw =  for every nuclide, it decreasing in case of  long 
lived nuclides, like Fe60

, see fig.5. 
The same it happens  in the unrelativistic  Fermi model of  beta decay, when the  final 
states of the electron [32] as to be coupled with the initial state (parent) by a coupling 
matrix,  the Kurie plot or Fermi plot show that  beta ray  spectrum may be plotted as a 

straight-line graph of energy difference multiplied by a constant )( 0 EEconst −× , 0E -the 

end point energy of beta ray spectrum,  or for allowed transition the matrix element ifΗ ′  
which enters in  the transition probability per unit time  )(λ  for the transition from the 
initial  state  )(i  to  final  state  )( f  of  a  quantum  mechanical  system,  and  which   is 
independent  of the electron momentum )( p . This matrix in relativistic approach is given 

as : )||( νΨΨΗ ′ΨΨ=Η ′ ••
iefif , where Ψ  are the wavefunctions for initial and final state 

of neutron and neutrino, respectively.
This matrix have five elements as quantities of interaction:  scalar, vector, tensor, axial 
vector and pseudoscalar.  Any one of these  quantities is a beta decay interaction, but not 
only one. 
This matrix  Η ′ must also contain a factor containing the dependence of the strength of 
interaction  on the  distance  between nucleon and lepton.  The transmitter  of  the weak 
interaction to be an intermediate boson denoted by W with spin 1 and large mass about 
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80 GeV [32]. Thus,  the weak interaction would have a short range ~10-14 cm. Because of 
this  short  range,  it  will  be assumed that  the weak interaction  is  a contact  interaction 
expressed by introducing the factor )( Lrr −δ , where r   and Lr  are the nucleon and the 
lepton (our  

±e )  position vectors, respectively.  Besides these factors  Η ′ might contain 
other  operators  acting  on  the  nucleon  and  lepton  wavefunctions,  so 

)()( LrroperatorsH −=′ δ .The  model  developed  in  [4]  confirm  all  that  conclusions, 
together with   a lot of decay−β  experimental results.

Fig.2. The evolution of dark count ( β  decay)  rate as function of barrier width.

3.1. The review of the bias current model   of  decay−β  stimulation by a thermal 
spike of a  photon 

In order to accelerate the  decay−β  by a single photon reaction,  a new model it was 
proposed in [4] to calculate a  direct reaction of single  photon with one of nucleon of the  
valence n-n; p-p; n-p pairs (see IBM model [30,31]) of the nucleus,  that being in the  
unstable state (  a  decay−β nuclide),  they are the most susceptible  to react with the  
photon,  see some of model’s results from [4], figures 41 ÷ , respectively.
In the following,  in order to strength the idea of a  decay−β acceleration,  we would 
summarize and update some of mainly results of this  companion author’s article , but 
more one can find in [4] :

 The interaction between a  photon of high energy and of low band width 310 −≤∆ EE
and of nucleon into state of excitation has been characterized by the beta decay energy 

βQ  from the nuclei,  that is viewed as a  direct reaction,  without the formation of   a 
compound nucleus, as it was mentioned before [33].
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Essentially,  the general picture of this model described in details in [4],  is that the vortex 
(boson W ) crossing may trigger the ns →  transition. A photon makes this process much 
more probable by creating a spot (melt) with suppressed order parameter and thus with 
lower energy barrier for vortex crossing. A sketch of the strip and of the belt across are 
shown in Figure 2., the induced vortex crossing together with an electron (travel current

±e ),  which turns superconducting  hot belt  into the normal  state  resulting in a vortex 
assisted photon beta decay. 

Therefore,  by using the same nucleon model we can account for a vortex (W  boson) 
assisted photon count rate,  as in [4]:

[ ])exp(1 − ℜ−= hpc RR                                                         
,where: 
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The current being
 ( ) 23

00 νν hcch II =                                                                  

We can suppose than along the hot belt  induced by the incident  photon ,  the charge 
−− + We  creates  a bias current( ( ) eeI h 2]3)(1[32 23

0 ⇒≅> νν   who circulates due of 
the potential difference between the vortex and the rest of isotope.

At the first sight, the ohmic  resistance of this ad-hoc electrical circuit created by the bias 
current is given as:

2

1

vortexGL V
U

R
τ

β=                                                                     

,where the vortex  potential  is ξ0HVvortex = ,

0H -an  “external”  electro-magnetic  field  of  a  dipole  created  by   the  pair  uu (the 
chromoelectrical field)
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===
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deEH 2433.8
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00 π ε
 

,where,  ][05.0 fmr ≅ -is the electrical flux tube radius, ][7.0 fmd = -the distance between 

the two quarks charges, usually ][ mAH , but here is used as 



= 20 Am

JHB µ

, and the characteristic distance λξ ≤ , the coherence length, 

and   the  power  is  τετβ )( ±≅ WvortexU ,   with  ][245.1)8( seTk cBGL −== πτ -the 
Ginzburg-Landau life time of ±W bosons.
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Numerically,  with  KeTc 94.0= ,  TkE Bprag = ,  result 
2.36)12.2*2338.1(09.10 =−−== eeeTk cBWεν  ,  where  Wε results  from eq.  (2)  as 

][09.1][117.0*)14.0;(int JefmxxdW −≅=−== λεε ;
6.6/11.50 =−== pragphhh EeEεν , 

where h0ε  is obtained by using  the lower critical field 
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, and   with ][107.0 fmx =≅ ξ ;                             

respectively: ][11.58)2( 2
10

2
0 JeHVc ch −== πεε  

The value of pragE is determined by trials in order to have 1≅hpc RR .

The model results show that in order to have  instant rates(100% decay), or  a beta decay 

rate  of   scountseR pc 13.1= ,  with  the  incident  of  single  photons  (non laser)  rate  of 
sphotonseRh 13.1= ,  1≅hpc RR ,  for all beta-decay isotopes, i.e. these rates  are not 

dependent  of the nuclide type,  the  photons energy  needs to  be above a  threshold 
energy value of very precise value keVKe 5.3394.0 → , figure.3. 

This vortex-assisted mechanism may be verified by application of magnetic fields, which 
effectively enhance chI  along with the vortex crossing rates but do not affect the creation 
of hot spots by photons. 

Fig.1a. The Giant-Vortex (after an idea of Ref.[18]) that could be also the arrangement 
for the nucleon (only illustration).. A spin-orbit nonabelian field is shown (after a idea of 
the ref [19]).
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Fig.1b. Abrikosov’s triangular lattice for a nucleon (proposal [18])

Fig.3.  The photonuclear mechanism. From left to right, illustration of incident photon 
creating  superconducting  hot  spot  (hot  belt)  across  nucleon,  followed by a  thermally 
induced  vortex  crossing  together  with  an  electron  (bias  current),  which  turns 
superconducting hot belt into the normal state resulting in a vortex assisted photon beta 
decay.
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.4. The  pair creation inside the nucleon by Schwinger effect

4.1. electron-positron pair 

An interesting aspect of virtual particles (in vacuum) both theoretically and 
experimentally is the possibility that they can become real by the effect of external fields. 
In this case, real particles are excited out of the vacuum. In the framework of quantum 
mechanics by Klein, Sauter, Euler and Heisenberg  who studied the behavior of the Dirac 
vacuum in a strong external electric field. If the field is sufficiently strong, the energy
of the vacuum can be lowered by creating an electron-positron pair. This makes the 
vacuum unstable. 
A particle with charge q  and mass m  in a constant magnetic field undergoes circular 
motions with the Larmor frequency mqBc =ω . In quantum theory charged particles 
occupy the Landau levels with energy nE c ⋅= ω  and in a strong magnetic field of 

][1016 TBc ≅  , the energy difference of Landau levels cE ωδ = can be comparable to the 

rest mass of the particle. The number of Landau levels is 
 ππ

ω
22

22 qBLLm
N c =≤  , where L  

is the length.  In the transverse direction of a magnetic field above the critical strength 
electrons of an atom are strongly bounded and fill the lowest Landau levels but in the 
parallel direction are attracted by the Coulomb force. As classically the charged particle 
moves along a spiral of circular motion in the transverse direction and linear.
In the case analyzed in  [34,35],  in which 22 BE −  and BE ⋅   are not both zero, one can 
go to a frame in which E  and B  are parallel with magnitude E  and B , and is obtained 
the imaginary part of the one-loop effective action per four-volume for spinor QED .
In a pure magnetic field zBeB =  along the z -direction, )0,,0( BxA = , and for the 
electric and magnetic fields parallel to each other along the z-direction, the 4 -potential is 
given by )0,,0,( BxEzA −=µ , that copy very well with our new understanding,  when the 
electric field E  is that of the quark-anti-quark pairs, and B is induced either by the spin-
orbit interaction of the monopole (nonabelian field), or by the monopole current as 
Rashba effect, see appendix C,  and  figures 1a,1b.
In [34] is  obtained the pair-production rate for fermions  (eq. (67) ) as
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
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π
α expcoth)(4

2

0
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   (73)

for spin 21−  particle,
where 1371=α  , ][ 3smV  and 04π ε  to convert SIcgs → (to note that the authors of 
these articles do not have used this factor, that affecting enormous the numerical results 
with 1110 −≅ ), JWKB meaning (Jeffreys-Wentzel-Kramers-Brillouin) model [34].
The discrete spectrum due to the magnetic field is the Landau levels for charged particles. 
Note that all the Landau levels are non-degenerate for the scalar particles, whereas all the 
states of the Dirac spinor are doubly degenerate, 21, =+σj , and 21,1 −=− −σj , 
except for the unique lowest Landau level, 21,0 == +σj .
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The effect of magnetic field is the same as shifting the effective mass 
)12(24242 σ−++=∗ jcqBcmcm e   for fermions for each Landau level.

Case 1-The use of nonabelian field
The Compton space-time volume of an electron has the size

smecV CCCompton
33 7059.1)( −=×= λλ , 

Where ][166.4 mecmC −== ∗λ , the effective mass is  2242 ccqBcmm e +=∗ , the 

critical field ][2424.82358.8
32

CNeEe
e

cmEc =<≅= ∗


; ][1586.2 TeB =  as from eq.

(C.40), that results  kgem 2814.7 −=∗

The electron energy is GeVcm 4.02 ≅= ∗ε - the same and sufficiently to broken the 
quark-anti-quark string strength GeV4.0≅σ  during beta-decay process followed by the 
release of a beta-decay electron from ±W decay, and which gets the final beta energy as 
equally to that of the out of barrier turning point after  the tunneling and accounting for 
the valence nucleons interactions (shell-energy levels). The number of assaults of the 
barrier,  like in Gamow theory [37,38]  is Rvn ba = ;  where the velocity is 

( ) 212 ∗≅ mvb ε , and  the radius of the barrier is CR λ≅ ; GeVmeB 4.0≅= ∗ε  the 
energy of the particle for the first Landau level (as above), and we can see that it  results 
to be equally with the rest mass of the electron, that resulting 123.9 −≅ sena . In case of 
WKB  [37] , the 

transmission coefficient r
QVm

T ∆
−

=


2
2 , and  the decay constant T

aenR −= . 

For the thick barrier the transmission coefficient is b
mQ

v
QbT



2
22 ππ ==  ; where, 

the kinetic energy of the particle  after the barrier at b  is  2

2
1 mvQ ≡

To “materialize” a virtual 
−+ − ee  pair in a constant electric field E  the separation d  
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




 −=





−=










−∝

E
E

Ee
cmdP cr

Compton

2
exp2expexp

32

λ

The emission (transmission through barrier)  sufficient for observation when crEE ≈ , 

with deEQ cr= , results 
C

bmcbT
λ
ππ 22 ≅=


, or πλ 2Cb ≅       (73.1) 

With these values it  result : the number of pairs aJWKB nses ≈=Γ − 12365.4 , for a volume 

bb VmeV ≥−≅≅ ][460.1)( 33λ , the penetration length fm117.0=λ ,  and  for a four-
volume of ][706.1 34 smecb −≅λ  , results pairJWKB 172.0 ≈≅Γ , or in other words, all the 
time inside the nucleon is available one real pair of electron-positron which combine 
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with quarks pairs,  as was shown before, resulting an +e , or −e   which help the quarks 
transformation )( du → for beta-decay. In our model,   ±W  is also created (see bellow) 
there as a vortex which decay into an  electron which takes the energy at the turning point 
out of the barrier equally with the binding energy of nucleon in isotope nucleus, and  it 
passes  the barrier of  monopole condensate  characterized by an quantum tunneling 
suppression given as:  ( ) 2796.3exp −≅∆ Ε− eτ , where, as ][2456.12 secm −≅≅ ∗τ  

near ][245.1)8( seTk cBGL −== πτ  is the Ginzburg-Landau life time of 
±W bosons, 

since these decay in beta electrons, in the same time  with pair generation, their lifetime 
need to be near equally with the lifetime of the pair ][2456.12 secmee −≅= ∗− −+ τ , that 
is happen,  and  ∆ Ε , which corresponds to the height of monopole condensate barrier, 

due of the phase slip with ϕπ −2  and of a 0Φ  energy release: bdcE 0
2
0

2 εΦ=∆ ; 
λ15.7≅bd , and ][09898.3 Je −=∆ Ε  ; , and  the  quantized flux is : 

][1507.2 2
0 Tme

e
usuallyec −=→=Φ 


ππ . To note that E∆

Thus,  the probability (rate),  into a more simple way- without the external interactions of 
the neutron (free-not bounded) ,   is s given as: 

][5440384.1)exp( 21
1 sseEVJWKB ≅→−≅∆−Γ − ττ  , that corresponds for free neutrons 

decay by emission of an electron and an electron antineutrino to become a proton,
eepn ν++→ −+0 , with  half-life of s611 .

Case 2-The use of Rashba effect
The Compton space-time volume of an heavy electron (gluon!) has the size

smecV bbCompton
33 74.8)( −=×= λλ , 

Where ][17.7 mecmb −== ∗λ , the effective mass is  
2242 ccqBcmm e +=∗ ,      ][2777.4 kgem −=∗                                          (74)

, and the critical field ][2818.22584.3
32

CNeEe
e

cmEc =<≅= ∗



The “heavy electron”  energy is GeVcm 68.22 ≅= ∗ε - the same and sufficiently to either 
broken or to create an  quark-anti-quark string, that fact it will be established 
experimentally !.  
Therefore,  if we consider the situation of the GV ,  in eq. (73) is introduced the magnetic 
field induced by the entire monopole condensate as being 

][079.7
8

3
22

0 Je
BcV monop

vortex −→=×
π

ε
ε , where ][1728.1 2AmJecEB monopolmonop =≅ ;

c
E e

C

monop
monop

2
0

2
2

)(
)(

∗=
λε

ε
  ;                                        (74.1)

massmonopolesorH Rmonop _3__ ≅≅ε , the Rashba energy being ][092.1 JeH R −=  

from eq. (C.32), and vortexε×3  from (71.4),  resulting ][25835.3 CNeEE ee
crmonopole ≅≅

−+ − , 
and  the electrical field  of the Giant Vortex )(GV , (see figures.1a,1b)  is 
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][2818.2
)(

)3(
2

0

2
2 CNeE

c
E e

C

vortex =→
×

= ∗ λε
ε

 , where 34545.1 meV −≅  for the Giant Vortex, 

near the value of ][285.3.. CNevev = . To mention that,  independently we can obtain the 

critical value of magnetic field as: ][1728.1
8997.2

2584.3 2AmJe
e

ecEB e
cr

cr
monop ≡≅≅

±

With these values it  results : the number of pairs created aJWKB nses ≈=Γ − ][2412.4 1 , 
and finally with Compton volume it results pairJWKB 1≅Γ , or in other words, all the time 
inside the nucleon is available one real pair of electron-positron which combine with 
quarks pairs as was described above,  or creates a new quarks pair-for a new hadron type 
(with four quarks as a new state of mater!). 
In our model,   in the same time is created a pair ±W  by a Schwinger effect (see the next 
section).
This “heavy electron” itself can not  pass the barrier of  monopole condensate  as 
characterized by an quantum tunneling suppression given as:  ( ) 042.1exp −≅∆ Ε− eτ , 
where, as ][2533.22 secm −≅≅ ∗τ  small that  ][245.1 see −=±τ , or the Compton 
length being too small by the barrier width fmbmeC 83.07][17.7 =≅< <−≅ λλ  . The 
same conclusion is obtained if we apply eq. (73.1),. Therefore,  this passes  only when a 
external energy (by collisions!)  is applied in order to maintain “open” the barrier by 
“melting” it.   
Therefore, it look like of two permanent pairs of −+ − ee  and of ±W  to be present during 
the beta decay, or an energy of a vortex  ±W  exists here, as it was found in the previously 
work [4].  In the same way,  many others particles could be created here, like tcs ;;  
quarks ; muons etc. , but anyone can not penetrates the barrier as itself, these can only 
decay, or annihilate into electrons of low energy and  neutrinos.
To remember that in [4],  we have described the process as a spontaneous nucleation of a 
normal-state belt across the strip with π2 -ϕ phase slip with 0Φ  release, and a bias 
currents which may produce a spontaneous  suppression of the superconducting order 
parameter )(ψ , and when  a vortex )( ±W ( after it is created by the Schwinger effect, as 
the main finding of this new work, see section 4.2.),  crossing from one strip edge (just 
the  monopole condensate barrier) to the opposite one induces a phase slip without 
creating a normal (vacuum)  region across the strip (one of three vortexes of nucleus) 
width. Then, is treating the vortex as a particle moving in the energy potential formed by 
the superconducting currents around vortex center inside the strip and by the Lorentz 
force induced by the bias current. For a free neutron the dark count rate in [4] is obtained 
as 1047 −−= seRdark ,  which is comparable with the above result.  

To see the order of magnitude we extract from [4] some results on the decay of a free 
neutron, thus,  the bias current  is :

)1(2 2
0 κκ

π ξ
−= IwI

, and the main superconducting  current is:                                                                          

32
zh

c
I

2
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00
2;

8
λ

π
ε =Λ

Λ
Φ

=



                                                  

Here, λ≅zh -the axial ( z ) height of the monopole condensate.

Also, here,  the critical current at which the energy barrier vanishes for a single vortex 
crossing:

 
π ξ

µ
72.2

2 0
2wI

I c = ;   respectively:                                                                                

3197.5 eI = ; 46.1 eI c = ; 5.30 eI =  from eq.(62.1); where 
22 1 κµ −= ; 15.4=ξw ; 

1114.0117.0≅= ξλκ ; and 014.0681017.00 ≅→≅ eeII

4.2. The Bosons pair production
Case 1- ±W bosons creation
It has long been known that an inevitable consequence of Dirac’s theory of the electron is 
that in regions of sufficiently high energy density, the quantum vacuum can break down 
in a spontaneous generation of electron-positron pairs. Following the initial results of 
Sauter, Heisenberg and Euler  and Weisskopf , in a seminal work, Schwinger  derived a 
central result of strong-field quantum electrodynamics, the rate per unit volume of pair 
creation R  in a constant and uniform electric field of strength E , of leading order 
behavior , 

( )EEcEER crcr ππλ −= − exp*)8)(()( 1342

for 1< <crEE , positron charge e , mass m , Compton wave-length mc=λ   and so-

called “critical” electric field ecmEcr
32= .

Now, the energy corresponding to crE  is given as: ( ) cEv W
Comptoncr 

2

0
22 ±

= λε  , or 
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, which in fact 

is the vacuum expectation  value  .)..( vev , here the fine-structure constant  is 

137
1

4 0

2

==
c

e
π ε

α

If we will remember the Fermi disintegration constant 
25

2

2

1015.1
24

1 −−×== GeV
M
gG

W
F

,where  the mass of boson GeVcmM WW 812 == , and Wge θsin= ; the Weinberg angle 
41sin 2 ≅Wθ , and the  Higgs vacuum expectation value vev ..  or 

( ) GeVGv F 2472
21

==
− , if we substitute 

2
gvMW =  from Standard Model. 

( ) 2
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, where 22.0sin 22 ≈= WWs θ
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If in eq. above in place of 22.025.0 → , it will result GeVv 247=
Therefore, it is obtained for the first time in literature the derivation of the Higgs vacuum 
expectation value field )..( vev as being Schwinger critical field for creation of  pair of 
bosons +− − WW  as needed in beta-decay process. To note that,  the Standard Model is 
centered, also in ±W , the difference being that,  in my model this pair is created by the 
Schwinger effect, and the field of the nucleon substructure having values which support 
this effect.
Numerically, kgeGeVmW 25442.181 −→=  , ][1831.2 mecmr W

W
Compton −==≅

±

λ    for 

)(GV , results ][2958.6
)(

)3(
2

0

2
2 CNeE

c
E W

C

vortex =→
×

=
λε

ε
, and 

TeVJe
BcV

vortex 5][079.7
8

3
22

0 → ≅−→=×
π

ε
ε , and ][1728.1 2AmJecEB monopol =≅  

with monopE  from eq. (74.1),  and Schwinger critical field 
[ ] GeVvevCNeecmE Wcr 267..285.332 =↔+==  ; 

The rate of +− − WW  pair production is again 1≅R , with the  Compton volume 
][8054.9)( 134 −−== smecV W

C
W

C λ , and  12656.1 −= sesR . Again, due of very small 
Compton length  by comparison with the barrier width, ±W   itself can not penetrate the 
barrier, as describe above. 
To note,  that  in order to obtain the   pair rates of one≈  for ±W  , only then when are 
used the values of GV   energy )5][079.73( TeVJeevortex →−≅× , which can means that 
these particles are obtained by the melting of  two gluons )(gg , as  is find in paragraph 
2 , and at LHC-see section 6. Therefore, a collision of a such value can maintain “open” 
the barrier till the release of decay products!.
For the first time in [39] is studied the entire dynamics of energy conversion from initial 
overcritical electric field, ending up with thermalized electron-positron-photon plasma.
Such conversion occurs in a complicated sequence of processes starting with Schwinger 
pair production which is followed by oscillations of created pairs due to back-reaction
on initial electric field, then production of photons due to annihilation of pairs and finally 
isotropization of created electron-positron-photon plasma. Evolution of electric field E 
and pairs bulk parallel momentum for crEE 30> , shows that following oscillations E  
tend asymptotically to crE  after cτ1000≅ .  After some time, the photons energy density 
becomes equal and then overcomes the pairs energy density. This growth continues until 
the equilibrium between pairs annihilation and creation processes is established 

γ γ↔− +− ee .

4.3  A new understanding of beta decay
In  the classic understanding of  −β  disintegration  eepn ν++→ − , or this occurs when 
one of the down quarks in the neutron  )(udd  decays  into an up quark by emitting a 
virtual −W  boson,  transforming the neutron  into a proton  )(uud .  The −W  boson then 
decays into an electron and an electron antineutrino: eeuududd ν++→ − .
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In our new understanding of beta-decay process, it results that,  in order to make possible 
this transformation (balance of charges) it needs  to have supplementary an +− + ee  pair 
as created  by a Schwinger mechanism, as will we show above, and which is necessarily 
to  always exist here,  and consequently,  for the beta decay process,  we have in terms of 
quarks for the neutral mesons: dduu ; : 

)32()33()31( eueeed +=++− + ,             (75)
)32()33()31( eueeed −=−+ −

,and  for  +β  decay  can  only  happen  inside  nuclei  when  the  daughter  nucleus  has  a 
greater binding energy (and therefore a lower total energy) than the mother nucleus. The 
difference between these energies goes into the reaction of converting a proton into a 
neutron, a positron and a neutrino and into the kinetic energy of these particles. 
In an opposite process to the above  negative beta decay, the weak interaction converts a 
proton into a neutron by converting an up quark into a down quark by having it emit 
a +W  or absorb a −W .

+β  decay  of  nuclei  (only  bounded  proton)  when:  eenp ν++→ + ,  or 

eeudduudenergy ν++→+ +

, or, )31()33()32( edeeeu −=−+ −             (76)
)31()33()32( edeeeu =+− +

In the process of electron capture, one of the orbital electrons, usually from the K  or L  
electron shell, is captured by a proton in the nucleus, forming a neutron and an electron 
neutrino.
    enep ν+→+ −     
In  our  new  understanding,   when  the  vortex  equilibrium   is  disturbed  by  the 
transformation of  one quark ( ud → ) due of the interaction with the new created +− + ee  
pair (coincidently of the same energy as that of the strings (neutral mesons)  dduu ;  ), 
then,  this   is  accompanied  by a  creation  of  a  ±W  boson which decay into  ±e   and 
neutrino which pass the barrier as crossing vortex , that being the new idea of this model.

5. Schwinger pair-production thermally stimulated by a laser pulse

From [40] results that  the Schwinger pair-production rate by a time-dependent electric 
field is enhanced by a thermal factor of the initial Bose-Einstein distribution known as the 
Boltzmann factor.
Thus,  it is found that the Schwinger pair production rate at finite temperature is enhanced 

by the thermal Boltzmann factor: 
c

B
Tnk

Tk
e

Tf
nk ωω

≅
−

= −

1
1)( )(  . 

Where the cyclotron frequency  induced by the  monopole B  is cω .
Thus, with ][158.2 TeB =  from eq.(C.40), KeT 94.0= for decay of MgAl 2626 → , results 

1234.6 −
∗ == semeBcω , finally the enhancement factor 056.8 −≅ ef Boltzmann  or the 
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lifetime is reduced with 7.1 e , and the number of pairs per a thermal spike it could be 
pairfV BoltzmannJWKB 1≅⋅⋅⋅Γ τ , if the volume affected by laser is  ][30*)( 33 smzsV e

C
∗≅ λτ ; 

represent the turning point  at which  the decay energy MeV8.1≅  for Alg26 .
To note that the duration of the single attosecond spikes in the APT amounts to 2300as  
means zs30  in the projectile frame [41,42,43]. This value approaches the natural QED 
time scale of  ][1011 21 szsm −=≈ . Near the same result is obtained in case 2 , or when a 
barrier is “open” by the thermal spike, the heavy electrons passing  more easy. 
An important thing to be verified experimentally is that by using a thermal spike of only 

KeT 94.0= , when  it could be obtained one ±W  pair, and one of H boson.
We may thus  conclude that the Schwinger pair-production rate is indeed enhanced by the 
thermal effect given by the Bose-Einstein distribution expressed by the Boltzmann factor.
In this case, in place of the quantum  tunneling suppression factor we introduce the 
thermal stimulation with Boltzman factor.    The model it needs to be experimentally 
tested, for example on radioisotope MgAl 2626 → , as it was described bellow as the 
proposal to test the model, also suggested in [44].
To mention that from the model based on bias current (described above) it results a 
necessary photon flux of  sphotonseRh 1318.5≅ , and from this new model results a 
duration zs30≅τ ; both parameters can be obtained only by the  laser from ELI (Extreme 
Light Infrastructure)  [45,46].

6.The gluon pair production from arbitrary time dependent chromo-electric field 
via Schwinger mechanism

The subject of quark/anti-quark and gluon pair production from the non-abelian field is 
relatively new and is not fully solved [47]. It might be important for the production of the 
quark-gluon plasma (QGP) in the laboratory by high energy heavy-ion collisions. Lattice 
QCD predicts the existence of such a state of matter at high temperatures (~ 200 MeV) 
and densities. In high energy heavy-ion collisions at RHIC and LHC [45] the receding 
nuclei might produce a strong chromofield which would then polarize the QCD vacuum 
and produce quark/anti-quark pairs and gluons. These produced quarks and gluons collide 
with each other to form a thermalized quark-gluon plasma. The space-time evolution of 
the quarkgluon plasma in the presence of a background chromofield is studied by solving 
relativistic non-abelian transport equation of quarks and gluons with all the dynamical 
effects taken into account. Quark and gluon production from a space-time dependent 
chromofield is needed to study the production and equilibration of a quark-gluon plasma 
in ultra relativistic heavy-ion collisions at RHIC and LHC. 
We again mention here that the fermion pair production from the space-time dependent 
field is studied in the literature  but gluon production from space-time dependent 
chromofield is not studied so far. This is because a consistent theory involving the 
interaction of the gluons with the classical chromofield is not available in the 
conventional theory of QCD. The production of qq  pairs from a non-abelian field via 
vacuum polarization is simillar to that of the production of 

+− ee  pairs from the abelian 
field. This is because the interaction lagrangian of the quantized Dirac field with the 
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classical gauge potential is similar in both the cases.Gluons are the propagators of the 
QCD and carry colour and anti-colour, described by 8 Gell-Mann matrices, λ , see 
appendix A.
In high energy collisions, jets are the signatures of quark and gluon production.
For GeVmH 140< , the most promising discovery mode for the Higgs boson at the LHC 
has involved the production via gluon fusion, gg → H, followed by the rare decay into 
two photons, H → γγ.
The transverse distribution of particle production from strong constant chromo-electric 
fields has been explicitly calculated in Ref. 1 for soft-gluon production and in Ref. 2 
both cited in   ref. [48] for quark (antiquark) production. At high energy large hadron 
colliders, such as RHIC (Au-Au collisions at GeVs 200= [49]), and LHC (Pb-Pb 
collisions at TeVs 5.5= [50]), about half the total center-of-mass energy, cmE , goes 
into the production of a semi-classical gluon field, which can be thought to be initially in 
a Lorentz contracted disc. The gluon field in SU(3) is described by two Casimir 
invariants, the first one, aa EEC =1 , being related to the energy density of the initial 
field, whereas the second one, [ ]cba

abc EEEdC =2  , is related to the SU(3) color 
hypercharge left behind by the leading particles.
This was already evident from the Schwinger calculation of the production of a fermion-
antifermion pair by an electric field E  that is constant in space and time, namely,

( ) ( )∑
∞

=

−−=
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2
2
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4
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4 n

eEqmnenqeE
xd

dW λ

π
    

where q  denotes the charge of the fermion.

This calculation was generalized recently to the nonabelian color group SU(3)c in the 
special aE case in which (i) there is only a chromoelectric field, aE  , i.e., the 
chromomagnetic field 0=aB , (ii) aE is a constant in space and time, and (iii) all of the 
group components of aE point along the same spatial direction.
For example, for qq  it was found that

where Tp  denotes the momentum of 
the quark transverse to the direction of the chromoelectric field zE aa ˆ=Ε  and where the 
sums of cSU )3(  group indices cba ,,  are from 1 to 8.  Integration over Tp  yields
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where the jq,λ  ,depends on three independent gauge and Lorentz invariant eigenvalues 
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, where
[ ])()()(1 tEtEtC aa=

The following result was obtained for the probability of gluon pair production from 
arbitrary time dependent chromo-electric field )(tE a  in 1=α  gauge via Schwinger 
mechanism [], [48,51,52]:
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


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






 ±+= )(

3
cos1

2
)(12

3,2 ttC θπλ

At RHIC and LHC heavy-ion colliders the classical color field play an important role to 
study production of quark-gluon plasma. 
In these situations it is necessary to know how QCD coupling constant depends on SU(3) 
color field. In this paper we solve the renormalization group equation in QCD in the 
presence of SU(3) constant chromo-electric field aE  with arbitrary color index a=1,2,...8. 
Using background field method in QCD we derive β  function from the one loop 
effective action of quark and gluon in the presence of constant chromo-electric field aE . 
Using these two facts we determine the exact dependence of the QCD coupling constant 

sα  on chromo-electric field aE  in SU(3).  We find from eq. (17) the QCD coupling 
constant results from fig.1 [51]: in the presence of SU(3) chromo-electric field as 
function θ  for fixed values of first Casimir invariant C . The jλ ’s used are from the 
above eq.  Thus, for 1.0)(;15.0)(;1)(0 321 =≈≈→= λαλαλαθ sss , and for 

4
1 7200,1000;100 GeVC = , respectively.

(19)

MeVe g 200))4(1( 2
0 ≅=Λ − βµ ; and 320 πθ ≤≤ ; 

π
α

4

2g
s =

3=g

The value of C1 can be estimated from the initial centerof-mass energy of the colliding 
ions, and the volume of the Lorentz contracted Nuclei. For example for gold, fmR 10≈  
and at RHIC the center-of-mass energy is GeV200≈  per nucleon. The initial density is 
then of the order
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)( 0VEcm γρ ≅ ;            
with 3

0 34 RV π= , and  cmion EM=γ .  For the above RHIC case 4100GeV≅ρ .
The results are plotted in fig.6 

Fig. 6 The evolution of probability of gluon/quarks pairs production for different 
collision energies

If gluons fragment similar to quarks certainly the fastest gluon jet can be singled out and 
identified safely like quark jets which start to show up clearly at jet energies of ≈ 3 GeV 
as had been already shown at SPEAR (Stanford) in 1975 [53]. 

7. The calculation of the gluon transverse momentum
In order to point out the value of probability is necessarily to have the value of the gluon 
transverse momentum, for this purpose a model is proposed.
The vector potential of magnetic field produced by magnetic moment of the gluon Mom  is
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Since, the  spin angular momentum, for a monopole 
m

gQe
Mo 2

=µ , the color magnetic 

charge is 5.68=Q  , 
 =s , 2≅g  

, and     Mo
Mo

Mo
S

m µ
µ

≅−=


, 2=S , or ][257.2 1−−= TeslaJemMo

The energy being ][22 JmpT TPT
= , and from the equality of  Lorenz force 

])[( 2 NcEvBqF gmL −=  with the centripetal force rmvFc
2= and with mvpT = , 

results ][)( 2 sNcvEBqvrp gmT ⋅−⋅= . By using ][258.22 secmg −== τ , 
][2.2 GeVmg ≅ , result ][241.2 CNeAE gg == τ  , ][1517.1 2AmJeB = ,and with color 

magnetic charge ][
2 2

0 mA
q

c
q

e
m ⋅=

π ε
,  and ][2.0 fmr = ,  results the transverse 

momentum for the gluon ][7.0 GeVcpT =⋅ .
With these,  as in fig.6,  in the case of pp collision at LHC, the probability of gluon pair 
production from arbitrary time 1)2.7,3,( 4

1 ≅== GTeVCpf T πθ , which in fact  that 
it was happen at LHC. 
In the lowest approximation, the Drell-Yan lepton pair of invariant mass M > 1GeV is 
produced by annihilation of two quarks from the colliding hadrons:

−+∗ →→ llqq ff γ
The creation of e+e− pairs in intense laser fields is encountering a growing interest in 
recent years. It has been stimulated by a pioneering experiment at SLAC (Stanford, USA) 
where e+e− pair creation was observed in the collision of a 30 GeV γ -photon with an 
optical laser pulse of 21810 cmw . The high-energy photon was first produced by 
Compton backscattering of the same laser beam off a 46 GeV electron beam.
Due to the high photon density in the intense laser pulse, the simultaneous absorption of 
more than one laser photon is possible with a non-negligibly small probability. In the 
experiment, 5=n m laser photons of ][20 eV≈ω  combined their energies with the γ -
photon upon the collision to overcome the pair creation threshold: −→+ een 0ωγ  
(nonlinear Breit-Wheeler process).
The production rate and kinematic distributions of isolated photon pairs produced in 
hadron interactions are studied [54]. The effects of the initial–state multiple soft–gluon 
emission to the scattering subprocesses qq , qg , and Xgg γ γ→  are resummed with the 
Collins–Soper–Sterman soft gluon resummation formalism.
The effects of fragmentation photons from qqg γ→ , followed by Xq γ→ q → X, are 
also studied. The results are compared with data from the Fermilab Tevatron collider. A 
prediction of the production rate and kinematic distributions of the diphoton pair in 
proton–nucleon reactions is also presented. In this work, the Collins–Soper–Sterman 
(CSS) soft gluon resummation formalism, developed for Drell–Yan pair (including W 
and Z boson) production, is extended to describe the production of photon pairs.
In [55] is given a proof of factorization using background field method of QCD.

8.  Proposal for an experiment of verification
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In [44] is done a proposal to use a laser pulse to reduce the half life of beta decay 
nuclides.
Thus, it is known that, Al26 , through its β-decay to the +2  excited state Mg26  and the 
subsequent decay into the ground  state ( +0 ) via a 1.809 MeV γ-ray, see fig.7, is an 
important observable for many astrophysical events, and many efforts have been put forth 
to map the Galaxy by means of this γ-ray. 

As the half life )0(2102.7)5( 265
,

26 +++ →→×→
+

MgyAl
EC

gs
β  , the presence of this nucleus 

provides evidence of ongoing galactic nucleosynthesis.
The nucleosynthesis of Al26  is complicated by the presence of a low-lying (228.3 keV) 

+0  isomeric state. This isomeric state is very strongly inhibited from decaying by γ-ray 
emission to the ground state ( +5 ) of Al26   due to the large spin difference. Its lifetime is 
much shorter (6.345 sec) and it β-decays directly to the ground state of Mg26  through a 
super-allowed +0  to +0 transition, thus avoiding the observable 1.809 MeV γ-ray of 
interest. 
However, at high temperatures ( 42.09 =T  ) equilibrium is reached between Algs26  and 

Alm26  which is relevant to some high temperature astrophysical events such as novae.
Alm26  decays via +β emission with sT 35.621 =  directly to )0(26 +Mggs .

Theoretical work [56,57], based on shell-model calculations predicts the a dramatic 
reduction of the effective life time effτ  ( Algs26 ) by a factor of 910  within the temperature 
range from 0.15 to 0.4 GK, superseding previous estimates by Ward and Fowler [57]  by 
orders of magnitude. This significant decrement of effτ  is due to a variety of physical 
processes triggered and influenced by hot plasma environments which will gradually 
become accessible with the emerging ELI project. At high densities the increasing Fermi 
energy of the electron opens up electron capture channels otherwise energetically 
forbidden. Moreover, hot bremsstrahlung radiation will lead to an enhancement of the 
coupling of ground and isomeric state via the manifold of known as well as hitherto 
unresolved intermediate state (IS) at several MeV where the nuclear level density is high.
In a first instance, we want to expose a miniature 26Al target specimen to an
isochorically heated environment with ELI. Work by Patel et al. shows that isochorical 
heating by laser induced thermally distributed proton beams with end-energies of only a 
few MeV can be used to create very localized ( mµ50=Φ ) high energy-density plasma 
states [56]. The ELI system, even in the first phase, will be able to surpass this values by 
several orders of magnitude, especially once the onset of the pressure dominant 
acceleration regime is established as predicted by Esirkepov [56]. For increasing laser 
intensity the electromagnetic field will eventually start to directly interact with the 
nucleus, thus presumably contributing further to an enhancement of the decay 
probability. In all instances the spatial confinement of particles and radiation emerging 
from laser acceleration will help this particular investigation tremendously. The isotope 

Al26  is only available in minute quantities, which will just allow the production of 
miniature pellet targets or thin layers on backing or radiator materials. The onset of an 
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enhanced transition rate and the coupling of ground and isomeric state via IS can be 
deciphered via the 511 keV annihilation radiation following the +β  of Al26 . 

Fig. 7. Level scheme from [58]: 

9. Conclusions

We have presented a new analytic approach based on the Dual Ginzburg-Landau theory 
in order to calculate the strong-field inside nucleons, thus,  deriving the values of the 
monopoles current , the induction,  the electromagnetic field, the interaction energies 
in/between the electric flux tubes as an  energy encapsulated by the monopoles 
circulation, or of the vortex, and  between these (giant vortex), respectively. 
In the first part we proceed to a review of our  analytical model based on the Dual 
Ginzburg-Landau theory,  founding an equivalence  with that described in the works from 
RCNP-Japan, and  where, also,  is proved  the connection between QCD and the dual 
superconductor scenario.
We provide a detailed analysis of physically important quantities as regarding the 
nucleons substructure as: the uniform chromoelectric field (vortex)  strength inside a 
nucleon, the mass of monopole viewed as  gluons which are the propagators of the QCD 
and carry colour and anti-colour, with an hedgehog-like configuration, or as a results of 
interaction of spin-orbit of the monopole current , or of Rashba field  interaction, all 
giving the same result; the quantification of the interaction energies of one vortex ( ±W ) 
and  of a giant vortex (GV ), as to be encapsulated by the  Abrikosov triangular lattice 
generated by  the coalescence of the flux lines. 
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In the applications, as based on these data, there are calculated: the Higgs boson energy 
release due of two gluons fusion during the pp  collision at LHC,  gluon pair production 
from space-time dependent chromofield due of the collision of pp  and of heavy nuclei; 
Due of very promising results in these applications, but mainly  of  the result of the  value 
of the chromoelectrical field ( mV24103.8 × ) inside the nucleon, as greater than of 
Schwinger critical electric field and of parallel magnetic field around the monopoles  for 

−+ − ee pairs creation by Schwinger effect,  makes possible of  one pair per nucleon to be 
obtained. This pair  supplies the charges balance (missing) making possible the quarks 
conversion ( du → ). 
Thus,  a new understanding of beta decay process is proposed,  when  a pair of  boson 

+− − WW  is simultaneously created due of the Schwinger  effect when the electrical field 
(nonabelian)  is of maximum value,  and near equally with 

±

=≤ W
crEvevE ...0 .  

It was discovered that ... vev  is in fact the Schwinger critical field crE  for a pair of 
±W

production.  This pair decays  in beta-electrons which penetrate the condensate barrier by 

quantum tunneling   due of the phase slip with ϕπ −2  and of a 0Φ  energy release. 
 Also, an  ad-hoc bias current  produces a spontaneous  suppression of the 
superconducting order parameter,  the model is proved for a free neutron decay.  Equally, 
the same   Schwinger pair-production rate is enhanced by a thermal  Boltzmann factor  in 
place of  quantum tunneling, when this  thermalization due  of  the incidence of an high 
thermal spike of a photon with valence nucleons destroys the superconductivity. 
As a numerical application,  is considered   the case of Al26 , through its β-decay to 1.809 
MeV γ-ray, when  at high temperatures ( GKT 42.09 =  ) equilibrium is reached between 

Algs26
 and Alm26

 which is relevant to some high temperature astrophysical events such 
as novae, this being proved by our model.
Thus,  from the model based on bias current  it results a necessary photon flux , and from 
the Schwinger  model results the necessary temperature and the duration  of the thermal 
spike; all these  parameters can be obtained only by the  laser from ELI project (Extreme 
Light Infrastructure) . 

APPENDIX A
Various Abelian Projections

There is an infinite number of abelian projections. In the previous section we have 

considered the 12F̂  abelian gauge. Instead of the diagonalization of the tensor component 
12F̂  by the gauge transformation, we can diagonalize any operator X  which transforms 

under the gauge rotation as follows: ΩΩ→ + XX .  Each operator X  defines an abelian 
projection. At finite temperature one can consider the so-called Polyakov abelian gauge 
which is defined by the diagonalization of the Polyakov line.
The most interesting numerical results are those obtained in the Maximal Abelian (MaA)
gauge. This gauge is defined by the maximization of the functional 
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],ˆ[
max Ω

Ω
AR

 
( ) ( )[ ]∫ +−= 22214]ˆ[ µµ AAxdAR

 ,   
The condition of a local extremum of the functional R  is
( ) 03 =±∂ ±

µµµ AigA                 
Clearly, this condition (as well as the functional ][AR  is invariant under the )1(U  gauge
transformations (7). The meaning of the MaA gauge is simple: by gauge transformations

we make the field µÂ  as diagonal as possible.

From [9], which expresses the total amount of the off-diagonal gluon component, here, 
we have sed the Cartan decomposition,

 
∑

−

=

+⋅==
)1(

1

2ˆ
cc NN

aa AHATAA
α

α
µµµµ



; 
( )

183 2,,,
−

≡
cNTTTH 



 

is the Cartan subalgebra, and ( )cc NNE −= 2,,2,1 αα
 denotes the raising or lowering 

operator.
)3,2,1,21( == aT aa σ , and again αα

µµµ EAHxAA +⋅=


)( .  Usually indicated by the 
Greek letter sigma (σ ), they are occasionally denoted with a tau (τ ) when used in 
connection with isospin symmetries. They are:







==

01
10

1 xσσ , 




 −
==

0
0

2 i
i

yσσ , 





−

==
10

01
3 zσσ

In the abelian gauge, the diagonal and the off-diagonal gluons play different roles in
terms of the residual abelian gauge symmetry: the diagonal gluon behaves as the abelian
gauge field, while off-diagonal gluons behave as charged matter fields. Under the

3)1(U  gauge transformation by 
3

3 )1()
2

exp( Ui ∈−=
τ

ϕω
, one finds 

ϕµµ
ω
µµ ∂+=→

e
AAA 1)( 333

   (15)
ϕ

µ
ϖ
µµ

ieAAA ±±±± =→ )(        (16)

with 
( )21

2
1

µµµ iAAA ±=±

The abelian projection is simply defined as the replacement of the gluon field

)2(
2

suAA
a

a ∈= τ
µµ

 by the diagonal part 
)2()1(

2 3

3
3 suuA ⊂∈=Α τ
µµ

.   

The dual Ginzburg-Landau theory (DGL) theory [6,7],  [10-11],,[12,13],,[14,15],  is 
considered as an infrared effective theory of QCD in the abelian gauge, and is described 

by the diagonal gluon ),( 83
µµµ AAA =



, µB


 and αχ  denote the dual gauge field with two 

components ),( 83
µµ BB  and the complex scalar monopole field, respectively. The label 
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3,2,1=α  corresponds to the color-electric charge, red(R), blue(B) and green(G). In the 

DGL theory, the self-interaction of the QCD-monopole field αχ  is introduced.  At the 
quenched level, the color sources are given as the c-number current, and the heavy qq −  
system provides

[ ])()()( 330 bxaxgQxj −−−= δδµ
α

α
µ



,                      

where αα weQ 
≡  is the abelian color-electric charge of the quark. Here, a  and b  are 

position vectors of the quark and the antiquark, respectively, and αw  is the weight vector 

of )3(SU  algebra, )31,0(),63,21(),63,21( 321 −=−== www .
Hence the weights are

  〉



=












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
≡〉

32
1,

2
1

0
0
1

1w , 〉



 −=


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












≡〉

32
1,

2
1

0
1
0

2w  ,

  〉

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where µB


 and αχ  denote the dual gauge field with two components ),( 83
µµ BB  and the 

complex scalar monopole field, respectively. The label 3,2,1=α  corresponds to
the color-electric charge, red(R), blue(B) and green(G). According to the Gauss law, one 

finds the color-electric field and then the dual gauge field  µB


 is proportional to the 

quark charge αQ


. For instance, when we consider the RR −  system, the dual gauge field 

can be defined by using the weight vector as 
RBwB µµ 1=



.
Finally, from [6], in RR −  system, by introducing the QCD-monopole field 

)3,2,1( =αχ α  and its coupling with the dual gauge fields µB


, the effective dual 
Ginzburg-Landau Lagrangian :

22
222 )ˆ(ˆ)ˆ()(

4
1 vBgiBBLDGL −−+∂+∂−∂−= χλχµµµννµ

  (A.1)
Now, it is known that the Abelian Higgs model is the Mexican-hat model coupled 
to electromagnetism

( )2222)(
4
1),( Φ−⋅+−∂+= ∫ φλφφ µ ν

µ ν iqAFFAS                  (A.2)

If )()( xiex θφ Φ=                                                                          (A.3) 
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with a constant prefactor, then the action for the field )(xθ , i.e., the "phase" of the Higgs 
field )(xΦ , has only derivative terms. 

For the other two color-singlet cases such as the BB −  and the GG −  system, one 
obtains the same expression owing to the Weyl symmetry among three color charges, R, 
B and G. The lagrangian (A.1) has the )1(U gauge symmetry and its form coincides with 
the Ginzburg-Landau theory for superconductivity. This type of lagrangian has the flux-
tube solution such as the Abrikosov vortex.

The classical vacuum is again at the minimum of the potential, where the magnitude of 
the complex field ϕ is equal to Φ . But now the phase of the field is arbitrary, because 
gauge transformations change it. This means that the field )(xθ  can be set to zero by a 
gauge transformation, and does not represent any actual degrees of freedom at all.

Furthermore, choosing a gauge where the phase of the vacuum is fixed, the potential 
energy for fluctuations of the vector field is nonzero. So,  in the abelian Higgs model, the 
gauge field acquires a mass. To calculate the magnitude of the mass, consider a constant 
value of the vector potential A in the x direction in the gauge where the condensate has 
constant phase.
To see this solution, we consider the field equations,

We investigate the solution of the coupled equation of the abelian monopole field )(xαχ  

and the )(xBµ



 field at the tree level, which is analogous to the vortex solution in the 
superconductivity. The solutions for the color-electric field and the QCD-monopole field 
are given by functions of ρ , the distance from the cylindrical axis, and take forms as 

)()()( 83 ρρρ EEEdiag ≡=  and )()()()( 321 ρχρχρχρχ ≡≡≡  in the flux tube.
To see this solution, from [9] result the field equations,

)ˆ(ˆ2)ˆ( 22 χχλχ χµµ ∗−=+∂ vBgi ,                    (A.4)
χχχχχχ µµµµµ ν

ν ∗∗∗∗∗ +∂−∂−=≡∂ BggikF 2ˆ2)(ˆ ,  (A.5)
µννµµ ν BBF ∂−∂≡∗

,                               with the proper boundary conditions that 
quantize the color-electric flux. The flux is given by 

∫ ∫==Φ ∗ µ
µ

µ ν
µ ν σ dxxBdF )( ,                              (A.6)

where 
µ νσ  is a two-dimensional surface element in the Minkowski space. By the polar 

decomposition of the monopole field using two scalar variables, φ  and f  as, 
)()()( xifexx φχ =

We obtain from Eq. (A.5) 

(A.7)

In the Euclidean QCD, the MA gauge is defined so as to minimize the

46

f
g

k
g

B µ
µ

µ φ
∂−=

ˆ
1

ˆ2
1

22



total amount of off-diagonal gluons, 
2

,
4 )(∫ ∑=

αµ
α
µ xAxdRoff , by the )( cNSU  gauge 

transformation. Here, )(xAα
µ  denotes the off-diagonal gluon in the Cartan decomposition, 

αα
µµµ EAHxAA +⋅=


)( . In the MA gauge, by removing the off-diagonal gluons, QCD 

can be well approximated as an abelian gauge theory like the electro-magnetism keeping 
the essence of the infrared QCD properties. This approximation is called as abelian 
projection.
Owing to this remarkable feature of MA gauge fixing, the gluon field can be 
approximated to be abelian as HxATxA aa


⋅≅ )()( µµ for the argument on long-distance 

physics. Accordingly, the field equation of the abelian projected QCD becomes linear 
like the Maxwell equation,

νµ ν
µ jF =∂ ,  νµ ν

µ kF =∂ ~
,                    (A.8)

with the color-electric current µj  and the color-magnetic current µk . Thus, the additivity 
on color-electromagnetic fields µ νF works in the abelian projected QCD in the MA 
gauge. This is the most attractive point of the MA gauge.

APPENDIX B
The calculation of the gluon (monopole) mass 

Before we construct these projection operators, let us consider the general momentum 
dependence of the Green’s functions )(kGab . They are defined as inverse of the 
corresponding  differential operator, here the Klein-Gordon operator 2m+◊ . Thus 

)(),()( 2 xxxxGm ab ′−=′+◊− δ .                            (B.1)
Because of translation invariance, the Green functions depend only on xx ′− . Therefore 
it is convenient to perform a Fourier transformation F and to go to momentum space,

1)()( 22 =− kGmk ab .                                       (B.2)
(Remember )()()( gFfFfgF ⋅= and 1)( =δF  . Thus, the momentum dependence 

)(kGab  is independently of the spin given by

εimk
kGab +−

= 22

1)(   ,,,1, nba =                (B.3)

where we added Feynman’s εi  prescription for causal propagators
A vector field  µA  has four components in  4=D  space-time dimensions, while it has 
only 312 =+s  independent spin components. Thus we have add one constraint equation 
to the four Klein-Gordon equations; the only linear, Lorentz invariant choice is 

0)()( 2 =+◊ xAm µ   and 0=∂ µ
µ A  .                      (B.4)

In momentum space, 0)()( 22 =− kAmk µ  and  0)( =kAk µ
µ . In the rest frame of the 

particle,
)0,(mk =µ , the constraint becomes 00 =A . Hence there clearly only 3 components and 

we can choose the three polarization vectors e.g. as ii e∝ε .
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The two equations can be combined in
0)( 2 =+∂∂−◊ µ

ν
νµµ ν AmAg .                          (B.5)

To show the equivalence of (5) and (4), act first with µ∂  on it,
0)( 2 =∂+◊ ∂−◊∂ µ

µν
νν AmA .                           (B.6)

Hence, (B.5) fulfils automatically the constraint 0=∂ µ
µ A  for 02 >m . On the other 

hand, we can neglect the second term in (5) for 0=∂ ν
ν A  and obtain the Klein-Gordon 

equation. The derivatives ( )− ∇∂=∂ ;0µ , ( ) ◊=∂∂=∇−∂=∂∂∇∂=∂ µ
µµ

µµ
22

0
0 ; , 2∇  is 

the Laplacian and 





∇−

∂
∂=◊ 2

2

2

t
  is the d’Alembertian. Scalar, ϕ , and vector, A


 , 

potentials are introduced via 
, AB


×∇=

The four vector potential ),( AA


ϕµ = ; 22 AAAg


−= ϕνµ
µ ν .The antisymmetric field-

strength tensor µννµµ ν AAF ∂−∂=   with components i
iii EAAF −=∂−∂= 000  and 

kijkijjiij BAAF ε−=∂−∂= . The Levi-Civita symbol ijkε  is antisymmetric under 
exchange of any two indices.
For a massive vector boson (spin 1) field the Proca equation 

ννµ
µ

νν jAmAA =+∂∂−◊ 2)(               (B.7)
is obtained as a Euler-Lagrange eq. emerging from the Lagrangian

µ
µ

µ
µ

µ ν
µ ν AjAAmFFL −+−= 2

2
1

4
1

                (B.8)

after expressing the field-strength tensor, µ νF , in terms of the four potential µA .
The Maxwell field is a massless )0( =m   Proca field.
If the source current is conserved )0( =∂ ν

ν j or if there are no surces )0( =νj  follows 
that 0=∂ ν

ν A .
The field eq. gets simplified 0)( 2 =+◊ νAm  for free particles, leading to four Klein-
Gordon eqs. for projections.

Propagator for spin-1 fields 

The propagator for a spin-1 field is determined by
[ ] )()()( 2 xxDmg δδ µ

λν λ
νµµ ν =∂∂−+◊ .                     (B.9)

Inserting the Fourier transformation of the propagator gives
[ ] µ

λν λ
νµµ ν δ=++− )()( 22 kDkkgmk                     (B.10)

The tensor structure of )(kDµ ν  has to be of the form

νµµ νµ ν kBkAgkD +=)(              (B.11)
with two unknown scalar functions A and B.
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Factoring out 2k−  and inserting the above ansatz for )(kDν λ , we obtain the propagator 
for a massive spin-1 field by adding the two terms produced by the µ νgm2  term to the 
case of Klein-Gordon equation )0( =m  and introducing (B.11) in  (B.10). 
[ ][ ] µ

λλνν λ
νµµ ν δ=+++− kBkAgkkkgmk 222 )(  

µ
λλ

µµ
λλ

µµ
λ δδδ =+++− kkBmAmkAkAk 222      

µ
λλ

µµ
λ δδ =++−− kkBmAmkA )()( 222        (B.12)

or )(1 22 mkA −−=  and [ ])(11 2222 mkmmAB −=−= . (B.13)
Thus the massive spin-1 propagator follows as

 
ε

νµµ ν
µ ν

imk
mkkgkDF +−

+−= 22

2

)( .          (B.14)

 Massive Vector Boson Propagator
In this section, we investigate the propagator of the massive vector boson in the 
Euclidean metric for the preparation of the analysis on the efective gluon mass in the MA 
gauge in the Euclidean lattice QCD. We start from the Lagrangian of the free massive 
vector boson with mass M in the Proca formalism following the works  [21-24].

µµµννµ AAMAAL 22

2
1)(

4
1 +∂−∂=  (B.15)

in the Euclidean metric. For the massive case of 0≠M , the propagator );(~ MkGµ ν of the 
massive vector boson is derived  from eq.(B.14) , changing Mm = , as:
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
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
+

+
≡ 222

1);(~
M

kk
Mk

MkG νµ
µ νµ ν δ (B.16)

in the momentum representation .  The propagator );(~ MxGµ ν  in the coordinate space is 
obtained by performing the Fourier transformation as
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Since );( MrGµ ν  depends only on the four-dimensional distance 2
1

)( µµ xxr ≡ , itis 

convenient to examine the scalar-type propagator,
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for the study of the interaction range. To carry out the calculation of );( MrGµ ν , we take 
)0,0,0,(rx =µ  without loss of generality, and then the integration in Eq.(B.18) is found to 

be expressed with )(1 zK
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using the integration formula for the modified Bessel function,

∫
∞ − −≡

1

2
1 1)( tdtezzK zt , )0( >ℜ z                    (B.20)

Thus, the scalar-type propagator );( MrGµ µ  can be expressed as

)(1)(
4

1);( 4
212 x

M
MrK

r
MMrG δ

πµ µ +=            (B.21)

In the infrared region, the asymptotic expansion 

( ) nn
Mr

Mrnn
ne

Mr
MrK

2
1

)23(!
)23(

2
)(

01 ∑ ∞

=
−

−Γ
+Γ≅ π

is applicable for large Mr , 

∑
≠

−+ 〉〈=≡
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aach yAxAyAxArG µµµµµ µ

{ })()(()(
6
1)()()( 22112 yAxAyAxAAyAxArG poloidal

ch
µµµµµµµ µ ++=≅≡ −+

Here, in the Euclidean QCD, the MA gauge is defined by minimizing the global amount 

of the off-diagonal gluon, [ ][ ]{ } 2

1

4
2

4
2

2
,ˆ,ˆ ∫ ∑∫

−

=

⊥
=≡

cc NN

off AxdeHDHDtrdxR
α

α
µµµ


  

Here, we have used the Cartan decomposition, α
α

α
µµµ ExAHxAxA cc NN )()()(

2

1∑ −

=
+⋅≡


 and 

the covariant derivative operator µµµ ieAD +∂= ˆˆ . In the MA gauge, off-diagonal gluon 

components are forced to be as small as possible, and then the gluon fieeld )(xAµ mostly 

approaches to the abelian gauge field  HxA


⋅)(µ  .
For the infinitesimal gauge transformation )(1)( )( xiex xi εε +≅≡Ω  with )()( cNsux ∈ε  
From the extremum condition 0=−≡ Ω

offoffoff RRRδ  for the arbitrary infinitesimal 
variation )()( cNsux ∈ε , we derive the local gauge-fixing condition in the MA gauge as
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[ ][ ][ ] 0,ˆ,ˆ, =HDDH


µµ , 
which leads to
( ) 03 =±∂ ±

µµµ AeAi  in )2(SU  QCD  for the 2=cN  case. Thus, the operator Φ  to be
diagonalized in the MA gauge is found to be

[ ] [ ][ ]HDDA


,ˆ,ˆ
µµµ =Φ                (B.26)

in the continuum theory.
Next, we calculate the scalar-type propagator )(rGµ µ  as the function of the 

fourdimensional distance 2)( µµ yxr −=  in the MA gauge with the U(1)3-Landau 
gauge.
In this gauge, )(sU µ  is determined without the ambiguity on local gauge transformation.
Here, we study the scalar-type propagator of the diagonal (neutral) gluon as

)()()( 33 yAxArG Abel
µµµ =  and that of the off-diagonal (charged) gluon as

{ })()(()(
2
1)()( 2211 yAxAyAxAyAArG ch

µµµµµµµ µ ++=≡ −+

with the charged gluons { })()(
2

1 21 xiAxAA µµµ ±=± . In )(rG ch
µ µ , the imaginary

part, { })()()()(
2

1221 yAxAyAxAi
µµµµ −− ,  disappears automatically due to the symmetry

)()()()( 1221 yAxAyAxA µµµµ =

and ( ) 03 =±∂ ±
µµµ AeAi

Therefore, the eq.(B.21) reduces to
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or,
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, where ][16.2 mexr −== , and the “poloidal” nonabelian electric field  it could be 

expressed also as 3
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Therefore, (B.22) becomes: 
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At the distance fmyxr 2.02)( 2 ≅≅−≡ λµµ , results by trials: 
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, just as it was supposed before.

where the Yukawa-type damping factor Mre −  expresses the short-range interaction in the 
coordinate space. 
In the lattice calculation [6], the mass M  of the vector field )(xAµ is estimated from the 

slope in the logarithmic plot of );(
23

MrG
M

r
µ µ  as the function of r ,

.);(ln
23

constMrMrG
M

r +−≅








µ µ              (B.23)

Next, we calculate the scalar-type propagator )(rGµ µ  as the function of the 

fourdimensional distance 2)( µµ yxr −=  in the MA gauge with the U(1)3-Landau 
gauge.
In this gauge, )(sU µ  is determined without the ambiguity on local gauge transformation.
Here, we study the scalar-type propagator of the diagonal (neutral) gluon as

)()()( 33 yAxArG Abel
µµµ =  and that of the off-diagonal (charged) gluon as

with the charged gluons { })()(
2

1 21 xiAxAA µµµ ±=± . In )(rG ch
µ µ , the imaginary

part, { })()()()(
2

1221 yAxAyAxAi
µµµµ −− ,  disappears automatically due to the symmetry

)()()()( 1221 yAxAyAxA µµµµ =

and ( ) 03 =±∂ ±
µµµ AeAi

As shown in Fig.1 of ref. [22, the diagonal-gluon propagator )(rG Abel
µ µ  and the charged-

gluon propagator )(rG ch
µ µ manifestly differ in the MA gauge. The off-diagonal (charged)

gluon ±
µA  seems to propagate only within the short range as fmr 4.0≤ , while the

diagonal gluon 3
µA  propagates over the long distance. Thus, we find the `infrared

abelian dominance' for the gluon propagator in the MA gauge.
Now, let us examine the hypothesis on the mass generation of charged gluons in
the MA gauge. To this end, we investigate the logarithm plot of )(23 rGr ch

µ µ  as the
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function of r , since the massive vector boson with the mass M behaves like 

23

)exp()(
r

MrrG ch −≈µ µ  as shown in (B.22). In Fig.2 of ref. [22], the charged gluon 

correlation { } 2123 ][)(ln GeVrGr ch
µ µ

decreases linearly in the region of fmr 12.0 ≤≤ . Hence, )(rG ch
µ µ  behaves as the

Yukawa-type function

23

)exp(
)(

r
rM

rG chch −
≈µ µ ,  (B.24)

in the MA gauge. From the slope of the straight line in Fig.2 ref. [6], it was  estimated the 
effective mass chM of the charged gluon as 

GeVfmM ch 94.07.4 1 ≅≈ −  (B.25)
Following [6], this charged-gluon effective mass chM  is considered to be induced by the 
MA gauge fixing. Due to the effective mass GeVM ch 1≅ , the charged gluon propagation 
is restricted within about fmM ch 2.01 =− . Then, in the infrared region as fmr 2.0> > , the 
charged gluons ±

µ µA  cannot contribute, and only the diagonal gluon 3
µA  can contribute to 

the long-range physics in the MA gauge. In conclusion, the effective-mass generation of 
the charged gluon in the MA gauge is considered as the physical origin of the abelian 
dominance in the infrared region.
Then, the origin of the infrared abelian dominance has been physically explained as the 
generation of the charged gluon mass chM  induced by the MA gauge fixing. On the other 
hand, in the MA gauge, the charged gluon effects become negligible and the system can 
be described only by the diagonal gluon component at the long distance as 

fmMr ch 2.01 ≅> > − . For the short distance as fmMr ch 2.01 ≅≤ − , the effect of charged 
gluons appears, and hence all the gluon components have to be considered even in the 
MA gauge.
As is said in [6], “to see the difficulty on the nonabelian property of QCD, let us consider 
the simple electro-magnetic system. In the ordinary electro-magnetism, we can 
individually consider the partial electro-magnetic field formed by each charge, and the 
total electro-magnetic field can be obtained by adding these individual solutions. Here, 
additivity of the solution plays the key role, and this additivity originates from the 
linearity of the field equation, νµ ν

µ jF =∂ , in the electro-magnetism” .
The nonabelian nature is one of the characteristic features of QCD. However, by taking 
the maximally abelian (MA) gauge in QCD, one can make the nonabelian (off-diagonal) 
ingredients of QCD inactive for the infrared QCD properties such as quark confinement 
and chiral-symmetry breaking. They [6], [22,23] call these phenomena as the infrared 
abelian dominance in the MA gauge. 

The structure of the color-magnetic monopole

There remains large off-diagonal gluon component near the monopole center
Here, even in the MA gauge, where the off-diagonal gluon element is strongly 
suppressed, around monopoles, there remains large off-diagonal gluon component. This 
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off-diagonal-gluon-rich region around the monopole provides an “intrinsic size” and the 
structure of the monopole as shown in Fig.3(b) from ref. [6], like the ’t Hooft-Polyakov 
monopole, at a large scale where this structure becomes invisible, QCD-monopoles can 
be regarded as point-like Dirac monopoles.
Here,  

gvmB 3=  and vm λχ 2=        (B.26)

are the masses of the dual gauge field µB  and the monopole field [ ] )3,2,1( == αχ α v , 
The label 3,2,1=α corresponds to the color-electric charge, red(R), blue(B) and 
green(G), as  from [16].
We consider the case of Bmm >χ  corresponding to the type II superconductor. The 
color-electric field )(ρdiagE  takes a large value only in a region of 1−≤ Bmρ , and 
therefore the cylindrical radius of the hadron flux tube is roughly given by 1−

Bm  . One 
finds the reduction of the QCD-monopole condensate )(ρχ  in the central region of 

1−≤ χρ m  in the flux tube. The QCD-monopole condensate is regarded as an almost 

constant value v , v≅)(ρχ , for the infrared region 1−≥ χρ m . On the contrary, the QCD-

monopole condensate almost disappear, 0)( ≅ρχ   for the ultraviolet region 1−≤ χρ m and 
therefore the ultraviolet cutoff appears in Bm .
These inverse masses , fmm 12.01 =−

χ and fmmB 39.01 =−   are regarded as the coherent 
length of the monopole field and the penetration depth of the color-electric field, 
respectively.
The ratio of these two lengths gives the Ginzburg-Landau (GL) parameter, 

gm
mB

ˆ

ˆ2
1

1 λκ
χ

== −

−

                                     (B.27)

In [6] are used:  λλ ˆ2= , µµ BB R 3= , χχ =R , gg ˆ
3

2≡ , vv ˆ
2

1≡

GeVvgeg 098.0;66;3.44;9.2 ===== λπ , results GeVm 6.1=χ , and GeVmB 5.0=
In the MA gauge, the off-diagonal gluon contribution can be neglected and monopole 
condensation occurs at the infrared scale of QCD. Therefore, the QCD vacuum in the MA 
gauge can be regarded as the dual superconductor described by the DGL theory, and 
quark confinement can be understood with the dual Meissner effect.
APPENDIX C
Alternative ways  for monopole mass calculation:
The  derivation of the Rashba Hamiltonian

The Rashba effect [36] is a direct result of inversion symmetry breaking in the direction 
perpendicular to the two-dimensional plane. Therefore, let us add to the Hamiltonian  a 
term that breaks this symmetry in the form of an electric field

zEH E 0−=                                (C.29)
Due to relativistic corrections an electron moving with velocity v  in the electric field will 
experience an effective magnetic field B
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( ) 2cEvB ×=                             (C.30)
This magnetic field couples to the electron spin [36]

( ) σµ
⋅×= Ev

c
H B

SO 22
                 (C.31)

, where the factor 1/2 is a result of the Thomas precession. 
The Rashba field RE  exists at the interface and creates the monopole current mj near the 
interface. The width of the monopole current distribution, d, is comparable to the decay 
length of the magnetization at the interface. The monopole current induces the electric 
current j  via Ampe`re’s law at the interface.
Within this toy model, the Rashba Hamiltonian is given by

  (C.32)

where 2
0

2mc
EB

R
µα =  , 1=σ  from Pauli matrix, Tp transverse 

magnetic moment of the monopole (gluon around); 0E -the electric field induced by an 
quarks pair qq ; m -the mass of the monopole. With ][7.0 GeVcpT =⋅ as calculated 
below, and with ][2433.80 CNeE = , result: 92.3 eR =α , and ][092.1 JeH R −= , 
respectively.
The magnetic moment of the electron is



Sg
m Bs

s
µ

−=                                    (C.33)

where
][1027.9 124 −−×= JTBµ ,  μB is the Bohr magneton, 2=S  is electron spin,

and the g-factor sg is 2   according to Dirac’s theory, but due to quantum electrodynamic 
effects it is slightly larger in reality: 002.2 , for a muon 2=g .
The Bohr magneton is defined in Si  units by

e
B m

e
2
=µ                                       (C.34)

The vector potential of magnetic field produced by magnetic moment Mom  is

3
0

4
)(

r
rm

rA Mo
×

=
π

µ
                         (C.35)

and magnetic flux density is
      (C.36)

( ) 2
0

2

04
4 r

Ac
c

dr
dBcje

ε
επ

π
−=−=  

(C.37)
We can calculate the observable spin magnetic moment (a vector), Sµ , for a sub-atomic 
particle with charge q , mass m , and spin angular momentum (also a vector), s , via:

s
m
qgS



2
=µ
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Therefore, for a monopole 
Mo

Mo m
gQe
2

=µ , 5.68=Q  , 
 =s , 2≅g   (C.38)

And     Mo
Mo

Mo
Sm µµ

≅−=


                  (C.39)

Numerically, results: ][257.2 TJeMo −=µ , ][6.0 ANA = , 
][1586.2 2AmJerAB == ,                 (C.40)

if we  consider fmr 2.0=  results
][45.2][109.3 GeVMJeH monopoleSo =→−= , and the electric

 current is ][72.1 2fmAeje =  which is comparable with the magnetic current 
][715.1 2fmAej =ϕ , as from eq. (35.2).

The Rashba interaction contributes to the DC monopole current at the interface [36].
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