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Information Relativity Theory Solves the Twin Paradox Symmetrically  

Abstract 

The Twin Paradox is one of the most fascinating paradoxes in physics. In Special Relativity, the 

paradox arises due to the nonexistence of a preferred frame of reference, resulting in both twins 

observing that he or she is younger than the other twin. Nonetheless, it is commonly agreed that 

the "traveling" twin returns younger than the "staying" twin. The prevailing solution is obtained 

by deviating from the relativity principle and assuming that the "staying" twin's frame is 

preferred over the "traveling" twin's frame. Here I describe a newly proposed relativity theory, 

termed Information Relativity (IR) and show that it solves the twin paradox symmetrically, with 

the twins aging equally.  

Keywords: Twin Paradox, Relativity, Information, Time Dilation, Ontic, Epistemic.  

 

Introduction 

The Twin Paradox is undoubtedly the most famous thought experiment in physics. The 

enormous literature about it renders any attempt to review it almost impossible. In the Twin 

Paradox, one of two twins stays on Earth while the other twin travels at near the speed of light to 

a distant star and returns to earth. According to Special Relativity, the twin who stayed on earth 

will measure a time dilation given by 
𝑡

 𝑡′
 =  1 √1 − (

𝑣

𝑐
)2⁄  , where t and  𝑡′ are the durations of the 

round trip from earth and back, measured in the internal frames of the remaining and the 

traveling twins, respectively; v is the spaceship velocity and c is the velocity of light. The 

paradox lies in the fact that from the point of view of the traveling twin, the "staying" twin is the 

one experienced as distancing away and then returning back with the same relative velocity v. 

Thus, the traveling twin will measure an equal time dilation of 
 𝑡′

𝑡
 =  1 √1 − (

𝑣

𝑐
)
2

⁄  = 
𝑡

 𝑡′
 . 

Hence the paradox, since upon their reunion, each of the twins will find the other one younger 
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than him- or herself. It is worth noting that a similar argument was proposed more than half a 

century ago by the late Herbert Dingle, who served as president of the Royal Astronomical 

Society. In a paper published in 1962 in Nature [1], and in several subsequent writings [2-4], 

Dingle argued that the theory of Special Relativity leads to inconsistency. According to Dingle, 

"Einstein deduced, from the basic ideas of his theory that a moving clock works slower than a 

stationary one. By a similar line of reasoning I deduced from the same basic ideas that the same 

moving clock works faster than the same stationary one. Hence the theory, since it entails with 

equal validity two incompatible conclusions, must be false". ([2], p. 41). Dingle posited that the 

inconsistency of Special Relativity stems from Einstein's attempt to reconcile his theory with 

Lorentz's electrodynamics. In Dingle's words, "Einstein, in 1905, proposed an amendment of 

mechanics, the effects of which, however, would be perceptible only at velocities far beyond 

practical realization. If the amendment were justified it would succeed in making the 

electromagnetic equations, like those of mechanics, relativistic, and so remove the 

incompatibility; but, clearly, the only possible test of such a theory was a mechanical one. It was 

framed in order to justify electromagnetic theory, so that to use electromagnetic theory to justify 

it would be to argue in a circle" ([2], p. 49). Dingle concludes that "The alternative, that the laws 

of electromagnetism need reformulation, thus appears almost inescapable, and indeed, quantum 

phenomena have long been telling us this—though, in view of the apparent justification of the 

Maxwell-Lorentz theory by special relativity, attempts have naturally been concentrated (without 

success) on the attempt to reconcile it with such phenomena instead of on the formulation of 

fundamentally new laws" ([2], p. 59).  

Dingle's critique was countered by many physicists and was eventually ignored. The prevailing 

solution of the paradox is one which prescribes that the "traveling" twin returns younger than the 

"staying" twin. This solution was proposed by Albert Einstein himself, first within the 

framework of Special Relativity, and later within the framework of General Relativity. In his 
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famous 1905 paper [5], although calling SR's answer a ‘peculiar consequence’ (eigent ümliche 

Konsequenz), Einstein stated that the traveling brother is the one to become younger. According 

to Einstein, this solution is independent of whether the travel-path is comprised of straight lines 

or of a closed curve of any shape. In Einstein's words: ‘If there are two synchronous clocks at A, 

and one of them is moved along a closed curve with constant velocity [v] until it has returned to 

A, which takes, say t seconds, then this clock will lag on its arrival at A by 
1

2
 𝑡 (

𝑣

𝑐
)2 seconds 

behind the clock that has not been moved’ [5]. 

Several studies [e.g., 6, 7] has pointed that the essence of the Twin Paradox is the impossibility 

of simultaneity between the clocks of the two twins. But why should time dilation work in favor 

of the traveling twin, who becomes younger? This question could not be explained only by 

reference to the impossibility of simultaneity. Einstein justified his solution using an example in 

which one observer is located on the Earth's equator and the other is located at one of Earth's 

poles. According to Einstein, "a balance-wheel clock (Unruhuhr) that is located at the Earth’s 

equator must be very slightly slower than an absolutely identical clock, subjected to otherwise 

identical conditions, that is located at one of the Earth’s poles" [8]. This solution of the paradox 

assumes arbitrarily that the clock at the pole is "stationary", while the clock at the equator is the 

"moving" one. Such assumption is in complete contradiction with the principle of relativity, 

according to which an observer at the internal frame of the equator, will observe that the 

equator's clock is "stationary", while the pole's clock is "moving". In fact, the example brought 

by Einstein is irrelevant to the twin paradox, since in the paradox the two clocks should start 

from one location, from which the "traveling" clock moves in a closed curve and returns to the 

internal frame of the "staying" clock.  

Einstein's confidence in his solution of the paradox, namely that the twin in the spaceship will 

return younger, has made him go as far as to speculate about the possibility of utilizing the time 

dilation on earth for a possible construction of a time-dilation machine. In a speech delivered in 
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1911 at the Naturforschende Gesellschaft in Zurich, Einstein is quoted to have said: "Were we, 

for example, to place a living organism in a box and make it perform the same to-and-fro motion 

as the clock discussed above, it would be possible to have this organism return to its original 

starting point after an arbitrarily long flight having undergone an arbitrarily small change, while 

identically constituted organisms that remained at rest at the point of origin have long since 

given way to new generations" [9]. 

The main point here is that the Twin Paradox is unsolvable within the framework of special 

Relativity, unless we make the assumption of a preferred frame of reference, which stands in 

diametrical opposition to the mere principle of relativity. In the Earth's pole-equator example, 

relativity implies that while an observer located at the pole will observe that the observer at the 

equator is rotating with an angular velocity w (or velocity v = w R, where R is the Earth radius at 

the equator), the observer located at the equator will observe that the one at the pole is rotating in 

an opposite direction with the same velocity. 

Other attempts to solve the twin paradox evoke the relativity of accelerating frames. As 

mentioned before, Einstein himself, after developing General Relativity, resorted to this 

explanation in 1918, when he argued that since one of the clocks is in an accelerated frame of 

reference, the postulates of the Special Theory of Relativity do not apply to it and so ‘no 

contradictions in the foundations of the theory can be construed’ [6, 10]. More recent attempts 

which evoke General Relativity are aplenty [e.g., 11-14].  

The acceleration argument, although reverted to by Einstein, could be easily dismissed by 

making the distance between Earth and the remote star long enough to render the acceleration 

effect arbitrarily small [15]. Moreover, any solution based on an acceleration effect could be 

dismissed on the bases of symmetry. In the absence of a preferred frame of reference, the 

reversal of the direction of movement is also relative, with no way to determine who turns 
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around and who does not. This implies that any possible effect of acceleration should be 

canceled out.       

Other solutions of the paradox in the framework of circular [e.g., 16] or another closed-curve 

motion will not be reviewed here. In fact, solution of the paradox in a linear motion seems 

sufficient, since its extension to the case of angular motion is quite straightforward. 

Here I propose a solution to the paradox, based on a new theory of relativity for inertial systems, 

termed: Information Relativity (IR). The theory, detailed elsewhere [17-18] diverges from 

Einstein's view of relativity in a most fundamental way. Whereas, Einstein's view of relativity 

dictates, as a force majeure, an ontic view, according to which relativity is a true state of nature, 

IR adopts an epistemic approach, by viewing relativity as difference in knowledge about Nature 

between observers who are in motion relative to each other. Within this new framework of 

relativity, we ask what information an observer in a "stationary" reference frame will receive 

concerning some physical measurement taken by a second observer in the "moving frame,” 

knowing the information carrier the observer transmitted from the "moving frame" to his/her 

frame travels with constant velocity 𝑉0 , (𝑉0 > v). 

Note the above-described setup is universal. It supposes two reference frames moving with 

respect to each other while communicating information about observables measured in one 

reference frame to the other. Except for the specific measurements taken by an observer in his or 

her rest frame, and the two velocities, v and  𝑉0 ,  no additional information is known to us. We 

also do not make any pre-assumption. 

We ask what the value an observer in reference-frame F will infer from the information he or she 

receives from an observer in reference frame 𝐹′ regarding a physical measurement conducted in 

reference-frame 𝐹′. For the above described framework the theory yields a system of 

transformations that differs completely from those of SR (for details see [17-18]). Since we are 

interested here in the time transformation, we detail its derivation hereafter. 
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Derivation of the Time Transformation 

We consider a simple preparation in which the time duration of an event, as measured by an 

observer A who is stationary with respect to the point of occurrence of the event in space, is 

transmitted by an information carrier which has a constant and known velocity 𝑣𝑐, to an observer 

B who is moving with constant velocity 𝑣 with respect to observer A. We make no assumptions 

about nature of the information carrier, which can be either a wave of some form or a small or 

big body of mass. Aside of the preparation describes above and the measurements taken by each 

observer, throughout the entire analysis to follow, no further assumptions are made. This also 

means that we do not undertake any logical steps or mathematical calculations unless 

measurements of the variables involved in such steps or calculations are experimentally 

measurable. 

We ask: what is the event duration time to be concluded by each observer, based on his or her 

own measurements of time? And what could be said about the relationship between the two 

concluded durations? 

In a more formal presentation, we consider two observers in two reference frames 𝐹 and 𝐹′. For 

the sake of simplicity, but without loss of generality, assume that the observers in 𝐹 and  𝐹′ 

synchronize their clocks, just when they start distancing from each other with constant 

velocity 𝑣, such that 𝑡1 = 𝑡1
′ =0, and that at time zero in the two frames, origin points of were 𝐹 

and  𝐹′ were coincided (i.e., 𝑥1=𝑥1
′ = 0).  

Suppose that at time zero in the two frames, an event started occurring in 𝐹′at the point of origin, 

lasting for exactly Δt′ seconds according to the clock stationed in 𝐹′, and that promptly with the 

termination of the event, a signal is sent by the observer in 𝐹′ to the observer in 𝐹.  

After Δt′ seconds, the point at which the event took place stays stationary with respect 𝐹′ (i.e., 

𝑥2
′ =𝑥1

′= 0), while relative to frame 𝐹 this point would have departed by 𝑥2 equaling:  
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𝑥2= 𝑣 Δ𝑡 ′                                       ……. (1) 

The validity of eq. 1 could be checked and verified by more than one operational, i.e., 

experimentally feasible methods: For example, if the two observers meet any time after the event 

has terminated, then the observer in 𝐹 will be able to read the time of the event as registered by 

the clock stationed in 𝐹′ and learned what the duration of the event in 𝐹′, for which the event 

was stationary. Another operational way by which the observer in 𝐹 can infer about the actual 

time of travel until the event terminated and the signal was sent is by mimicking the even in 𝐹 by 

having an identical event with the same duration (in its inertial frame), start promptly with the 

even in  𝐹′. It is important to note that the above two operational suggestions presume the rule 

stating that the laws of nature are the same in the two frames. In the first example, the above 

restriction leaves no possibility for the observer in 𝐹 to suspect that the reading of the clock 

stationed 𝐹′ in e time duration of the event in reading of the clock at 𝐹′ (in the first example), or 

to suspect that a time registered by a clock at his/her own frame 𝐹 will differ by the time that will 

be registered for an identical event, by an identical clock placed in 𝐹′.        

If the information carrier sent from the observer in 𝐹′ to the observer in 𝐹 travel with constant 

velocity 𝑉𝐹 relative to 𝐹, then it will be received by the observer in 𝐹 after a delay of: 

𝑡𝑑 = 
𝑥2

𝑉𝐹
=  

𝑣 Δt′  

𝑉𝐹
  =  

𝑣 

𝑉𝐹
  𝛥𝑡 ′                            ……. (2) 

Since 𝐹′ is distancing from 𝐹 with velocity v, we can write: 

𝑉𝐹 = 𝑉0 – 𝑣                                                     …… (3) 

Where 𝑉0 denotes the information carrier's velocity in the rest-frame 𝐹′. Substituting the value of 

𝑉𝐹 from eq. 3 in eq. 2, we obtain: 
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𝑡𝑑  = 
𝑣 Δt′  

𝑉0  – 𝑣   
  =  

 1

 
𝑉0
𝑣

– 1   
 𝛥𝑡 ′                          …… (4) 

Due to the information time delay, the event's time duration Δt that will be registered by the 

observer in 𝐹 is given by: 

Δt = Δ𝑡 ′ + 𝑡𝑑=Δ𝑡 ′ + 
 1

 
𝑉0
𝑣

– 1   
 Δt′=(1 + 

 1

 
𝑉0
𝑣

– 1    
) Δt′=(

 
𝑉0
𝑣

 
𝑉0
𝑣 – 1  

) = ( 
1

 1– 
𝑣
𝑉0

   
) Δt′  …(5) 

Or: 

Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 
𝑣

𝑉0
   
                                                   … (6) 

Or:  
Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 𝛽
                      ….(7) 

Where β = 
𝑣

𝑉0
,  and 𝑉0 is the velocity of the information carrier as measured in the rest-frame. 

For 𝑣 << 𝑉0 the time transformation in eq.7 reduces to the classical Newtonian equation Δ𝑡 = 

Δ𝑡′,  while for 𝑣 → 𝑉0, Δ𝑡 → ∞ for all positive Δ𝑡′. 

Quite interestingly, eq. 7 derived for the time travel of moving bodies with constant velocity is 

quite similar to the Doppler's Formula [19-20] derived for the frequency modulation of waves 

emitted from traveling bodies. Importantly, in both cases the direction of motion matters. In 

the Doppler Effect a wave emitted from a distancing body will be red-shifted (longer 

wavelength), whereas a wave emitted from an approaching body with be blues-shifted (shorter 

wavelength). In both cases the degree of red or blue shift will be positively correlated with the 

body's velocity. The same applies to the time duration of an event occurring at a stationary point 
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of a moving frame. If the frame is distancing from the observer, time will be dilated, whereas if 

the frame is approaching the observer will contract.  

It is especially important to note further that the above derived transformation applies to all 

carriers of information, including the commonly employed acoustic and optical communication 

media. For the case in which information is carried by light or by electromagnetic waves with 

equal velocity, equation (6) becomes: 

Δ𝑡 

  Δ𝑡′  
 =  

1

 1– 
𝑣

𝑐
   

                                 ….. (8)  

Since an objection might be raised for the cases of information translation by means of light or 

other waves with equal velocity, such objection could be avoided by restricting the theoretical 

model derived above to wave propagation in mediums that are not a vacuum, which in fact the 

case in almost all physical situations of interest.  

Information Relativity Solution of the Twin Paradox 

To apply IR to the twin paradox, consider the example in Fig.1, in which one twin (Joe) stays at 

Earth (the "staying twin), and the other twin (Jane, the "traveling" twin) travels at high velocity 

to a very distant star and returns back to Earth at the same velocity. For convenience, in the two 

frames of reference F and 𝐹′, I denote the times of flight away from Earth by  𝑡𝑖, with an arrow 

above pointing rightward, and the times of flight towards Earth by 𝑡𝑗
′, with an arrow above 

pointing leftward. Now assume that the travel start times, relative to Earth (F) and to the 

spaceship (𝐹′), are synchronized such that   𝑡1⃗⃗ ⃗⃗  ⃗ = 𝑡1′⃗⃗ ⃗⃗ . Furthermore assume that upon the arrival of 

Jane at the distant star, a signal is sent from the star to Joe's station at Earth, indicating the arrival 

of Jane to the star. To solve the paradox I treat the paths Earth → Star and Star → Earth, each in 

turn. 
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Figure 1: Twin Paradox 

 

1. Earth → Star    

The signal indicating the arrival of Jane at the star will arrive at Earth with a delay of  
𝑑

𝑐
  s., where d 

is the distance between Earth and the star, and c is the velocity of light (both measured at the Earth's 

frame). 

Denote by   𝑡2⃗⃗ ⃗⃗  ⃗  and 𝑡2′⃗⃗ ⃗⃗  Jane's arrival times at the star, as measured by the "staying" and the 

"travelling" twins, respectively. We can write   𝑡2⃗⃗ ⃗⃗  ⃗ = 𝑡2′⃗⃗ ⃗⃗   + 
𝑑

𝑐
, or:  

𝑡2′⃗⃗ ⃗⃗   =   𝑡2⃗⃗ ⃗⃗  ⃗ - 
𝑑

𝑐
                                                       ….. (9) 

We also have 

  𝑡1⃗⃗ ⃗⃗  ⃗ = 𝑡1′⃗⃗ ⃗⃗                                                              ….. (10)  

2. Star → Earth    

The "staying" twin receives the signal indicating that the "travelling" twin has departed from the 

distant star with delay of  
𝑑

𝑐
. This makes him conclude that his "travelling" twin has departed from the 

star later by 
𝑑

𝑐
  s. than the time measured by the travelling twin. Denote the return-trip's start time as 

F 

𝐹′ 

𝑭′ 

+ x 
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measured by the "staying" and the "travelling" twins by  𝑡3⃖⃗ ⃗⃗  ⃗ and  𝑡3
′⃖⃗⃗⃗  , respectively, and the respective 

arrival times to Earth by  𝑡4⃖⃗ ⃗⃗⃗  and 𝑡4
′⃖⃗⃗⃗  . We can write  𝑡3⃖⃗ ⃗⃗⃗  = 𝑡3

′⃖⃗⃗⃗  + 
𝑑

𝑐
 , or: 

 𝑡3
′⃖⃗⃗⃗  =  𝑡3⃖⃗ ⃗⃗⃗  - 

𝑑

𝑐
                                    ….. (11) 

  

We also have: 

 𝑡4⃖⃗ ⃗⃗  ⃗ = 𝑡4
′⃖⃗⃗⃗                                                                ….. (12) 

3. Earth → Star → Earth   

The total time measured by the "staying" brother is: 

 (  𝑡2⃗⃗ ⃗⃗  ⃗ -   𝑡1⃗⃗ ⃗⃗  ⃗ ) + (  𝑡4⃖⃗ ⃗⃗⃗  -  𝑡3⃖⃗ ⃗⃗⃗ )                                    ….. (13) 

While the total time measured by the "travelling" brother is: 

(𝑡2
′⃗⃗  ⃗ - 𝑡1′⃗⃗ ⃗⃗  ) + (𝑡4

′⃖⃗⃗⃗  - 𝑡3
′⃖⃗⃗⃗  )                                      .... (14) 

Substituting the values of 𝑡1
′⃗⃗  ⃗ , 𝑡2′⃗⃗ ⃗⃗  , 𝑡3

′⃖⃗⃗⃗   and 𝑡4
′⃖⃗⃗⃗   from Eq. 9-12 in 14 we get: 

(𝑡2
′⃗⃗  ⃗ - 𝑡1′⃗⃗ ⃗⃗  ) + (𝑡4

′⃖⃗⃗⃗  - 𝑡3
′⃖⃗⃗⃗  ) = ((  𝑡2⃗⃗ ⃗⃗  ⃗ - 

𝑑

𝑐
 ) -   𝑡1⃗⃗ ⃗⃗  ⃗) + ( 𝑡4⃖⃗ ⃗⃗⃗  - (  𝑡3⃖⃗ ⃗⃗  ⃗-  

𝑑

𝑐
 ))  

=  (  𝑡2⃗⃗ ⃗⃗  ⃗ -   𝑡1⃗⃗ ⃗⃗  ⃗ ) + ( 𝑡4⃖⃗ ⃗⃗  ⃗ -  𝑡3⃖⃗ ⃗⃗⃗ ) -  
𝑑

𝑐
 + 

𝑑

𝑐
 = (  𝑡2⃗⃗ ⃗⃗  ⃗ -   𝑡1⃗⃗ ⃗⃗  ⃗ ) + (  𝑡4⃖⃗ ⃗⃗⃗  -  𝑡3⃖⃗ ⃗⃗⃗ )                                     ….(15) 

Thus, the twins age equally. 

Obviously, the solution presented here contradicts the widely accepted solution, according to which 

the "traveling" twin returns younger than the "staying" twin. The reader is left to decide between two 

options: (a) that the "staying" twin, together with all the inhabitants of Earth, including distant 

organisms who could not be possibly aware of that the "traveling" twin has left Earth, should grow in 
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age more than the "traveling" twin, implying that she in fact will return to the future. (b) That, in 

accordance with the relativity principle, the two twins undergo similar physical occurrences, and as 

result, similar biological processes, resulting in them growing equally. The first option has two 

obvious advantages: (1) It was advocated by Albert Einstein (2) It continues to spark the imagination 

of science-fiction writers and cinematographers. Its huge drawback is that it doesn't make sense!  
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