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Abstract

Lorentz transformations and special theory of relativity have existed for more than a century and
mathematics related to them has been used and applied for innumerous times. Relativistic energy and
relativistic momentum equations have been derived and proven to be conserved if energy/momentum
transaction is seen from different frames of reference. The set of permissible inertial reference frame
velocities from where the energy and momentum of a closed system of particles may be observed to be
conserved forms a ball in the velocity vector space. In this paper we use the existing equations of special
theory of relativity and Lorentz transformations and the mathematical structure of the observation velocity
space to prove that the conservation of kinetic energy implies the conservation of momentum. We also
prove that the conservation of momentum implies the conservation of kinetic energy. We further derive
many more linearly independent conservation equations directly from the conservation of
energy/momentum. The derivation of the conservation of kinetic energy from the conservation of
momentum implies that either potential energy has a momentum thus made of inertial particles or there
cannot be a net conversion of potential energy to kinetic energy. Furthermore the existence of many
equations lead to extremely strict form of transfers of energy and momentum. It highly restricts the set of
states particles in any closed system can assume without changing the overall energy of the system. This
has a strong impact on the particle mechanics and as an example we show that the relativistic explanation
of the elastic collision of particles striking each other as used by Einstein in the 1934 two blackboard
derivation of mass and energy is itself inconsistent and wrong.
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Of Relativity, Principle of Inertia, Infinite Conservation Equations.

Classification: PACS 11.30.-j



1. Introduction

The conservation of energy and the conservation of momentum are considered two different principles,
each of them exists independently of the other [1] [2] [3] [4] [5]. In most of the existing models of particle
interactions and collisions, the conservation of momentum being a part of “principle of inertia” is
considered a more sacrosanct principle than the conservation of mechanical energy as mechanical energy
may be converted to some other forms of energy [1] [2] [3] [4] [6].

The first authoritative change to the long lasting formulae for kinetic energy was given by Einstein who
showed equivalence of mass and energy. He and his other contemporary physicist and mathematician came
up with space-time, energy and momentum transformation as per the new findings about the speed of light
[71 (8] [9] [10] [11] [12] [13].

In this article we prove that the conservation of momentum can be derived from the conservation of kinetic
energy. We also prove that the conservation of momentum implies conservation of kinetic energy. The
derivation is based on looking at conservation of energy of particles from a continuum of inertial reference
frames. As per the special theory relativity the conservation of relativistic energy and momentum remains
valid if seen from any inertial frame of reference moving at a speed less that light [14]. The set of
observation inertial frames of reference form a continuum of velocities. The topology of the continuum is
defined only by the velocities so the position of reference frames in the space is irrelevant. A pair of inertial
reference frames with very close velocities but with a separation of very large distance are very close
elements in this continuum. As per the special relativity, the energy and momentum conservation is
consistent across all the inertial reference frames in the continuum. Figure 1 shows the 3D continuum of
velocities.
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Figure 1: Continuum of inertial frames of references of observers as defined by velocities
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Figure 2: A conserved field in state @ and £ where Vy and Vy are velocity components of the continuum of allowed
inertial reference frames

Assume an inertial reference frame A in which an observer observes a conserved property F of a closed
system of particle. Examples of such property are total energy and momentum. Special theory of relativity
allows any and all inertial frames of reference with velocity less than light relative to A. So any inertial

frame of reference with velocity (V,,V,,V,) e R® andH(\/X,Vy,VZ) < Ccis allowed and total energy and
momentum of a closed system of particles is also conserved for an observer in that inertial reference frame.

For the ease of illustration assume 2D velocity space with A as origin (0, 0) . With A as origin in the velocity
space there exists allowed inertial frame of references with velocity (V,,V,)e R relative to A and
||(\/X ,Vy)|| < ¢ . The energy and momentum of a closed system of particles is conserved for the observers in

all of them. Figure 2 shows a 2D surface plot of a conserved field F as observed by observers in different
inertial frames of reference. As we can see in the figure 2, if the field is conserved with the change of state
from o to (3, the topology of the field observed by observers in all allowed inertial frames of reference
remains exactly the same. As the topology of the system remains exactly the same, various derivatives
along the topology also remain the same, which means conserved. This means that (aF /oV,,oF /avy)

remains same for the states @ and 4. Same is true for higher order derivatives. It is important to note that
these derivatives are taken along the topology of the value of the conserved function as observed by
observer in the allowed inertial reference frames and does not in any way mean the acceleration of the
system or the reference frames.

Intuitively it is like different observers in different inertial reference frames sharing their observations with
a central observer and the central observer plotting the values as a 2D surface. The central observer will
notice that in the state « and 4 the value of the conserved property remains the same and so do the
derivatives.

Using the above formulation we given a detailed mathematical derivation of our results in the section 2. In
the subsection 2.4 we prove conservation of momentum from conservation of kinetic energy for an arbitrary
dimensional space. In the section 2.5 we prove the conservation of kinetic energy from the conservation of
momentum. In the section 2.6 we further prove that there exist infinite conservation equation, which
become finite only in the case if the directional angles are quantized rational numbers. In the finite case the
conservation quantities form a finite group of roots of unity. In the general case, as the number of equations
become infinite, any closed system of interaction becomes over-determined.

In the section 3 we show that even elastic collision of two balls/particles as used by Einstein in two
blackboard derivation in 1934 comes out to be invalid [15].



2. Generic derivation of infinite equations in M dimensions:

Let’s assume there are n particles in a closed system and there exists a scalar conservation function F, which
solely depends on the magnitude of the velocity of the particles (we look at states of the system where there
IS no inter particle potential energy).

Let the velocities of the particles be {\7al,\7a2,...,\7an} in a reference frame A Let us take a continuum of

inertial reference frames as a set BC with velocities hw.rt. to A where‘ﬁ‘ <C. LetB(—ﬁ) € BC be a

frame of reference in the set of inertial reference frames with velocity—ﬁ w.r.t. A. Let the resultant velocity
of the particles in frame of reference B (—ﬁ) be{\7bl,\7ID2 : ...,\7bn}. Then as per the Lorentz velocity addition
rule [7] [8] [16]:

— T ~|2 7
\7 ~ (Vak(parallel) +h+ 1—‘h‘ /szak(perpendicular)) vi<k<n

e 1+V, -h/c?)

(1)

2.1 Lemma 1: General conservation in any direction for m-dimensional space

Statement: Given m-dimensional space with orthonormal basis as {€ ,€,,€;,...,€,}, velocity of frame of

reference B (—ﬁ) e BCw.rt Aas —h = —hé’q (direction in the g™ dimension), velocity of k™ particle in

frame of reference A as V,, =V, I, (where I, =r1,,€ +1,,€, +...+1,.€, is the unit vector in the direction

of \7ak with r% +r2 +...+r2 =1) and a scalar conservation function F, which solely depends on the

magnitude of velocityV,, , if Y F (V,, (h,6,,V,)) is conserved then
k=1

Zn: » (1—Vai /cz) OF (Va é\f; Vs ))§ is also conserved forall 1<q<m.
k=1 bk heo

Proof:

Given:

h = he,

Vae =Vac (T8, + L8, +.. 4+ E)

We have following:

Vak( parallel) = Vak r‘kq eq
Vak( perpendicular) :Vak (rklel + rk2e2 +.. +rkq—1eq—l +rkq+leq+l Tt rkmem) te (2)

V, +h =V, hr,,

Substituting (2) in (1) the resultant velocity in the frame of reference B simplifies to be:



Vv1<k<n

— — 2 2 — — — — —
V. - (Vo hio€y +NE, + V1-h*/c?V, (r € +1 6, + o Hig 1801 Migaa€an T T Tin€in))
bk ™ 2
Q+Vyhr, /c?)

So the speed (magnitude of the velocity) in the frame of reference B simplifies to be:

) \/(Vakrkq + h)2 +( 1-h*/c?V, )2 (R0 et B+ 10+ o)
Vo = Vi = 14V, hr /c?
But r2 +r +..+1r2 =1
ThUS 1G + g oot by + By oy =1— 18 . (3)

212 +h*+2hv, r_+(1-h*/c® V2 (1-r2
:}ka(h,ek,vak)z \/\/k kq 1-:\|/<q hr( /CZ ) k( kQ)
ak’ ""kq

\/\/ai (& +1-13)+h?+ 20V, 1, —hAV /? (1-12)
:ka(h,ek’vak): 1+V_hr_/c?
ak' kg

o +h2 420V, n, —hAVE 1 (1-12)

=V (h,6,.Vy ) = \/V

.. (4

1+V,hr, /c? @
As per the conservation of function F in the frame of reference B
TotalEnergy(B) = >_F (V,, (h.6,.V, ))=const.=C,

k=1

Let o« and S be two states of the system in which the energy is conserved then:
D F (Vi (16 Vo)) = 2 F (Vi (16 Vi ) .. (5)
k=1 k=1

As equation (4) is valid for any h < c and h is a real number thus a derivative with respect to h (along the
observation continuum) should also satisfy the equality both in state « and S

=3 e, (gfk“ Vo)) _ > e (gfkﬁ er) . (6)
k=1

k=1

F (Vi (.6, V)
oh
change of state & to £ when the F is conserved.

n 0
Equation (6) implies Z is also conserved as it remains constant with any arbitrary
k=1



oF (vbk (h, 6,V ))
oh

OF (Vi (1 6,V )) _ Vi (1,6, ) O (Vo (1.6, Var )
oh oh Ny (h,6,.Vy)

Taking chain rule [17] on

0 OF (Vy (. 6,.Vy)) _ Z Ny (0,6, V) OF (Vi (0.6, V)
= oh = oh OV,

. (7

F

Thus given any function F:

is also conserved

n n aF V h,6? ,V
It D" F (Vy (h,6,,V,,))is conserved then Mg (16, Vay) OF (Vs (1,6 Ver))
k=1 k=1 ah avbk

oV, (h,6,.V
Now let us simplify the term o (G Vac)

oh
Lionsov,r —2nv2 /et (1-12
Vi (0V,,0) L )
oh (1+V,hrg / €2) V2 +h? + 20V, —hAV2 62 (1-12)

Vi #2420V —hAVE /6P (172 ) (Vyer, /)
(1+V,hr, /c?)

If we take h=0

- ;(ZVaquk)_ M(Vakrkq /Cz)

SNA (1)’

_ V(1Y 0)
h

Vi (hyvak ,0)
oh

2 2
=y — T Va /c

_ Ny (Ve 0)
oh h=0

=1, (1-Vj /¢%) .. (8)

Substituting equation (8) into equation (7) for h =0

" OF (Vi (,6,V,0))

r.(1-V2/c?
q

k=1 N

is also conserved. ... 9)
h=0

As we proved for any 1< g < mthus (9) is true forany 1<g<m.

Hence proved.



2.2 Lemma 2: Vector conservation for m-dimensional space

Statement: Given m-dimensional space with orthonormal basis as {€,,€,,€;,...,€,}, velocity of frame of
reference B (—ﬁ) e BCw.rt Aas —h = —héq (direction in the g™ dimension), velocity of k™ particle in
frame of reference A as V,, =V, I, (where F, =, & +T,,&, +...+1, & is the unit vector in the direction

of \7ak with r% +r2 +...+r2 =1) and a scalar conservation function F, which solely depends on the

magnitude of velocityV,, , if Y F (V,, (h,6,,V,)) is conserved then
k=1

v /Cz)aF (Vi (h,@k,vak))|
- ak avbk

M-

I is also conserved forall 1<gq<m.

=
Il

‘h:O

Proof:

OF (Vi (1,6, V)|

n
As per Lemma 1 for the above given conditions Z [ (1—Vaf< /C2) Y
k=1 bk

‘ is conserved.
h=0

Putting the above equation in the vector sum with orthonormal basis{€ ,€,,€;,...,€,}and running q from
ltom

Sz /CZ)GF (Vi (0.6 V) ot 3 (V2 /Cz)aF (Vi (0,6,.V,,)) .
k=l Vi ‘h:o k=l Vi h=0
is also conserved in vector form as it is a linear combination of conserved quantities.
= 3| (1-v2re) OF (e (01.¥a ) &+t Iy (L-Vi /0 O (e (01.¥a)) €,
k=1 Vi h=0 Vi ‘h:o
=S (1—v;;/cz)aF(ka(h’é’k’vak))| (R 1)
k=1 Vi ‘h:O
=3 (1-V; /C2)6F (ka(h’gk’vak))| . is conserved. ... (10)
k=L OV ‘h=o

Hence proved.

2.3 Lemma 3: With Lorentz transformation of velocity and conservation function F:

OF (Vi (h,6,V,,))| s equal t oF (V)
oV oV
bk h=0 ak

Proof:



As the differential is taken w.r.t. V,, (h, O, ,Vak) and the function is also the function of complete

Vi (h, 6.V, )and not individual h, 6,,V,,, we can take h = 0 before the differential is taken

OF (Vi (0.6, V,))|  OF (Ve (0. 6.V,))
oV, - oV,

= h=0

‘h:O k |h:0

But we derived earlier, Vi, |, . =V,

oF (ka (hvekivak ))| — oF (Vak)
8ka aVak

Thus

‘h:O

Hence proved.

2.4 Theorem 1: Conservation of relativistic energy implies conservation of relativistic momentum.
Proof:
Take F as relativistic energy function. This means
2
m,C
2,2
V- (Vy (0.6, ) /¢

F (Vi (0.6, Vy ) =

Thus
OF (Vi (n,60. V) . 1
-k
OVik Vi \/1—(ka (h, 6.V, ))2 /c?
_OF (Vi (6 Va)) 1 -mc® 2V, (.6, V,) /¢
oV, 2 (1_(ka (h,ek’vak ))2 /02)3/2
_OF (Vi (1.6 Var)) _ mVy (h,6,.V, )
E (@ (Vi (1,6 Vi )) €22
Forh=0
OF (Vo (NG V))[ _ mV, (0.6,V,) o
N, o 0= (Vi (0.6,V,0)) 169

Putting h = 0 in the equation (1)



2

ka (O' ak 'Vak ) = Tak

:>ka (O’ekivak)zvak . (12)
Substituting (12) in (11)

OF (Vi (1,6,.Vy)) o mY,
Ny @-Vv,*/c?)*?

... (13)
h=0

Substituting (13) in (10)

. mV
=y (1-V2/c?)——*& ___F jsconserved.
;( : )(1_Vak2/C2)3/2 “

mV.,r, .
——kakk s conserved.
1-Vv, 2 /c?

ut M Va e _ mk\7ak - P
JLI-V 2 et 1=V, 2ic?

ak

B

n
= Y P, is conserved ... (14)
k=1

Hence proved.

2.5 Theorem2: Conservation of momentum implies conservation of kinetic energy

Proof:

L N A\ " mV.
Z P = —=& =% X8 __ jsgiven to be conserved.
k=1 a 1=V, 2 /¢ T 1=V, 2/ c?
This implies that n mk—va"rk is conserved for 1<g<m

a 1=V, 2/c? !
. _ mkvak I’-kq . -
Using F = is the Lemma 1 and using the Lemma 3
1-v,*/c?

n oF (V.
Z ls (1—Va|2< /C2) V) is conserved forall 1<s<m.

k=1 ak

OF (Vi)

simplifying (1-V,; /¢)

ak



oF (V)
1_V2/ 2 ak
( " C) 8Vak
oF (V
= (1-Vi/¢?) a\(/a:k)
oF (V,
= (1-Vji /¢?) ﬁflakk)
oF (V
= (1-Vj/c?) a\(/a:k)
oF (V,
= (1-Vj /¢?) 5\(/akk)

n
Thus Z [
k=1

1. . o "
As C—2|SJustaconstant multiplication factor thus E Mo
k=1

n
Furthermore Z s
k=1

|

Takingg=s

=(1-vgi/¢?)

2
m.C 1,

1
¢’ [Jl-Vakz /c?

q

0
oV,

=(1-VZ 1¢?)m,c*r,, ciz

=(1-V I¢?)mcr, L

qCZ

=(1-Vi /¢*)mci, !

qCZ

2
m,C*hq

1
¢’ [Ji—Vakz /c? J

mkczrkq

_MChe |-y Err
«/1Vak2/02} kz; e

n
Thusz E, rki is conserved forall 1<s<m.

k=1

m kvak r-kq J

J1-V, 2/ c?

1 1 (Vak ><_2\/z:1k /CZ)

V7 1e 2 (1-v,2 s ey

1-V, 2 1c?+V, 2/ c?
(1-v,2/¢2)"

1
(1-v,z2re?)”

J is conserved forall 1<s<m.

m,C’h,

——————— | isconserved forall 1<s<m.
J1-V, 21 ¢c?

|

m n
. . . 2 .
As sum of conserved function is a conserved function thus ZZ E, Iy is also conserved.

is conserved.

g=1 k=1

10



n
= Z E, is conserved.
k=1

Here E, is the kinetic energy of the particle k.
Hence proved.

2.6 Infinite conservation equations

2.6.1 Lemma 4: Conservation as an operator

Statement: Define an operator as D(q,k) =r,, (1—Vaf< /cz)§ . Given m-dimensional space with
ak

orthonormal basis as {€,€,,€,,...,€_}, velocity of frame of reference B (—ﬁ) e BCw.rt. Aas
—h= —hg, (direction in the g™ dimension), velocity of k" particle in frame of reference A as V, =V,F,

(where T, =r,,& +1,,E, +...+, &, is the unit vector in the direction of V,, with 13 +rZ, +...+r;, =1)

km™m

and a scalar conservation function F, which solely depends on the magnitude of velocityV,, , if

Zn: F (Vi (h, 6,V )) is conserved then Zn: D(q,k)F (V,, )is also conserved for all 1< g <m.
=] a

Proof:

OF (Vi (1,6, V)|

n
As per Lemma 1, for the above conditions Z [ (l—Vai /cz) is conserved.

k=1 Vo ‘h:O
oF(V, (h,6.V
As per Lemma 3 (Vix (1.6, ak))| _F (Var)
NV, YA
. 2 12y OF (Vo) .
It means that quk (1—Vak /c )— is conserved. ... (15)
k=1 aVak
ReplacingD(q,k) =, (1—V2 /cz)iin (15)
gk ak 6Vak
> D(a,k)F (V) is conserved ...(16)

k=1
Hence proved.
2.6.2 Lemma 5: Infinite general conservations in any direction for m-dimensional space
- i N _h& 7 Y = a : 2 2 2 _
Statement: Given —h =—hg, and V,, =V,, (1,6 +1,,€, +...41,,€) with 3 + 15, +... 4+, =1anda

scalar conservation function F, which solely depends on the magnitude of velocityV,, , if

11



Z F (ka (h,6,,Vy )) is conserved then Z D(a,k)...D(a,,k)D(ay, k)F (V. ak) is also conserved for
k=1
arbitrary set of operators {D(q,,, k), . D(qz, k), D(q,,k)}.

Proof:
Proof by induction:
A) For the w=1 condition the proof is Lemma 4.
B) Now assume that it is true for w € N then
n
> D(d,.k)...D(d,, k)D(q, k) F (V,, ) is conserved.
k=1

Take a new conservation function G (V,, ) = D(q,,,k)...D(a,,k)D(t,, k)F (V) ... (17)

As per Lemma 4

i D(q,k) G (V) is conserved. ... (18)

k1

Putting equation (17) in the equation (18)

Zn: D(q,k)D(q,.,k)...D(q,,k)D(q,,k)F (Vak) , is also conserved, which has W+1 number of operators
k=1

Thus w=w+1
Hence proved.

2.6.3 Separation of directions and derivatives in the infinite general conservations in any direction for
m dimensional space

As per Lemma 5, Z D(q,,k)...D(q,,k)D(q,,k)F ( 4 ) is conserved for the conservation function F.
k=1

AlsoD(q,.k)=T, , (l—VaZk /c? ) 8\?

ak

. As I, , is independent of V,, it can separated and taken out of the

series of operators. Let us define operator S(k) = (1—Vai /cz)a8 then:
ak
ZD(qW,k) D(0,, K)D (0, K)F (Vo ) = D T, (S(K))" F (Vi) is conserved .. (19)
k=1 f=1

2.6.4 Lemma 6: Repeated application of the operator S(k) = (l—Vai /cz) aa on relativistic energy

ak

12



m, c?

J1-Vv, 2 /c?

Statement: Given the relativistic conservation function F = , the result of application of

2

r 1 m,C 1
operator S(k) is (S(k))"" F = ——=——=—"-F and
(SG)" F=2 T
r+ Vv
(SR F=t MVa  _Lpg oy

¢ J1-Vv,2/c? ¢

Proof:
Proof by induction:
Forr=0

2

J1-V, 2/¢c?

0 1
S(K)) F =(1-V2 /c?)m,c?
(SO F = e
1 =, c
2(1-V2/cH¥

F =

= (S(K))F =(1-V; /c*)mc? x

Vv, /c?

= (S(K))F =(1-V;; /¢ )mc? XW

2 2
:>(S(k))F _mc xV, /c _ m\V,, . (20)
JL-V2Ie?  1-VZE/c?
Assume it is correct foran r
r : PR | v
(SO F=t M and (S(k))F = UAZT .. (21)

¢ v, 2 /c? v
Consider (S(k))""* F

(S())"*F=SK)(SK))"™F

From equation (21)

(S(k))ZHZ E_ S(k)% m\V,,

¢ J1-v,2/¢?



0

l mkvak

=(SK)"F=(1-v} /c?) -

ak

= (S(k))"" F=(1-V} /c*)mc?
= (S(k))"" F=(1-V; /¢’ )m,c?
= (SK))"F=(1-V} /c*)mc®
= (S(k))" F =(1-V /¢’ )m,c?

= (S(k))"" F=(1-V; /¢’ )m,c?

Vo € 1=V, 2/ ¢?

1 0 v,
M AV | 1=V, 2 /¢

1 1 1 (Ve x=2v, /)
v 2 (1-v,2ie)”

1 [1-V, 2/c?+V,° ICZJ

C2r+2 (1—Vak2 /C2 )3/2

1 1
o2+ (1—Vak2 /2 )3/2

1 1
o2+ (1—Vak2 /2 )3/2

— (S(k))2r+2 F

2r+3
F

Now consider (S(k))

(S(k))2r+3 F _ S(k)(s(k))2r+2 F
From equation (22)

2
1 m,c

1 m,c’ -
R WS - (#)

(k)" F =5~

2r+2 ,1—Vak2/C2

2

0 1 m,c
S F =(1-V2 /c? k
=S e e
2
S k 2r+3F: l—VZ/ 2 ka 5 1
:>( ( )) ( a ! C )C2r+2 oV, m
1 Vv, /c?

= (k)" F=(1-V} /c*)mc?

CZr+2 (1_\/;( /C2)3/2

14



- (S(k))2r+3 = 1 m\V,,

— 2r+ ... (23)
¢ J1-VZ /c?

Thus truth for r implies truth for r+1.

Hence proved.

2.6.5 Theorem3: Infinite independent conservation for 2D space

m, c?

J1-V, 2 /c?

n n
conserved then » E,e”*VreZ and ) Re'“™*vreZ arealso conserved.
=i P

Statement: Given the relativistic conservation function E, = in the 2D space, if E, is

Proof:

If the space is 2D, the direction vectors (T,,,T,, ) are circular angle with (., f,) = (oS¢, ,Siney).

As per Lemma 3 conservation operators are: D, = D(1,k) =cos ¢, (1—Vai /cz) and
ak
. 0
D, =D(2,k) =sing, (1-V,; / ¢?
= D@ K)=siney (1-Vi 1¢°) -

Let us take following operators:

D, =D, +iD, =€ (1-V /c2)§ —e'*S(k)

ak

0

D_=D,-iD,=e " (1-V, /¢’) = —e 'S (k)

ak

As they are linear combination of the conserved operators, they are conserved operators.
As per Lemma 4, any composition of these operators also form a conservation operator.
Thus:

(D, )j (D_ )| is also a conservation operator for any j,l e N
Consider (D, )j (D )I
(D.)'(D.) =(e"5(K)' (e™S(K))

— (D+)j (D,)I _ giliha (S(k))j+l

Let us 2 cases:

15



Casel: j+1=2w
The conservation operator for j+1 = 2w is &' 20 (S (k))™
Consider the following conserved function:

m, ¢?

ei(ZW—ZI)ak (S (k))ZW
J1-V,2 /¢

2
_ giw-2))g 1 m.C
- 2
¢ 1V, 2/ c?

_ pi(2w-2D)a :sz E,
C

1. . -
As —-is just a constant multiplier
c
= e V%E_ s conserved function for arbitrary wand |. Take r=w-I

= e'*"*E__is a conserved function.
Case2: j+l=2w+1
The conservation operator for j+1 = 2w+1 is '@ 2« (S(k))2W+l
Consider the following conserved function:
ei(2W+l—2|)ak (S(k))2w+1 ka2
J1-V, 2 /c?
i(2w+1-21) ¢, 1 mkVak

=e - &
¢ 1=V, 2 /¢

1

_ Al2w-21+1) e
=€ CZW ak

1 -
As —is just a constant multiplier
= '@ ap s conserved function for arbitrary wand |. Take r=w-I

= e'®*V%P_isa conserved function.

Hence proved.

2.6.6 When do the conservation equations become finite?



As we proved in theorem 2, there are infinite equations of conservation not only for angle 6, but 2rg, for
E. and (2r+1)6, forP, . The number of equations become finite only when all §, are of the form
W,z /S, , where W, ,S, are co-prime natural number. This makes the set {1, &'/ ... g7 D5} 5

classical finite group of order S, with element as Skth root of unity.

3. Proof of fallacy in Einstein’s two blackboard derivation

The derivation by Albert Einstein was based on elastic collision of two particles, which approach each other
head on and then divert at some angle. It was shown in the derivation that if this phenomena was observed
from any other frame reference, the conservation still was true [15].

Here we prove using the infinite conservation equations that such an elastic collision is not at all possible
thus the derivation is wrong. As we proved in the theorem 2 for any closed system of particles with energy
exchange in 2D following quantities are conserved:

n 2,4i2r6, n i(2r+1)6,
mc-e mV, e
— _VreZ and a

ot vrez . (24)
1-V, 2/c? 1=V, 2/c?

Let us take a simple case of 2 particles as in the Einstein’s two blackboard derivation in 1934:

v Yo

Figure 3: Elastic collision of particles as taken by Einstein for 2 blackboard E = mc? proof.

The particle have exactly same rest mass and approach each other head (initial condition) with exactly the
same speed on and then move away at angles € and & + r (final condition) at exactly the same speed.

3.1 Equations for the initial condition

Energy equations
" me2e2% _
ZW = mczj/(1+ elzr(”)) = 2m02}/ VreZ (25)
k=1 =V, /C
Momentum equations
n mV kei(2r+l)¢9k
al

=mV(@1+e@P)=0VreZz ... (26)
1-V, 2 /c?
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3.2 Equations for the final condition

Energy equations

n mc2ei2r9k ) )
Z — mcz}/(euzra +e|2r(0+7z))
i 41-V, 2 /¢’

=2mc’ye?"’ VreZ .. (27)
Momentum equations

n mV ei(2r+l)9k
ak

=mVe'® P (1+e' @) =0VreZ ... (28)
1-V, 2/ c?

For the energy equations to be conserved (25) = (27) Vr e Z

But 2mc?y = 2mc?ye'®™ for an arbitrary angle @ . The only solution for it is @ =0, which is a trivial
solution with no impact.

Hence proved that the derivation is wrong.

4, Conclusion and further work

The result of derivation of conservation of Kinetic energy from the conservation of momentum implies
that either the potential energy has a momentum thus composed of inertial particles or there cannot be any
net conversion of potential energy to the kinetic energy in a closed system.

Furthermore the existence of infinite conservation equations has a deep impact on Lagrangian formulation
and path integral formulation. For example let us consider initial state of particles with inter-particle
distance nearly infinity, which means that there is no inter-particle potential in the initial state. Let there
be an intermediate interaction between the particles, which has some kind of inter-particle potential
energy and inter particle energy exchange. Let the final state of particles be also at infinity, which means
are non-interactive. In this case if there energy exchange is elastic, it must follow the infinite equations.
But as we have seen in the results, that would lead to very restrictive state change and energy exchange.
As the final asymptotic positions/velocity angles of particles is a result of the intermediate exchange, it
would also put restrains on the how the intermediate potential energy field is setup. So it impacts every
kind of potential energy and energy exchange, be it electromagnetic, gravitational, weak forces or strong
forces.

As we can see in the derivations the number of equations are infinite for an arbitrary dimensional space
and an arbitrary speed dependent kinetic energy function. Which means that either the definition of
energy and conservation has to be re-looked into or one has to assume a stealth underlying energy
compensating the equations.
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