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Abstract. We refute a physical model, recently proposed by Gunn, Allison and Abbott (GAA) 
[http://arxiv.org/pdf/1402.2709v2.pdf], to utilize electromagnetic waves for eavesdropping on the 
Kirchhoff-law–Johnson-noise (KLJN) secure key distribution. Their model, and its theoretical 
underpinnings, is found to be fundamentally flawed because their assumption of electromagnetic 
waves violates not only the wave equation but also the Second Law of Thermodynamics, the 
Principle of Detailed Balance, Boltzmann’s Energy Equipartition Theorem, and Planck’s formula by 
implying infinitely strong blackbody radiation. We deduce the correct mathematical model of the 
GAA scheme, which is based on impedances at the quasi-static limit. Mathematical analysis and 
simulation results confirm our approach and prove that GAA’s experimental interpretation is 
incorrect too.  
 
Keywords: Waves; KLJN secure key exchange; physics in engineering education.  

 
1. Introduction 
 
Recently Gunn, Allison and Abbott (GAA) [1] proposed a new, delay-based attack 
against the Kirchhoff-law–Johnson-noise (KLJN) secure key distribution scheme [2–5]. 
GAA claim—contradicting earlier statements most recently expounded in work by Kish, 
Abbott and Granqvist (KAG) [4]—that waves exist in a finite-size cable at arbitrarily low 
frequencies.  
 
The theoretical basis of GAA’s assertion [1] is the fact that, whereas wave-guides usually 
have a low-frequency cut-off for wave modes versus the diameter of the wave-guide, no 
such cut-off exists for transversal electromagnetic (TEM) wave modes in the case of 
infinitely long wave-guides. GAA write that, because coaxial cables have TEM wave 
modes, there is no frequency cut-off of the waves-based component of the electrical 
transport down to zero frequency. As a consequence of their presumption, GAA use the 
d’Alembert solution [1] 
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for propagating lossless fluctuations—which may or may not be waves—in a linear 
medium to model the propagation of voltage in the cable used for key exchange in the 
KLJN scheme, where U+ and U– are voltage components of waves propagating to the 
right and left along the x axis, and v is propagation velocity. 
 
The experimental support of GAA’s claim is that they have measured the voltage 
between the ends of a short coaxial cable at low-frequency sinusoidal voltage drive with 
an impedance-matched load at the other end and, at first sight, have found that their 
results confirmed some of the implications of Eq. 1, as further elaborated in Section 3 
below. 
 
We have analyzed GAA’s statements [1] and found most of them invalid. Specifically, 
our findings and conclusions are the following:  
 
(i) In cables, wave modes with wavelengths greater than twice their length are forbidden 
states, meaning that such modes do not exist; consequently there are no waves in cables 
in the frequency range pertinent to the KLJN scheme. 
 
(ii) Instead, time-dependent propagation processes are non-wave type retarded potentials 
in a distributed impedance system; one of the implications of this is that Eq. 1 does not 
hold. 
 
(iii) GAA’s interpretation of their own “wave-verification” experiments [1] is invalid. 
 
(iv) A correct derivation of the problem posed by GAA allows a proof that their attack 
does not work and an identification of the source of errors in their “attack-demonstration” 
experiments. 
 
(v) We prove that directional coupler attacks under the KLJN conditions can never offer 
more information leak than the old wire resistance attacks. It should be noted that 
directional couplers in KLJN can never separate Alice’s and Bob’s contribution. 
 
(vi) Finally we are able to formulate a general proof that any future (not yet existing) 
advanced attack type, that may be able even to separate the contribution of Alice and 
Bob, can never crack the KLJN scheme. Instead such an attack would lead to more 
advanced KLJN schemes that would not only be faster than earlier versions but would 
also be immune against these types of attacks.  
 
The results delineated in (i) – (vi) will be derived and presented in three separate 
publications. The present paper is focused on items (i) – (iii), and moreover points out 
that the erroneous wave picture at low frequencies, referred to above, seems to be a 
common misconception in electrical engineering education.  
 
 
2. Refutation of GAA’s theory and experimental interpretation 
 
As mentioned above, GAA’s attack [1] on the KLJN scheme employs waves and related 
delays in a cable to extract information. While attempts to utilize time delays in cables for 
information purposes are to be encouraged, the asserted use of waves, which do not exist, 
is a fundamental flaw that invalidates GAA’s basic considerations, proposed experiments, 
and interpretation of these experiments. 
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The wavelengths corresponding to the frequency range of concern in the KLJN scheme 
are much longer than the physical extent of the cable, and we earlier referred to that range 
the “no-wave” or “quasi-static” limit [2–5]. As remarked above, GAA argue that TEM 
wave modes do not exhibit any low-frequency cut-off. It is true that TEM wave modes in 
a wave-guide do not have a low-frequency cut-off versus the diameter of the wave-guide, 
but this argument is irrelevant because wave modes do have a cut-off versus the length of 
the cable. This does not imply that the electrical transport itself has a cut-off; it solely 
means that, when wave modes are forbidden, electrical transport takes place via non-
wave phenomena—such as drift and relaxation—which constitute the form of transport in 
the quasi-static region of electrodynamics. 
 
In this section, we use three separate fields of physics and mathematics to prove, in six 
different ways, that GAA’s assumption of the existence of waves in the short cable within 
the frequency range pertinent to the KLJN scheme violates the following equations and 
laws of physics (our proofs are given subsequently): 
 
(a) the wave equation, 

 
(b) essential dynamical behavior of magnetic and electric energy in electromagnetic wave 
modes, 

 
(c) Boltzmann’s Energy Equipartition Theorem of Thermodynamics, 

 
(d) the Principle of Detailed Balance of Thermodynamics, 

 
(e) the Second Law of Thermodynamics, and 

 
(f) theory and experiments for blackbody radiation. 
 
 
2.1 Violation of the wave equation 
 
It was recently pointed out by KAG [4] (including one of the proponents of the GAA 
model) that the wave equation precludes the existence of waves in the frequency range of 
concern for the KLNJ scheme. Next we provide more details about this fact and first 
illustrate the distributed inductance–capacitance–resistance (LCR) model of the cable in 
the KLJN scheme in Figure 1. 
 

 

 
 
Fig. 1. Outline of the pertinent part of the KLJN scheme with a distributed LCR model of a long and leakage-
free cable. When the cable losses can be neglected, one may omit the Ri resistors representing the distributed 
resistance of the cable. Alice’s and Bob’s resistors, denoted RA and RB, respectively, are randomly selected from 
the set RL ,RH{ } with (RL ≠ RH ) at the beginning of each bit-exchange period. These resistors, with associated 
serial generators (not shown), emulate thermal noise with high noise temperature and strongly limited 
bandwidth. 
 
 
For the sake of simplicity but without losing generality, we discuss the case of a lossless 
cable. The main conclusion about the lack of wave modes is general because the 
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inclusion of damping terms in harmonic differential equations can never produce new 
eigen-frequencies; they can only modify them and their bandwidth.  
 
The wave equations of voltage U(x,t)  and current I(x,t)  in lossless cables are 
 
∂2U(x,t)

∂x2 = 1
vc2

∂2U(x,t)
∂t 2  ,      (2) 

 
∂2 I(x,t)
∂x2 = 1

vc2
∂2 I(x,t)
∂t 2    ,      (3) 

 
where the phase propagation velocity of waves in the cable is 
 

vc =
1

LuCu
   .        (4) 

 
Here Lu  and Cu  are inductance and capacitance “densities” of the cable (with units of 
H/m and F/m), i.e., the unit-length (one-meter) cable inductance and capacitance.  
 
The general classical-physical solutions of these equations in infinite ideal cables are 
superpositions of waves, with arbitrary frequency, propagating in positive and negative 
directions in accordance with the d’Alembert solution in Eq. 1. However, in a cable with 
finite length D, the frequency-space of solutions is quantized to discrete values so that 
integer multiples of the half-wavelength fit in the cable. Thus the wavelength λmax  of the 
wave with the lowest frequency fmin can be written  
 

 
λmax = 2D  ,    fmin =

vc
2D    .      (5) 

 
Frequencies below fmin, down to zero frequency, constitute a forbidden band of wave 
states. 
 
The KLJN key exchanger operation strictly requires for security that its frequency range 
satisfies the quasi-static condition, i.e., 
 
f << fmin  .         (6) 

 
Thus the wave-based scheme and considerations of GAA for eavesdropping violate not 
only the wave equations in Eqs. 2 and 3, and its d’Alembert solution in Eq. 1, but also the 
related other fields of classical and quantum physics of waves, because such non-existent 
solutions are forbidden states. 
 
We note, in passing, that if the wave-based treatment by GAA [1] were correct, we would 
not have quantization of atomic electron shells, a forbidden band (energy gap) would not 
exist in solid state physics, semiconductor devices would not work, and even chemistry 
would be non-existent or at least very different. 
 
 
2.2 Violation of the energy dynamics within wave modes 
 
It is easy to visualize the pertinent physical situation even without the wave equation. 
While the energy of the wave mode is constant, any electromagnetic wave signifies 



Chen, et al. 

 5 

propagation and oscillatory “bouncing” of energy between magnetic and electric energy 
forms. To have a physical wave, both aspects are essential, and the propagation must take 
place via “bouncing” of the energy between its two forms. For example, an L–C 
resonator has its “bouncing” phenomenon between the electric and magnetic energy 
forms but lacks propagation, and hence this oscillation is not a wave. 
 
Consider now a short cable satisfying Rel. 6, which is driven by an ac voltage generator 
U(t)  at one end and closed with a resistance Rw given by 
 

Rw =
Lu
Cu

         (7) 

 
at the other end. Then the cable has equal amounts of energy in the electric and magnetic 
forms, as discussed below, and both of these energies are oscillating. However, these 
energies are not “bouncing” between the electric and magnetic forms but oscillate 
between these forms and the generator. This fact is obvious from the considerations that 
follow next.  
 
Quasi-static conditions (Rel. 6) imply that the time-dependent voltage and current are 
spatially homogeneous along the wire, i.e., 
 
 U(x,t) U(t)  ,          (8) 
 
 I(x,t) I(t)  .           (9) 
 
Thus the electrical and magnetic energies, denoted Ee(t)  and Em (t) , respectively, in the 
cable can be written 
 

Ee(t) =
1
2CcU 2 (t)  ,       (10) 

 

Em (t) =
1
2 LcI

2 (t) = 12 Lc
U 2 (t)
Rw2

  ,      (11) 

 
where Cc = DCu  and Lc = DLu  are the capacitance and inductance of the whole cable, 
respectively, and the last term of Eq. 11 originates from the well-known fact that a cable 
of arbitrary length, closed with the wave impedance (resistance) Rw, has an input 
impedance of exactly Rw. Thus 
 
Ee(t)
Em (t)

= Cc
Lc
Rw2 =

Cu
Lu
Rw2 = 1        (12) 

 
at each instant of time. Obviously, no “bouncing” phenomenon takes place between the 
electric and magnetic forms of energy because the energy is bouncing between the 
generator and the magnetic and electric fields, not between each other, as it would be 
expected for a wave. 
 
Now suppose that RA and RB, rather than Rw, terminate the cable ends. The only 
significant change that will occur in the quasi-static limit is that the ratio of electrical and 
magnetic energies will be different from unity, which further goes against the wave 
hypothesis. 
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In conclusion, even the simple picture of wave modes given above proves that waves do 
not exist in the cable in the quasi-static limit. 
 
 
2.3 Violation of thermodynamics 
 
Simple but fundamental thermodynamic considerations also prove that waves cannot 
exist in the cable in the quasi-static frequency range. 
 
 
2.3.1 Violation of the Energy Equipartition Theorem, the principle of Detailed Balance 
and the Second Law of Thermodynamics 
 
According to Boltzmann’s Energy Equipartition Theorem [6] for thermal equilibrium at 
temperature T, each electromagnetic wave mode has a mean thermal energy equal to kT, 
where k is Boltzmann’s constant. Half of this mean energy is electrical and the other half 
is magnetic. For N different wave modes in the system, both the electrical and magnetic 
fields carry a total energy equal to NkT/2.  
 
It is easy to see that the assumption that, in a hypothetical wave system, these wave 
energies are less than the above given values violates not only the Energy Equipartition 
Theorem but also the Principle of Detailed Balance [6] and the Second Law of 
Thermodynamics: Coupling this hypothetical wave system to a regular one would hit the 
Detailed Energy Balance of equilibrium between wave modes in the hypothetical and 
regular systems because it would yield an energy flow toward the hypothetical one. This 
energy flow could then be utilized for perpetual motion machines of the second kind, i.e., 
violate the Second Law of Thermodynamics. 
 
 
2.3.2. Violation of Planck’s Law and experimental facts for blackbody radiation 
 
Planck [7] deduced his law of thermal radiation, for simplicity, from the properties of a 
box with black walls, i.e., internal walls with unity absorptivity and emissivity. In thermal 
equilibrium, thermal radiation within an infinitely large box with walls of arbitrary 
absorptivity, emissivity and color has a power spectral intensity for each polarization 
given by 

I( f ) = 4πhf
3

c2
1

ehf /kT −1     ,      (13) 

where h is Planck’s constant. The derivation of this formula is based on counting existing 
wave modes in the frequency range f > fmin , where the minimum frequency is obtained by 
the same frequency quantization as we claim to exist in a cable. GAA’s notions (as well 
as common electrical engineering education) imply that in closing the finite-size cable by 
the wave impedance (resistance) Rw at its two ends, all of the lower frequencies, at f < fmin 
, will also be available for wave modes as a consequence of the unity absorptivity and 
emissivity of the impedance match. However, one must realize that a cable closed by the 
wave impedance (resistance) Rw at its two ends is a one-dimensional realization of 
Planck’s box with perfectly absorbing (black) walls. Allowing the f < fmin frequency range 
for wave modes results in a non-quantized continuum distribution of wave modes, which 
yields an infinite number N of wave modes in any finite frequency band. Such a situation 
in the finite-size cable results in an infinite amount of thermal energy NkT in any finite 
frequency band within the classical-physical frequency range f << kT/h. This situation is 
not a problem in a cable or box with infinite size. However, in a finite-size box, infinite 
thermal energy in the sum of wave modes would naturally result in infinite intensity of 
blackbody radiation.  
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Furthermore, the situation is similar for the KLJN scheme in which the cable ends are 
terminated by RA and RB rather than Rw. According to Planck’s results, discussed above, 
the thermal radiation field in the closed box and cable does not depend on the 
absorptivity and emissivity of the walls—i.e., on the cable termination resistances—since 
otherwise Planck’s Law would be invalid and his formula violate the Second Law of 
Thermodynamics. Therefore the above argumentation regarding infinite energies and 
infinite thermal radiation holds for arbitrary termination and wall color. 
 
If there is a loss in the cable and the cable is terminated by RA and RB , the same situation 
holds provided RA and RB , and the cable have the same (noise) temperature because the 
system is still in thermal equilibrium. 
 
In conclusion, GAA’s claims violate the Planck formula and experimental facts about 
blackbody radiation.   
 
 
2.3.3 Proof that the total energy of the cable is less than the energy required for a single 
wave mode  
 
To further support the above conclusions we show that in the quasi-static frequency limit, 
wherein the KLJN scheme operates, the total energy is not sufficient even to supply a 
single wave mode, and consequently waves cannot exist without violating several 
principles and one law of thermodynamics. 
 
As an example, we mathematically analyze how the no-wave situation manifests itself in 
a lossless cable, which is closed at both ends by resistors equal to the wave impedance Rw 
at the temperature T. These conditions are not necessary but serve to simplify the 
calculations. Suppose that, in accordance with the KLJN conditions, the Johnson noise of 
the resistors has an upper cut-off frequency at fc so that 
 

fc << fmin =
vc
2D          (14) 

 
hold in order to satisfy Rel. 6. Thus the spatial homogeneity of current and voltage (Eqs. 
8 and 9) is valid for the wire, and it is straightforward to calculate the electric and 
magnetic energies of thermal origin as shown next. 
 
According to the Johnson–Nyquist formula [8], the thermal electrical energy in the cable 
capacitance is 
 

 

Ee,th =
1
2Cc U

2 (t) = 12Cc

4kTRw / 2
1+ f 2 / f0C20

fc

∫ df ≅

                              ≅ kTCcRw fc =
kT

2
fc
fmin

<< kT2

      (15) 

 
and the thermal magnetic energy in the cable inductance is 
 

 

Em,th =
1
2 Lc I 2 (t) = 12 Lc

4kT / 2Rw( )
1+ f 2 / f0L20

fc

∫ df ≅

                              ≅ kT Lc
Rw

fc =
kT

2
fc
fmin

<< kT2

 ,   (16) 
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where the characteristic frequencies of the Lorentzian spectra in Eqs. 15 and 16 are 
defined as 
 

f0C = 1
2πCcRw / 2

= 1
πDCu

Cu
Lu

= 1
πD

1
LuCu

= 1
π
vc
D = 2

π
fmin    (17) 

 
and 
 

f0L =
2Rw
2πLc

= 1
πLc

Lu
Cu

= 1
πD

1
LuCu

= 1
π
vc
D = 2

π
fmin   .   (18) 

 
Similar calculations can be carried out for the general case in which the cable ends are 
not terminated by Rw but with different resistance values RA and RB. Specifically, the 
parallel resultant resistance RA and RB (instead of Rw/2) enters in the left-hand side of Eqs. 
15 and 17, and the serial (sum) loop resistance RA+RB (instead of 2Rw) enters in the left-
hand side of Eqs. 16 and 18, while the final inequalities shown by Eqs. 15 and 16 remain. 
 
If there is a loss in the cable, and the cable is terminated by RA and RB, the same situation 
holds provided RA and RB as well as the cable have the same (noise) temperature, because 
the system is still in thermal equilibrium. If the cable is cooler then there is an energy 
flow out of the cable, which further strengthens the inequalities at the right hand sides of 
Eqs. 15 and 16.  
 
In conclusion, Eqs. 15 and 16 prove that for a short cable and within the frequency range 
of interest for the KLJN scheme, the sum of electrical and magnetic energies in all of the 
hypothetical “wave modes” is much less than the energy needed for a single wave mode 
in thermal equilibrium.  
 
 
3. Correct treatment of cable delays in the frequency range for the KLJN scheme 
 
3.1 General considerations 
 
We showed above that wave modes cannot exist in the cable at the KLJN condition f << 
fmin. A number of questions then arise naturally, such as (i) what type of system is the 
cable under these conditions, (ii) what is the nature of the propagating fluctuations caused 
by Alice’s and Bob’s noise generators, and (iii) are there any other implications of the 
KLJN condition? 
 
To answer these questions, we first note that the system under consideration is not a 
wave-guide, as implied by GAA [1], but a distributed impedance network in the quasi-
static limit. Secondly, the propagating fluctuations are not waves but phase-shifted 
voltages and currents: in the language of physics they are related to retarded potentials of 
non-wave solutions, and in electrical engineering vocabulary they are spatio-temporal 
fluctuations in an impedance network. 
 
The general implications of the KLJN conditions are very pervasive, as elaborated and 
discussed in Section 2 above. The specific consequences for the KLJN scheme are that 
the mathematical and physical framework used by GAA [1] is invalid and that the same 
applies to their experimental analysis, as shown in the present paper and as will be further 
discussed in forthcoming articles. 
 
When the frequency converges towards zero, the impact of the inductivity and 
capacitance of the cable on the cable current and voltage also rapidly diminish. However, 
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the voltage drop over the cable is determined by its serial resistance Rc and inductance Lc, 
because the capacitive shunt currents approach zero. Thus the first-order approximation 
of the cable impedance is 
 
Zc ≅ Rc + j2π fLc  .       (19) 
 
For simplicity, we analyze the situation wherein the cable loss (resistance) is negligible 
so that 
 
Zc ≅ j2π fLc .        (20) 
 
The corresponding phase delay of the voltage at Bob’s end, compared to that of Alice’s 
end, is 
 
ϕAB = −2π fLc / RB          (21) 
 
when the voltage is generated by Alice. This phase delay corresponds to a frequency-
independent time delay according to 
 
τ AB = Lc / RB   ,         (22) 
 
which at first glance seems to suggest that we are dealing with waves and that the 
d’Alembert equation holds, as stated by GAA. However one must realize that this time 
delay depends on the load resistance RB at the other end of the cable, which implies that 
the time delay and measured phase velocity in the two directions are different due to the 
condition RA ≠ RB  during secure bit exchange [2–5], i.e., under circumstances such that 
GAA’s method [1] is supposed to function. To illustrate this dichotomy, we evaluate the 
phase delay for voltage propagation in the opposite direction, i.e., when the voltage is 
generated by Bob. Now one finds  
 
ϕBA = 2π fLc / RA           (23) 
 
and 
 
τ BA = Lc / RA  .        (24) 
 
Thus the d’Alembert equation, applied by GAA [1] to prove the existence of waves, 
cannot be used in the present situation. 
 
 
3.2 Simulation based on a circuit model for the cable 
 
To corroborate the theoretical considerations above, we used Linear Technology’s 
LTspice-IV cable simulator software to analyze the experimental situation in GAA’s 
work [1] and confirmed all of their stated results. The simulations proved that a coaxial 
cable with parameters and conditions similar to those employed by GAA [1] can be 
modeled with the lumped impedance circuitry shown in Fig. 2, where parts (a) and (b) 
represent a cable with and without loss, respectively. 
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Fig. 2. Lumped impedance-components-based model of a cable at low frequencies for analyzing voltage drop 
along the cable and phase shift in the limit f <<fmin. Part (a) represents a cable with loss (cable inductance and 

resistance are designated Lc and Rc, respectively), and part (b) represents a lossless cable. 
 
Figure 3 shows results of our simulation addressing the experimental data in Figure 5 of 
GAA’s article [1]. The conditions are the same as those of GAA [1] and reported in their 
Figure 5, but our simulation uses a practical cable model and simple impedance 
representations (see Figure 2) which fit the cable data to a high degree of accuracy. The 
practical lossy cable and the simple impedance model in Figure 2(a) give identical 
results, while results for the lossless cable (corresponding to data compensated for loss in 
GAA’s work [1]) are nicely represented by the simple inductance model in Figure 2(b). 
Moreover, it is obvious that the cable inductance Lc produces a voltage drop that is the 
time-derivative of the current, which is determined predominantly by the resistances in 
the loop. Thus the voltage drop for the lossless cable is the time derivative of Alice’s 
generator voltage, and this experimental finding by GAA [1] to “support” the d’Alembert 
equation is simply an inductor-type voltage response and it has nothing to do with waves. 
 

 

 
Fig. 3. Comparison of simulated data based on impedance models, using LTspice, with those of a real (lossy) 
cable. Alice’s and Bob’s resistors, denoted RA and RB, have the resistance RW, and Alice drives the cable with a 
sinusoidal voltage generator (1 V) via Bob’s resistor. The cable is characterized by length D = 1.5 m, Lc = 1.03 
μH, Rc = 0.0315 Ω, and Cc = 150 pF. Upper panel shows voltage drop UAB over the cable between Alice’s and 
Bob’s ends and lower panel shows phase shift of UAB compared to that of the voltage at Alice’s end. Squares 
signify simulations of a lossy cable (model RG58), crosses represent data obtained by use of the lumped 
parameters model in Fig 2a, and solid line was derived from an inductance model devised to simulate a lossless 
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cable (Fig. 2b). These results are in full agreement with the experimental data shown in Figure 5 of GAA’s 
work [1]. 
 
To subject Eqs. 22 and 24 to a final test, we evaluated the phase delay and corresponding 
time delay toward Bob when the resistor at Bob’s end was varied and the cable was 
lossless. Data are shown in Table 1 and verify the correctness of our Eq. 22 to an 
accuracy of five digits. GAA’s “propagation velocity” toward Bob is practically 
independent of frequency but depends on Bob’s resistor. During secure bit exchange, the 
"propagation" times toward Alice and Bob are different. This fact verifies our conclusion 
that GAA’s use of the d’Alembert equation, as the base of their mathematical 
considerations, is indeed incorrect. 
 
 
Table 1. Simulated equivalent phase velocity calculated from phase shifts between the two ends of the cable 
versus driving frequency and load resistance (resistance of termination at the other end). The dependence on the 
resistance is in violation of the d’Alembert equation, for example, in the KLJN system during secure key 
exchange where the terminal resistances are different. Cable parameters are given in the caption for Fig 3. 
 

 1 kHz 5 kHz 
10 Ω 3.99998 x 107 m/s 4.00018 x 107 m/s 
20 Ω 7.99996 x 107 m/s 8.00038 x 107 m/s 
50 Ω 1.99999 x 108 m/s 2.00007 x 108 m/s 
1 kΩ 3.99993 x 109 m/s 4.00011 x 109 m/s 
10 kΩ 3.99946 x 1010 m/s 4.00041 x 1010 m/s 

 
 

One should observe that, for the cases of 1 kΩ and 10 kΩ, GAA’s “phase velocity” is 
greater than the speed of light. This is acceptable and happens often with the phase 
velocity of oscillations in a driven impedance system in the steady-state; however, it is 
prohibited in the d’Alembert equation as a consequence of the theory of special relativity 
[9]. Similar effects can happen in wave-based systems with reflecting boundary 
conditions in stationary mode after the waves fill the system; however, in wave-based 
systems the phase velocity would be the same for the left and right directions. 
 
In conclusion, the proper KLJN scheme is a simple impedance circuitry with related 
phase shifts where the corresponding time shifts are asymmetrical during secure bit 
exchange.  
 
 
4. Additional notes 
 
One of the reviewers raised an interesting question: In the light of the results of the 
present paper, how should one see the situation when a small part of a wave-based system 
is observed or when that part has different properties? Are there waves in those parts? 
Such a situation is common in physical systems and the answer is straightforward. We 
show two examples to elucidate the issue. 
 
(a) First consider that a small part of a large wave-based system is observed, so small that 
Eq. 6 is satisfied. The answer to the question above is then simple: the part is a non-
separable component of the wave system, and the observer views a small spatial fraction 
of the whole wave field. The energy of the observed wave mode is not the energy within 
this small part but the integral of related wave energy over the large system. However, if 
we separate the small system from the large one and terminate its ends, wave solutions 
would not exist at these frequencies. 
 
(b) Another special example is a quarter-wavelength ( λ / 4 ) cable. If we terminate one 
end and drive the other end with a generator, the latter end acts as a distributed 
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impedance transformer without wave modes. However if, instead of a generator, the same 
end is connected to a long cable with the same Rw, it will belong to the relevant wave 
mode that extends over the system and contains a small part of the energy of that wave 
mode. 
 
 
5. Conclusions 
 
The efforts of GAA [1] to utilize time delays in cables to crack the KLJN scheme 
represent an interesting and novel approach and, as such, deserve attention. However, it 
should be mentioned that Liu [10] earlier used a similar technique, but with unphysical 
conditions for the simulations [11]. As shown in considerable detail above, GAA’s efforts 
can be irrevocably refuted. Further attempts to crack the KLJN scheme are welcome, but 
it is essential that they be founded on correct physical models. 
 
Finally, we hope that the fact that waves cannot exist below fmin in a short cable, as 
discussed in Section 2, will eventually enrich the physical underpinnings in electrical 
engineering courses and textbooks. 
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