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The objective of this work is to test whether vibration frequencies ν1 of 

free, ground-state, main-group triatomic molecules manifest a periodicity 

similar to those of atomic spectroscopic constants.  This test and an 

earlier test on energies of atomization underscore the role of the periodic 

law as a foundation of chemistry.  Using data from four data bases and 

from computation, we have collected and have mapped ν1 data in 

mathematical spaces of fixed-period molecules.  These spaces are 999-

atom cubes with rare-gas molecules on each face.  The ν1 collected from 

various sources might be of use in optical or near-optical searches for 

cold triatomics in interstellar space.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

2 
 

1. Introduction 

 

Diatomic molecules echo atomic periodicity: plotted data for series of molecules in series 

bounded by diatomics having atomic numbers ZA and ZB (or both) equal to an atomic magic 

number are repetitious, and the plots have constant or monotonic amplitude as the molecular 

masses increase.  Gas-phase main-group diatomic molecules AB display this periodic behavior 

dramatically and allow some reasonably precise predictions to be made.[1,2 ]  The properties that 

have been studied include internuclear separations re,[3], vibration frequencies ωe,[3], spring 

constants k1,[4], ionization potentials[3], and entire Deslandres tables of band-system Frank-

Condon factors[5]. 

 

Kong [6] found this same periodicity among contracted internuclear distances of free linear/bent 

triatomic molecules (Fig. 1).  Babaev has shown periodicity in their structural characteristics [7].       
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Fig. 1. Percent contracted internuclear distances (dimensionless) [4].  The data are 

plotted on Kong’s molecular number N, which serves the same role for triatomic 

molecules in their periodic chart (Fig. 2) as atomic number Z does for atoms in their 

periodic chart.  P is the sum of the three atomic period numbers. The black points 

pertain to free triatomic molecules; the others pertain to “dressed” species, where the 

atomic number of one outside atom is reduced by 1 and various radicals are attached in 

its place.  When available, the data are from [7]; the remainder are computed at the 

B3LVP/6/-311G level for P = 6 and 7, and at the B3LVP/LanL2DZ level for P = 7 and 

8.   

 

Kong’s periodic chart of main-group triatomic molecules (Fig. 2) has the sum of the group 

numbers (3 to 24) horizontally, and the sum of the period numbers vertically.  A molecule whose 

atoms are in Mendeleev-chart periods 2, 3, 2, or 2,2, 4 has a period sum P = 12.  The first two 

rows of this chart contain species of no interest in this research.  Triatomic molecular numbers 

are assigned from left to right in P = 6, then in P = 7, etc.  
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Fig. 2. Kong’s periodic system of main-group triatomic molecules [9].  The table has 

the sums of the atomic group and period numbers G from left to right and P down from 

top to bottom.  After P = 4 and 5, which are devoted to hydrides, the cells show the 

simplest triatomic molecules; other isoelectronic species can be found by proton 

shifting.  

 

These and other results for diatomic and triatomic molecules underscore the role of the periodic 

law as a foundation of chemistry, and thus support the argument that chemistry is not a special 

case of physics (the subject of prolonged debate [e.g. 10]).   

 

The objectives of this work are to test for periodicity in heats of atomization of free triatomic 

molecules, and in addition to prepare for testing triatomic molecular longitudinal symmetric-

stretch vibration frequencies ν1.  The test for this property will entail additional work; even the 

beginning of this work – entailing only P = 6 molecules – occupies much of this paper.  The 

spectroscopic constant ν1 was chosen partly with the hope that it may be distributed in triatomic 

molecular space as smoothly as diatomic molecular vibration frequencies are in diatomic 

molecular space [11].  It was also chosen in the hope that the collected data might assist 

astrophysicists in visible and near-visible light searches for cold triatomic molecules in 

circumstellar space. 
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2. Theory 

 

2.1. Chemical considerations 

 

This investigation does not address the whether any particular free triatomic exists in the 

observable universe or in experimental apparatus.  All of them are considered candidates for 

existence in some unexplored location in the cosmos or for a brief existence as transition species.  

 

Aside from this, considerations such as bond types, bond orders, cyclic isomers, multiplicities, 

chemical or radioactive reactivity, and behavior when in the solid or liquid state, are ignored in 

this study.   

 

2.2. Molecular mechanics 

 

The symmetric-stretch vibration frequency of a linear, symmetric, triatomic molecule is given by 

the standard equation for a mass hanging on a spring: 

 

          √   ⁄⁄   ,      (1)  

 

where k1 is the force constant appropriate for the motion and m is the mass of either outer atom 

[12].  The equation for ν1 is almost the same as that for the vibration frequency ωe of a diatomic 

molecule; the only change needed in Eq. (1) is to replace m by the reduced mass: 

 

          √   ⁄⁄    .      (2) 

 

It follows that ν1 of a linear, symmetric, triatomic molecule ABA can be obtained from ωe of the 

diatomic molecule AB by  

 

      √      .       (3) 

 

This conversion will be used in the section on data acquisition.  The equations for non-linear, 

non-symmetric, or non-linear and non-symmetric triatomics [12] were not used in this work.  

  

2.3. The space for linear/bent triatomic molecules 

  

Being able to visualize this mathematical space is essential for understanding what follows in 

this paper.  First, imagine an 888-atom cube populated by main-group period-2 atoms with 

rare-gas molecules on three faces.  Then generalize to many such cubes, ranging from (R1,R2,R3) 

= (2,2,2) to (7,7,7) (Fig. 3) where Ri is the period number of atom i.  The result is the molecular 

mathematical space for neutral main-group triatomic molecules. 
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Fig. 3. The space for main-group triatomic molecules formed from atoms (R1,R2,R3) = 

(2,2,2) to (7,5,7); hydrogen and helium (Ri = 1) are omitted.  The diagram is symmetric 

with respect to reflection in a plane containing the closest and the farthest edges of the 

space; hence the cube with periods (R1,R2,R3) = (4,2,2) contains the same molecules as 

does the cube (2,2,4).  It follows that one of these cubes is redundant.  There are 

{[(65)/2]7} = 105 non-redundant cubes, each containing 888 = 512 molecules, 

making a total of 53,760 molecules.  There are 49 cubes with R1 = R2, each containing 

{[(89)/2]8} = 288 molecules, making a total of 14,112 molecules.  Thus, the total 

population of all the space is 67,872.    

 

The features inside the individual cubes (subspaces) are important.  Fig. 4 shows horizontal cuts 

made for various central atoms; they are enumerated by the group number, C2,of the central 

atom.  If the cube is selected from R1 = R2, then the molecules on each cut are symmetric to 

reflection through the line C1 = C3; otherwise species on opposite sides of the line C1 = C3 are 

not redundant.            

 
Fig. 4. Sample horizontal cuts for different central atoms, C2, of any cube in Fig. 3.  

The figure is rotated approximately 90° with respect to those in Fig. 3 and is not to 

scale.     
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The cubes may be sliced by other planes, for example planes containing isoelectronic molecules 

(Fig. 5).  The slicing may be done while the cubes are all packed into the space of Fig. 1, with 

the result that an isoelectronic sequence will have members in more than one cube.   

 
Fig. 5. Sample isoelectronic slices in any subspace of Fig. 3.  As the total electron count 

ne increases, the slices progress from a triangle at the lower left, to a truncated triangle, 

to a hexagon, and back with reverse orientation toward the upper right.  The dashed 

lines in the figure pass though the locations of symmetric molecules that lie on the 

vertical plane C1 = C3 of Fig. 3. 

 

 

3. Data acquisition 

 

3.1. Tabulated triatomic vibration frequencies 

 

The National Institute of Science and Technology Webbook [8] provides data for many known 

triatomics.  Webbook data were used except those ABC species where ν1 and ν3 were identified 

as the “AB stretch” and “BC stretch.”  The most recent ν1 datum was always used, without 

regard to  the method used to obtain it.  An earlier compilation by Krasnov [13 ] was also 

consulted to obtain vibration frequencies.  Its values were used where the Webbook was silent.   

 

 

3.2. Linear symmetric molecules as a special case  

 

The Handbook for Physics and Chemistry [14] and “Constants of Diatomic Molecules” by Huber 

and Herzberg [15], provide ωe for two-atom (AB) molecules.  Using Eq. (3) and a table of atomic 

masses make it possible to calculate ν1 for the triatomics ABA.  This calculation is very useful 

because data for several triatomic molecules can be obtained that are not accessible in [11] or 

[12].  Table 1 presents data obtained in this way. 
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          Table 1. Linear symmetric triatomic symmetric-stretch vibration  

         frequencies obtained using Eq. (3).  All values have been rounded to 

         one significant figure after the decimal point.  

  Molecule   

(R1,R2,R3) ne Diatomic Triatomic ν1 Reference 

(2,2,2) 13 LiN LiNLi 379.5 [15] 

 14 LiO LiOLi 470.1 [15] 

 15 LiF LiFLi 472.8 [15] 

 15 B2 B3 750.2 [15] 

 22 BeF FBeF 707.5 [15] 

 22 NO ONO 1301.0 [15] 

 22 NO NON 1390.3 [15] 

 24 BF FBF 849.3 [15] 

          
a
 The datum “corresponds to ΔG(½) or the lowest observed integral” 

 

 

3.3. Computations for Molecules  

 

We employed two ab initio chemistry modeling programs on the Georgia Institute of 

Technology WebMo graphical user interface: QChem and PSI4.  Within the graphical user 

interface, a molecule was built each time with single bonds connecting the atoms. The molecule 

then had its mechanics “optimized” for bond lengths and bond angle.  The Hartree-Fock method, 

the “optimization and vibration Frequency” option, the “unrestricted” reference, and the 

automatically recommended multiplicity were always used; then the computer determined the 

optimum bond lengths and angles for the molecule.  

 

This protocol was used for each of the several basis sets. For the (2,2,2) space, we primarily used 

6-31+G(d) and 6-311+G(d,p) (identical to 6-31+G* and 6-311+G** respectively) basis sets 

using the QChem software.  We also used aug-cc-pVDZ and pVQZ basis sets with PSI4 

software.  These latter choices took substantially more computational time than any QChem 

bases: while either basis in QChem would take between 1 and 20 minutes, and aug-cc-pVDZ 

within PSI4 would take just under an hour’s time, aug-cc-pVQZ could run for as many as 30 

hours per molecule.   

 

While queuing jobs for the Georgia Tech computer to process throughout the day and overnight, 

we would request it to run using three bases for each molecule: usually 6-311+G**, aug-cc-

pVDZ, and aug-cc-pVQZ.  By doing so, we hoped to obtain at least one successful result by 

having more than one basis; to save time; and to establish whether or not the computer agreed 

with itself for a given molecule.   
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Van der Waal’s bonds are considered to pertain to cases where the computed molecular results 

indicated  dissociation.   

 

The symbols ν1, ν2, and ν3 are almost always used to represent the symmetric-stretch, bending, 

and asymmetric-stretch vibration modes.  Occasionally the values found were such that ν1, ν2, 

and ν3 are in actuality ν3, ν2, and ν1; for these, ν1 and ν3 were reversed.     

 

 

4. Analysis of data 

 

4.1. Specifics of the molecular space 

 

As data for a given (R1,R2,R3) were acquired, they were placed in bins of constant total electron 

count ne.  It is here that Fig. 5 must be consulted – in particular, the dashed lines within the 

various planes of fixed ne.  Falling along these dashed lines are symmetric molecules enumerated 

by C2.  Now consider the subspace containing molecules with atoms from (R1,R2,R3) = (2,2,2).  

Species containing rare-gas atoms were ignored, so the least and greatest total electron counts 

pertain to Li3 and F3: 

 

                    .     (4) 

 

where Ci is the integer group number of atom i in short form periodic charts, 1 ≤ Ci ≥ 7.  Within 

each bin, the data were entered in order of C2.  If the molecules are symmetric, C1 = C3, and  

 

            .      (5) 

 

Table 2 shows solutions of this equation for integer values of C2 and C1 that yield symmetric 

molecules bounded, in C2 for a given k, by species with rare-gas atoms.  Several aspects deserve 

attention: 

 

 The bins do not have the same numbers of occupants 

 

 The generalization to non-symmetric molecules is trivial: decrease C1 by 1 and increase 

C3 by 1.  This process generate new molecules which could be horizontal in Table 1 and 

which would eventually end with rare-gas molecules. 

 

 The generalization to molecules with atoms from other periods is trivial 
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                 Table 2. Solutions of Eq. (5) for (R1,R2,R3) = (2,2,2) molecules.   

                            Values of C1, C2, or ne that are half-integer or negative, and  

    molecules with one or more rare-gas atom, have been deleted.  

K C2 C1 ne Molecule k C2 C1 ne 
Molecule 

4 2 1 10 LiBeLi 18 12 2 5 BBeB 

5 1 2 11 BeLiBe 

 

12 4 4 CCC 

5 3 1 

 

LiBLi 

 

12 6 3 BOB 

6 2 2 12 BeBeBe 19 13 1 6 OLiO 

6 4 1 

 

LiCLi 

 

13 3 5 NBN 

7 1 3 13 BLiB 

 

13 5 4 CNC 

7 3 2 

 

BeBBe 

 

13 7 3 BFB 

7 5 1 

 

LiNLi 20 14 2 6 OBeO 

8 2 3 14 BBeB 

 

14 4 5 NCN 

8 4 2 

 

BeCBe 

 

14 6 4 COC 

8 6 1 

 

LiOLi 21 15 1 7 FLiF 

9 1 4 

 

CLiC 

 

15 3 6 OBO 

9 3 3 15 BBB 

 

15 5 5 NNN 

9 5 2 

 

BeNBe 

 

15 7 4 CFC 

9 7 1 

 

LiFLi 22 16 2 7 FBeB 

10 2 4 16 CBeC 

 

16 4 6 OCO 

10 4 3 

 

BCB 

 

16 6 5 NON 

10 6 2 

 

BeOBe 23 17 3 7 FBF 

11 1 5 17 NLiN 

 

17 5 6 ONO 

11 3 4 

 

CBC 

 

17 7 5 NFN 

11 5 3 

 

BNB 24 18 4 7 FCF 

11 7 2 

 

BeFBe 

 

18 6 6 OOO 

 

Continued at right 25 19 5 7 FNF 

     26 20 6 7 FOF 

 

 

4.2. Tabulating the results 

 

As the molecular vibration frequencies were being placed into a master file, they were plotted on 

C2 (Fig. 6) as a running check on the data-entry process.  In the cases where two or more 

tabulated or computational results for a given molecules did not fall as close or closer together 

than shown in the figure, then the outliers were dropped.  
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Fig. 6. A graphic produced as a cross-check while data were being introduced into the 

portion of the main file for molecules with ne = 21.  Vibration frequencies ν1 are plotted 

on C2.  C2 = 0 and 8 relate to rare-gas molecules.  The parabolic fit has only a 

suggestive role; a more realistic curve might intersect the abscissa at 1 and 7.  The very 

low-value datum at C2 = 6 would normally have been ignored but in this case was 

retained.  The figure gives a sense of the spreads of data for which averages and error 

measures were calculated.  Additional discussion of these measures follows in Section 

4.3. 

 

The resulting data are presented in Table 3. The molecules shown are far from being the totality 

of all molecules that would fill their space for several reasons:  

 

 Large numbers of molecules are not in the tables and requests for computational values 

were rejected 

 

 Any molecular computation which resulted in imaginary or negative values of ν1, or 

presented the molecule as being cyclic, were discarded 

 

 Any result for ν1 and ν3 designated as AB and BC stretches was discarded 

   

 Results including single- or double-digit vibration frequencies were dropped except if the 

molecules’ C2 values were close to the limiting values (Section 4.2) 

 

 If data from K, H, or P differed seriously from W or from the surrounding ν1, they were 

ignored 
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Table 3. Data for molecules from (R1,R2,R3) = (2,2,2) in order of 

ne and then C2.  The averages are derived from computed values 

(A: aug-cc-pVDZ; C: aug-cc-pVQZ; D, 6-311+G**; L, 6-31G(d); 

and M, 6-311+G(d,p) when successful – and tabulated values (W, 

[8]; K, [13]; P, [14]; H, [15] with Eq. (3) – where available).  

“2M;KW” means the M was successful two times and slightly 

different tabulated values were found in K and W.  If two sources 

contributed, then the half-difference error is shown in column 4; if 

more contributed then the sample standard deviation is shown.  All 

values are rounded to one significant figure after the decimal.  End-

notes to the table state the causes of percent errors in excess of 

10%.  
 

    Average  Difference  Percent  Table or 

ne Species ν1 (cm
-1

) error, or σ error or σ basis 

11 LiBeBe 388.4     C 

12 BeBeBe 539.5 1.5 0.3 AD 

  LiBeB 356.6 40.0 11.2
a
 AD 

  LiBBe 533.2 0.2 0.0 2C 

  LiCLi 570.9     A 

13 BBeBe 443.8     M 

  LiCBe 626.3     M 

  LiNLi 772.8     A 

14 BBeB 762.2     A 

  BeBB 635.4     A 

  LiOLi 817.2 33.2 3.8 A,C;W 

15 BBeC 534.6     A 

  BBB 535.3     H 

  BeCB 1218.6 0.3 0.0 C,D 

  BeNBe 1290.3 2.0 0.2 2D 

  BNLi 764.1 2.8 0.4 AD 

  BeOLi 840.1     C 

  LiFLi 672.2     H 

16 BeBeO 693.2     W 

  CBeC 1130.0 1.3 0.1 CD 

  LiNC 2080.4     K 

  BeOBe 1083.4 38.4 3.5 2M;KW 

17 BBeO 475.4
b
 

  
L 

  CBeN 760.8     A 

  BeBeF 458.4 179.4 39.1
a
 CD 

  BeBO 646.9 31.7 4.9 D,M 

  LiBF 243.3 21.9 9.0 AC3G 

  CCB 1526.1     M 
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  BNB 1290.8     L 

  LiCO 652.2     M 

  BeOB 493.3     M 

18 NBeN 520.0     A 

  BBO 617.5 48.7 7.9 C,M 

  CCC 1224.5     W 

  BCN 863.7 177.0 20.5
c
 ACDM 

  BOB 1113.0     M 

  BeFB 19.4 

 

  M 

  LiFC 605.0     M 

19 OLiO 719.7     W 

  CNC 1123.0 77.0 6.9 MK 

  BNN 957.4 0.7 0.1 M;K 

  BeNO 759.6 154.2 20.3
d
 M,W 

  LiOF 804.1     M 

  BeON 1439.5     M 

  BOC 1141.5     M 

20 OBeO 1060.5     M 

  NCN 1338.0 122.1 9.1 2A;W 

  CCO 1970.9     W 

  COC 1096.1     M 

21 OBeF 660.1     A 

  OBO 1070.0     W 

  NBF 980.4     A 

  NCO 1398.7     A 

  BNF 980.3     M 

  CNO 1103.2     A 

  NNN 1320.0     W 

  BeOF 128.6 5.5 4.3 2A 

22 FBeF 735.6 31.1
e
 2.6 A;H,W 

  OBF 1076.1 37.0 3.4 A,C,D;W 

  OCO 1425.7 92.7 6.5 D;W 

  NCF 1205.0     C 

  BOF 1059.8     A 

  NON 1076.8     A 

23 FBF 1153.0     W 

  OCF 1861.6     W 

  ONO 1318.0     W 

  FCF 1225.1     W 

24 FNO 945.4 0.6 0.1 D,M 

  NOF 1103.0     W 

  OOO 1103.0     W 

  FNF 1075.0     W 
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25 OOF 1491.0 4.0 0.3 K,W 

a
 The computation from 6-311+G** is considerably higher   

    in this instance than that for aug-c-pVDZ 
b
 This 6-31G(d) value is next to a rare gas vibration  

    frequency, presumed to be very small  If the 6-311+G(d,p) 

    result of 1053.8 is retained. then columns 2 to 4 contain 

    746.6, 289.2, and 37.8, 
c
 The computation from 6-311+G** is again considerably 

    higher than those for aug-c-pVDZ and pVQZ, and  

    6-311+G(d,p) 
d
 The result from 6-311+G(d,p) is low with respect to the 

    Webbook value.  
e
 The Huber and Herzberg value used in Eq. (4) is doubtful 

   because it may refer to ωe for a vibrational level higher  

   than v” = 0/ 

 

 

4.3. The distribution of molecules in their space 

 

For every molecule ABC the data in the file were reversed so as to include the molecule CBA.  

All of these were then plotted in the (C1,C2,C3) coordinates of the appropriate subspace of Fig. 3.   

Fig. 7 shows ν1 having the highest values, from 2230 down to 1200 cm
-1

.  It can be seen that they 

all have carbon, nitrogen, and oxygen as their central atoms.  Fig. 8 presents all of the ν1 values 

gleaned in this study. 

 

As explained in Sectiono 4.2, the failure of Fig. 8 to show a completely filled molecular sub-

space is due to the absence of so many molecules in [13 and 14] and to the failure of many of the 

computations. 
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Fig. 7. Stereoscopic view of vibration frequencies for molecules in the subspace  

(R1,R2,R3) = (2,2,2) having the high-end ν1 values from 2230 down to 1200 cm
-1

.  The 

data are symmetric with respect to reflection through the C1 = C3 plane, which passes 

through the near vertical edge at right and the far vertical edge at left.  

 

 
Fig. 8. Vibration frequencies for all molecules in the subspace (R1,R2,R3) = (2,2,2).  

This subspace is the cube in Fig. (3) which lies closest to the reader.  

 

 

4.4. analysis of errors 

 

After the entries were vetted as discussed above Fig. 6, and before the introduction of reversed 

values (Section 4.2), the data for each molecule having more than one entry were averaged.  
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Percent errors of these means were estimated as follows: if there were two data (29% of the 

instances),   

 

Percent e     (          )          ,       (6) 

 

where X is the Webbook value if there is one, and otherwise is the mean of all tabulated and 

computed results for the molecule.  If there were more than two data (12% of the instances) the 

percent errors were replaced by sample standard deviations. 

 

The percent errors of means of computed vibration frequencies are shown in Table 4.   

 

Table 4. Means, combined random and systematic errors (rows 1 

to 5, where X is NIST Webbook), and random errors (rows 6 to 

10, where X represents the for results from computations or  

compilations.  Basis sets not shown had one result or no obtained  

result.  All values rounded to one significant figure after the  

decimal point. 

Table or 

basis set 

 

X  

 

Entries 

Mean ν1 

in cm
-1

 

Percent error  

of mean 

aug-cc-pVDZ [8] 2 9.3 9.6 

aug-cc-pVQZ  [8] 8 -5.5 18.4 

6-311+G** [8] 5 -12.2 27.5 

6-311+G(d,p) [8] 4a 5.9 3.7 

[13] [8] 3 -1.1 3.2 

aug-cc-pVDZ Our mean 25 -1.5 7.0 

aug-cc-pVQZ Our mean 21 -2.8 12.4 

6-311+G** Our mean 28 0.9 5.3 

6-311+G(d,p) Our mean 7a 1.6 4.4 

[14] Our mean 3 0.0 2.6 

                   
a
 One two digit value of ν1 was omitted from the statistics.  This 

           value was adjacent to a rare-gas molecule and contributed to  

           the correct decline of the parabola (Fig. 6) toward zero.     

 

In one case (row 9) the standard deviation is smaller than the average.  In the other cases, the 

averages are statistically not different from zero. 

 

 

5. Demonstration of periodicity 

 

Triatomic molecular heats of atomization provide an excellent manifestation of periodicity.  It is 

difficult if not impossible to visualize trends in the six-dimensional space within which the data 
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for triatomic molecules lie, so a collapsed coordinate system is used.  The coordinates of this 

system are ne, C2, and (from frame to frame below) f(R) is   

  f(R) = R1R2 + R2R3   .         (7)    

This formula for  f(R) was found earlier [16] by plotting data for fixed-group molecules on 

various functions of the atomic period numbers, such as R1 + R2 + R3 and R1R2R3.  From among 

these, the plots showed f(R) to be the superior independent variable.   

It is remarkable that data for spectroscopic constants of fixed-period [fixed f(R)] molecules are 

often found to have similar values in series with fixed  

G(C) = C1+2C2+C3 = (C1+C2) + (C2+C3),  (8)  

as often or more so than in isoelectronic series with fixed C1+C2+C3.  Eqs. (7) and (8) define a 

simple Diatomics-in-Molecules method for data plotting.  

Energies of atomization for molecules with fixed period numbers f(R) = R1R2 + R2R3, plotted on 

coordinates enumerated by ne and C2 are shown in the following figures, which clearly show 

periodicity of triatomic ΔaH.     

 
Fig. 9. Δa in kJ/mol for f(R) = 8, i.e., (R1,R2,R3) = (2,2,2).  This plot and those that 

follow are the result of a neural-network model built from available data.  
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Fig. 10. ΔaH in kJ/mol for f(R) = 16, i.e., (R1,R2,R3) = (2,4,2), (4,2,4), (6,2,2), and 

(2,2,6).  Permuted period numbers do not result in redundancies, but for each f(R) any 

intersection of the fishnet surface may represent several molecules.  Hence, given both 

f(R) it follows that each intersection may be populated by very many molecules.  The 

ordinates of the graph are neural-network “averages” based on all known data, so it is 

clear that any attempt to predict ΔaH at any location would be futile.   

. 

 

 
 

Fig. 11. Same as Fig. 10 except for f(R) = 28, i.e., (R1,R2,R3) = (5,2,4), (4,2,5), (5,6,2), 

(6,2,5),  (2,7,2), and (7,2,7).  A second hump at ne =17 is visible.  
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6. Discussion 

 

Periodicity among triatomic molecules has been demonstrated in their bond angles (Fig. 1) and 

heats of atomization (Figs. 9-12).  The data accumulated but not included in this report could 

also be used to display periodicity among the bond lengths.   The ν1 values in Table 3 which 

were not found in [11] or [12], and which have usefully small error measures, could be of use in 

a visible-light search for free triatomic molecules in interstellar space.  There exists a NIST data 

base containing high-precision long-wavelength spectral features, but for a limited number of 

triatomic molecules [17]  

 

As explained in Sectiono 4.2, the failure of Fig. 8 to show a completely filled molecular sub-

space is due to the absence of so many molecules in [13 and 14] and to the failure of many of the 

computations. 
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Fig. 12. Same as Fig. 10 except for f(R) = (5,6,5) or (6,5,6) = 60.  The amplitudes of 

the figures decrease monotonically as f(R) increases, a requisite for claiming periodic 

behavior.  The second hump visible in Fig. 11 has grown relatively larger while still 

within the monotonic constraint. .  
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