ON THE THIRD SMARANDACHE CONJECTURE ABOUT PRIMES

Maohua Le

Abstract. In this paper we basically verify the third Smarandache conjecture on prime.

Key words . Smarandache third conjecture, prime, gap.

For any positive integre n, let P(n) be the n-th prime. Let k be a positive integer with k>1, and let $c(n,k)=(P(n+1))^{1/k}-(P(n))^{1/k}$.

Smarandache [3] has been conjectured that

$$(2) C(n,k) < \frac{2}{k} .$$

In [2], Russo verified this conjecture for $P(n) < 2^{25}$ and $2 \le k \le 10$. In this paper we prove a general result as follows.

Theorem. If k>2 and n>C, where C is an effectively computable absolute constant, then the inequality (2) holds.

Proof. Since k>2, we get from (1) that P(n+1)-P(n) C(n,k)=

$$C(n,k) = \frac{}{(P(n+1))^{(k-1)/k} + (P(n+1))^{(k-2)/k} (P(n))^{1/k} + \dots + (P(n))^{(k-1)/k}}$$

(3)
$$< \frac{P(n+1)-P(n)}{k(P(n))^{(k-1)/k}} \le \frac{2}{k} \left(\frac{(P(n+1)-P(n))}{2(P(n)^{2/3})} \right)$$
.

By the result of [1], we have

(4)
$$P(n+1)-P(n) < C(a)(P(n))^{11/20+a}$$

for any positive number a, where C(a) is an effectively

computable constant depending on a. Put a=1/20. Since $k\ge 3$ and $(k-1)/k\ge 2/3$, we see from (3) and (4) that

(5)
$$C(n,k) < \frac{2}{k} \left(\frac{C(1/20)}{2(P(n))^{1/15}} \right) .$$

Since C(1/20) is an effectively computable absolute constant, if n>C, then $2(P(n))^{1/15}>C(1/20)$. Thus, by (5), the inequality (2) holds. The theorem is proved.

References

- [1] D.R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55(1979), 49-69.
- [2] F.Russo, An experimental evidence on the validity of third Smarandache conjecture on primes, Smarandache Notions J. 11(2000), 38-41.
- [3] F. Smarandache, Conjectures which generalized Andrica's conjecture, Octogon Math. Mag. 7(1999), 173-76.

Department of Mathematics Zhanjiang Normal College Zhanjiang, Guangdong P.R. CHINA