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In the present note we prove the divergence of some series involving the Smarandache 

function, using an unitary method, and then we prove that the series 

"" 1 
~ S(2)S(3) .... S(n) 

is convergent to a number s E (711100, 1011100) and we study some applications of this series 

in the Number Theory (third constant of Smarandache). 

The Smarandache Function S : N* -+- N is defined [1] such that S(n) is the smallest 

integer k with the property that k! is divisible by n .. 

Proposition 1. If ( xn )n ~ I is a strict increasing sequence of natural numbers, then the 

senes: 

(1) 

where S is the Smarandache function, is divergent. 

Proof. We consider the function f: [xn, x...1 ] ~ R., defined by f(x) = In In x. It fulfils the 

conditions of the Lagrange's theorem of finite increases. Therefore there is cn E (x" , x... I ) such 

that: 

(2) 

Because xn < en < x .... ' we have: 

X_I - Xn 1 I 1 1 . X_I - Xn ("-')n E N, < n nXn+l - n nXn < 1 ' v 
xn+lln Xn+l Xn n x" 

(3) 

if Xn ;: 1. 
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We know that for each n E N* \ { I:. S~n) ~ I. i.e. 

o < S(n) < _1_ 
nlnn - Inn' 

(4) 

from where it results that lim Sen) = o. 
n_CI nlnn Hence there eXIsts k > 0 such that 

S(n) < k Sen) 
nlnn ' I.e., ninn > -k- for any n E N*. so 

(5) 

Introducing (5) in (3) we obtain: 

(6) 

Summing up after n it results: 

Because lim Xm = ;x, we have 
m-c 

lim In In Xm = a::, i.e., the series: 
m_ 

is divergent. The Proposition 1 is proved. 

Proposition 2. Series ~ sIn)' where S is the Smarandache function. is divergent. 

Proof. We use Proposition 1 for xn = n. 

Remarks. 1) If XII is the n - th prime number, then the series f X'SI( - )Xn is divergent. 
",,\ Xn 

2) If the sequence (~)" ~ I forms an arithmetical progression of natural numbers, then 

the series t S(1 ) is divergent. 
""I Xn 

3) The series t. S(2~ + 1)' ! S(4~ + 1) etc., are all divergent. 
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In conclusion. Proposition I offers us an unitary method to prove that the series having 

one of the precedent aspects are divergent. 

Proposition 3. The series: 

'" 1 .E 5(2)· S(3)·· ,S(n)' 

where S is the Smarandache function, is convergent to a number s E (711100, 1011100). 

Proof. From the definition of the Smarandache function it results S(n):;:; n!, 

('of)n E N*'{ 1 }, so S~n) ~ ~!' 

Summing up, begining with n =: 2 we obtain: 

'" 1 '" 1 2: > 2: - = e-2 
_2 S(2)· 5(3)·· ·5(n) - _2 n! . 

The product 5(2) . 5(3) ... 5(n) is greater than the product of prime numbers from the 

set {I, 2, ... , n}, because S(p) =: p, for p =: prime number. Therefore: 

1 < _I_ 
n Ie U 5(i) D Pi 

(7) 

where p" is the biggest prime number smaller or equal to n. 

There are the inequalities : 

5 - f 1 = --1- + 1 + 1 + ... + 
- _2 S(2)5(3)·· -S(n) S(2) S(2)S(3) 5(2)S(3)S(4) 

+ 1 + ... <1+..2..+ 2 + 4 + 
5(2)S(3)·· ·5(k) 2 2·3 2·3 . 5 2·3·5·7 

2 Pk+\ - Pk + + .. , + +... (8) 
2·3.5·7.11 _ PIPZ"'Pk . 

Using the inequality P \ PZ ... Pk > P~+l' Mk ~ 5 [2], we obtain : 
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S < 1 + 1 + _1 + -L + _1 + _1 + ... + _1_ + ... 
2 3 15 105 p~ p; P~+I 

(9) 

1 1 We note P = - + - + ... 
2 2 

1 1 1 and observe that P < - + - + - + ... 
13 2 142 15 2 P6 p, 

It results: 

P < 1t2 _ (1 ___ 1 ___ 1 + ... + _1_1 
6 22 3 2 122 )' 

where 

1t2 1 1 1 - = 1 + - + - + - + ... (EULER). 
6 22 32 42 

Introducing in (9) we obtain: 

1 1 1 2 1t2 1 1 1 5 <-+-+-+-+--1----- ... _-
2 3 15 105 6 22 32 122 ' 

Estimating with an approximation of an order not more than ~, we find : 
10 

.., 1 
0, 71 <~ 5(2)5(3) ... 5(n) < 1,01. 

The Proposition 3 is proved. 

(10) 

Remark. Giving up at the right increase from the first terms in the inequality (8) we can 

obtain a better right framing : 

~ 1 < 0 97 
~ 5(2)5(3)··· Sen) ,. 

(11) 

Proposition 4. Let a be a fixed real number, a ~ L Then the series 

~ 5(2)5(;)~ ... 5(n) is convergent (fourth constant of Smarandache) . 

Proof. Be (Pk )1:21 the sequence of prime numbers. We can write: 
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5(2) 

3(1 3(1 
5(2)5(3) = PIP: 

4(1 4(1 p~ 
--~-- < -- < --5(2)5(3)5(4) PIP: PIP: 

5(1 5(1 
5(2)5(3)5(4)5(5) < PIP:P3 

6(1 6(1 
5(2)5(3)5(4)5(5)5(6) < PIP:P3 

n(1 (1 p(1 __ -..:..:.. ___ < n < k+1 

5(2)5(3)···5(n) PIP:'" Pk PIP:'" Pk' 

where P, ~ n., i e {I •...• k}, Pk+1 > n. 

Therefore 

Then it exists ~ E N such that for any k ~ leo we have: 

(1+3 
PIP:'" Pk > Pk+i' 

Therefore 
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too. 

Because the series I + is convergent it results that the given series is convergent 
kHo Pk+1 

Consequence 1. It exists Ilo E N so that for each n ~ Ilo we have S(2)S(3) ... Sen) > nel
• 

Proof. Because ~ S(2)S(;; ... Sen) = 0, there is Ilo E N so that 

na 
~ < 1 for each n ~ no. 

5(2)5(.) ... Sen) 

Consequence 2. It exists Ilo E N so that: 

a 
S(2) + S(3) + ... + Sen) > (n - 1) . n~ for each n ~ no. 

Proof. We apply the inequality of averages to the numbers S(2), S(3), ... , Sen) : 

a 

S(2) + S(3) + ... + Sen) > (n-l) ·-~S(2)S(3) ... Sen) > (n-l)n~, V'n ~ no. 

REFERENCES 

[1] E. Burton: On some series involving the Smarandache Function, Smarandache 

Function Journal, vol. 6, N" 1 (1995), 13-15. 

[2] L Panaitopol : Asupra unor inegalitati ale lui Bonse, Gazeta Matematica, seria A, 

vol. LXXVI, nr. 3, 1971, 100 - 102. 

[3] F. Smarandache : A Function in the Number Theory (An. Univ. Timisoara, Ser. St. 

Mat., vol. xvm, fasc. 1 (1980), 79-88). 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF CRAIOVA, CRAIOVA 1100, ROMANIA 

128 




