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The Smarandache functions of the second kind are defined in [1] thus:
S¥N' >N, Stm)=S,(k) for neN,

where §, are the Smarandache functions of the first kind (see [3]).

We remark that the function S' has been defined in [4] by F. Smarandache because
st=§.

Let, for example, the following table with the values of S?:

n |1 2 3 4 5 6 7 8 9 10 11 12 13 14
o {1 4 6 6 10 6 14 12 12 10 22 8 26 14

Obviously, these functions S aren't monotony, aren't periodical and they have fixed
points.

1. Theorem. For k,n N istrue S*(n)<n-k.
Proof Let n=p[p;*...p* and S(n):rlrsl‘asyt({SPi(a,)}=S(pf’).

Because  §*(n) = () = max{S, (a)} = S(p7*) < kS () < AS(p") = kS (m)
and S(n)<n, [see([3]], it results:

(1) S¥(my<sn-k for every nmkeN" .
2. Theorem. A/l prime numbers p > 5 are maximal points for S*, and
Sk(p)zp[k—ip(k)], where Osip(k)sli%]

Proof. Let p>5 be a prime number. Because Sp_l(k)<Sp(k), Sp+l(k)<Sp(k) [see

[2]] it results that S*(p-1)<S*(p) and S*(p+1)<S*(p), sothat S*(p) is a relative
maximum value.
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Obviously,

(2) SH(p)=S,(k)=plk-i,(k)] with OS’P”‘)S[L;]'

(3) S¥(p)=pk for p2k.

3. Theorem. The numbers kp, for p prime and p>k are the fixed points of Sk,

Proof. Let p be a prime number, m= p®...p% be the prime factorization of m and
p>max{m,k}. Then pa, <pt<p for ielt, therefore we have:

$*(m- p) = SU(mp)* 1= max{S, ..., (00} = S, ()= kp.

For m=k we obtain:

S*(kp)=kp sothat kp isa fixed point.

4. Theorem. The functions S* have the following properties:

Sk =0 (n***), for £>0

im sup =k.
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5. Theorem, [see[l]]. The Smarandache functions of the second kind standardise
(N, ) in (N,<,+) by:

¥, max{$*(a),5%(b)} < S (ab) < S*(a) + 5% ()
and (N', ) in (N' <) by:

5, max{S%(a),5%(b)} < $*(ab) < S*(a)- S*(b) for every a,beN'

6. Theorem. The functions S* are, generally speaking, increasing. It means that:
vneN' 2myeN sothat Ym>m; = S§“(m)=S*(n)
Proof. The Smarandache function is generally increasing, [see [4]], it means that :
(3) vVt eN" Zn(t)eN sothat Vr2r = S(r)2S(¢)

Let t=n* and ro=r(t) so that Vr2r = S(r) 2 S(n*).

Let m,,=[5/5]+1_ Obviously my 2 4/r, & mf2r,and m>my & m" > mf.
Because m 2mf >r, it results S(m*)2S(nf) or S¥(m)=S¥(n).
Therefore

VneN Zmy= {'{/ro ] +1 so that
vmz2m, = S¥(m)= 5“(n) where = rO(nk)
is given from (3).
7. Theorem. The function S* has its relative minimum values for every n = p\, where p
is a prime number and p > max{3,k}.

Proof. Let p!'=p!-p}---pr-p be the canonical decomposition of p!, where
2=p <3=p, <--<p,<p. Because p! is divisible by p;’ it results S(p;f) <p=S(p) for

every j el,—m.
Obviously,

5o = ST(p)*1= max| 5(6).5(s)}
Because S(p'" ) < kS (p?) < kS(p) = kp = S(p*) for k < p, it results that we have

4 SY(p)=S(p*)=hp, for k<p
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Let p!-1=gq}-q7---q be the canonical decomposition for p!-1, then
q,>p for j elr.
It follows S(p!-1) = %{S(q;’ )} =S(qy) with ¢, > p.
)

Because S(gz) > S(p) = S(p!) it results S(p!-1)> S(p!).
Analogous it results S(p!+1)> S(p!).
Obviously

&) SHp-D=S[(p- 1) |2 5(gk) 2 5(gk) > S(PM) = kp

© S*p+D=S[(p+1)*]>k-p

For p2max{3,k} out of (4), (5), (6) it results that p! are the relative minimum
points of the functions S* .
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