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Let c¢- N— N be the function defined by the condition that n + ¢ ( n ) = p,, where
p, is the smallest prime number, p, > 1.

Example

c(0)=2,¢c(1)=1,¢(2)=0,¢c(3)=0,c(4)=1, c(5)=0,c(6)=1,
c¢(7)=0and soon.

1) If p, and p,_, are two consecutive primes and p, <n <p,,,then :

c(n)e{p.-P-LpPu-P-2. .,1,0], because:
c(p,~1)=py-Pi- landsoon,c(p,.,)=0

2)c(p)=c(p-1)-1=0 forevery pprime,becausec(p)=Oandc(p-1)=1.
We also can observe thatc (n)=c(n+1)foreveryne N.

1. Property

The equationc(n)=n,n>1 has no solutions.

Proof

Ifnisaprimeitresuitsc(n)=0<n

It is wellknown that between n and 2n, n > 1 there exists at least a prime number. Let
p, be the smallest prime of them. Then if n is a composite number we have :

c(n)= pk-n<2n-n=n,thereforec(n)<n.
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: . 1
It results that for every n = p. where p is a prime. we have 7< —n—)< 1,
c

. c(n) .. . ) n
therefore . —(n—) diverges. Because for the primes ¢ ( p ) / p = 0 we can say that > -
nEp nzl
. 2 pnme
diverges.
2. Property

If nis a composite number. thenc(n)=c(n-1)~ L

Proof
Obviously.
It results that for n and ( n = 1 ) composite numbers we have : (i(i)l) > 1. Now. if

p, < n < p, , where p, and p,_, are consecutive primes. then we have -
c(n)c(n=1) .c(p--1)=(p., -n)
andifn<p <p,, thenc(n)c(n=1).. .c(p.-1)=0
Of course. every ILI c(n) = 0 if there exists a prime number p, k< p <r.

n=k

If n=p, isany prime number. thenc (n) =0 and becausec(n~ 1)=p,-n- 11t

resultsthat ' ¢c(n)-c(n+1 )| =1if and only if nand ( n+ 2 ) are primes ( friend prime
numbers )
3. Property

For every k - th prime number p, we have :

c(p,~1)<(logp, )-1

Proof

Becausec(p,~1)=p,,-p,- 1 wehavep_, -p,=c(p,~ 1)L

But. on the other hand we have p,_, - p, < ( log p, ). then the assertion follows.
4. Property

c(c(n))<c(n)andc™(n)<c(n)<n, foreveryn>1 andmz=2.
Proof

If we denote ¢ ( n ) = r then we have :

c(c(n))=c(r)<r=c(n).

Then we suppose that the assertion is true form : ¢ (n ) <c(n) <n, and we prove it
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for(m-1).too:

¢c'(n)=c(c™(n))<c™(n)<c(n)<n

th

. Property

For every prime p we have (¢ (p-1))" < c((p-1)").

Proof

c(p-1)=1= (c(p-1))"=1while(p-1) isa composite number. therefore
c((p-1)y)=1L

6. Property

The following kind of Fibonacci equation :

c(n)=c(n-1)=c(n=-2) (1)
has solutions.

Proof

Ifnand ( n~ 1) are both composite numbers, thenc(n) >c(n-1)=1. If(n+2)
is a prime. then ¢ (n = 2 ) = 0 and we have no solutions in this case. If (n — 2 ) is also a
composite number, then :

c(n)>c(n=1)>c(n+2)2 1. thereforec(n)+-c(n+1)>c(n=+2)
and we have no solutions also in this case.

Therefore n and ( n = 1 ) are not both composite numbers in the equality ( 1 ).

If nis a prime, then ( n — 1 ) is a composite number and we must have :

O-c(n=1)=c(n=2), wichis not possible ( see (2)).

We have onlv the case when ( n = 1) is a prime; in this case we must have :

| ~0=c(n=2)but this implies that (n + 3 )1is a prime number, so the only
solutions are when (n = 1 ) and ( n ~ 2 ) are friend prime numbers.

7. Property

The following equation:

c(n)~c(n-+2)
—

-

c(n-1) (2)

has an infinite number of solutions.
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Proof
Let p, and p, , be two consecutive prime numbers. but not friend prime numbers.

Then. for every integer i between p, =1 and p, , - 1 we have:

ci—-1)+c(i~1 a=1+=1)=(pra —i—1 . .
( N (i-H) _ (P« )Z(PU ) _ por—i = i),
So. for the equation (2) all positive integer n between p, ~1 and p, ,-11s a
solution.
c(n+2)

If n 1s prime. the equation becomes =c(n~1).

i

But ( n+ 1) is a composite number. thereforec(n=1) = 0 = c(n~ 2 ) must be

composite number. Because in this case c (n+1)=c(n+2)~ 1 and the equation has the

c(n+2)

-

-

form =c¢(n+2)+ 1, sowe have no solutions.

c¢(n)+c(n+2)
2

are composite numbers. So we have no solutions in this case, because c(n)>1 and

If (n+1) is prime, then we must have =0, wherenand (n+2)

c(n+2)=1.

If (n+ 2)1is a prime, the equation has the form @

=c(n+1), where(n-1)is
a composite number, therefore c(n+1) =0.From (2) it rezults that c(n) = 0, so

n is also a composite number. This case is the same with the first considered case.
Therefore the only solutions are for pk,pis1 —2 , where p,, p,., are consecutive

primes, but not friend consecutive primes.

8. Property

The greatest common divisor of nandc(x)1s 1:

(x.c(x))=1, for every composite number x.

Proof

Taking into account of the definition of the function ¢, we havex +c (x ) =p, where p
is a prime number.

If there exists d = 1 so that d / x and d / ¢( x ), then it implies that d / p. But pis a
prime number, therefore d = p.

This is not possibile because ¢ ( x ) <p.

If p is a prime number, then (p,c(p))=(p.0)=p.
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9. Property
The equation [ x. v]=[c(x).c(y)], where[ x. v ]is the least common multiple of
x and v has no solutions for x. v> 1.
Proof
Let us suppose that x = dk, and v = dk, . where d = ( x. v ). Then we must have -
[x.v]=dkk,=[c(x)c(v)]
But (x.c(x))=(dk, .c(x))=1, therefore dk, is given in the least common
multiple [c(x).c(v)] bv c(v)
But (v,c(v))=(dk,.c(y))=1 = d=1=>(x,y)=1>
= [x.y]=xy >c(x)c(y)=[c(x),c(y)], therefore the above equation has no
solutions. forx, v> 1.
Forx=1=vwehave[x,y]=[c(x),c(y)]=L
10. Property
The equation :
(x,y)=(c(x)c(y)) (3)
has an infinite number of solutions.
Proof
Ifx=1and_v=p-1then(x,y)=1and(c(x),c(y))=( 1,1)=1, for an
arbitrary prime p.
Easily we observe that every pair ( n.n ~ 1 ) of numbers is a solutions for the equation
( 3).1fnis not a prime.
11. Property
The equation :
c(x)-x=c(v)+y (4)
has an infinite number of solutions.

Proof

From the definition of the function c it results that for every x and v satisfying
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p, < xsv<p., we havec(x)=x=c(y)*V=p,. Therefore we have (p,.,-p, )
couples ( x. v ) as different solutions. Then. until the n-th prime p, , we have?: (Pe1 - Pu )
different solutions.

Remark

It seems that the equationc( x)+y=c(y )+ x hasno solutionsx=y. but it is not

Indeed . let p, and p,_, be consecutive primes such that p,_, - p, =6 ( is possibile : for
example29-23=6,37-31=6.53-47=6andsoon)andpk-Zisnotaprime.
Then c(p,-2)=2. c(p-1)=1 c(p)=0,c(p,+1)=5 c(p+2)=4
c(p,*+3)=3and we have:
Le(p*+1)-c(p-2)=5-2=3=(p+1)-(p-2)
2.c(p~2)-c(p-1)=3=(p,+2)-(p.-1)
3.c(pk+3)-c(pk)=3=(pk+3)-pk,thus
c(x)-c(y)=x-y( <:>c(x)+y=c(y)+x)hastheabovesolutionsifpk-pk_,>3
If p, - p., =2 we have only the two last solutions.
In the general case, whenp,_, - p, =2h. h € N*, let x=p,-uandy=p, *V, uveN
be the solutions of the above equation.
Thenc(x)=c(pk-u)=uandc(y)=c(pk+v)=2h-v.
The equation becomes:
u+(pk+v)=(2h-v)+(pk-u).thusu+v=h,
Therefore. the solutions are x=p, -u and y=p, + h-u, for every u =0,h if
pk-pH>handx=pk-u,y=pk+h-u,foreveryu=(ﬁifpk-pk_|=l+lsh.
Remark
¢ (p, ~ 1 ) is an odd number, because if p, and p,_, are consecutive primes, p;, > 2, then

p, and p,_, are, of course, odd numbers; thenp,,-p, - | =c(p, + 1) are always odd.

12. Property

det’ .
The sumatory functionof ¢, F_(n)= 3. c(d) has the properties :
deXN
d/n
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a)F (2p)=1~c(2p)
b)F.(pq)=1~c(pq). where p and q are prime numbers.

Proof

a)F (2p)=c(l)+c(2)+c(p)rc(2p)=1+c(2p)
b)F.(pg)=c(l)+c(p)+c(q)~c(pq)=1l-c(pq)
Remark

The function ¢ is not multiplicative : 0=c(2)-c(p)<c(2p).

13. Property
. { 0 for k odd number
cMp) = A
L 2 for k even number, k=1
Proof
We have :
¢'(p)=0;

¢ (p)=clc(p))=c(0)=2
c(p)=c(2)=0:
¢ (p)=c(0)=2.

Using the complete mathematical induction. the property holds.

Consequences

cp) + <M(p)
o}

1) We have =1 for every k > 1 and p prime number.

—d

2) i c*(p) =[% -2, where [x] is the integer part of x, and

L.

1

1 [r11 K i i
=1Ll thus Y ¢ and 2, ——— are divergent series.
= c*(p) 12072 K21 ®) =z cMp :
k even Kk even
Remark

HMp-1)=c"(c(p-1)) =c""(1)=1, for every pme p >3 and k € N*,
therefore ¢ (p, - 1) = e ( p,- 1) for every primes p, , p, > 3 and k, , k, € N*.

14.Property

The equation :

c(x)+c(y)+c(z)=c(x)c(y)c(z) (5)
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has an infinite number of solutions.

Proof

The onlv non-negative solutions for the diofantine equation a +b ~ ¢ = abc are a = 1,
b =2 and ¢ = 3 and all circular permutations of | 1.2.3 }.

Then -

c(x)=1=>x=p, - 1. p, pnme number. p, >3

c(y)=2 = y=p, -2, where p, and p, are consecutive prime numbers such
that p -p,, 23

c(z)=3 = z=p,-3.where p_ and p, are consecutive prime numbers such that

P - P2 4
and all circular permutations of the above values of x, y and z.

Of course. the equation ¢ ( x ) = ¢ ( v ) has an infinite number of solutions.

Remark

Wecanconsiderc“(y),foreveryyeN*,deﬁnedasc"(y)={xeNfc(x)=y}.

For example ¢ ( 0 ) is the set of all primes, and ¢~ ( | )istheset { I, p,, } R prime and so on.
p,>3
A study of these sets may be interesting.
Remark
If we have the equation :
c(x)=c(y) k=2 (6)

then, using property 13, we have two cases.

If x is prime and k is odd. then ¢* ( x ) =0 and ( 5 ) implies that v is prime.

In the case when x is prime and k is even it results ¢* ( x ) =2 = ¢ (v ), which implies
that y is a prime. such that y - 2 is not prime.

Ifx=p,y=q, pand qprimes, p,q>3.then(p-1,q-1)are also solutions, because
c“(p-1)=1=c(q-1), so the above equation has an infinite number of couples as
solutions.

Also a study of ( ¢* ( x ) ) ~ seems to be interesting.
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Remuark

The equation :

c{(n)=c(n=1)-¢c(n=-2)Y=c(n-1) (7)
has soiutions whenc(n-1)=3.¢c(n)=2.¢c(n+1)=1.c(n=+2)=0.so the solutions
are n = p - 2 for everv p prime number such that between p - 4 and p there is not another
prime.

The equation

c(n-2)-c(n-1)=c(n=l1)+rc(n=-2)=4c(n) (8)
has as solutions n = p - 3. where p is a prime such that between p - 6 and p there is not another
prime. because4c (n)=12andc(n-2)+-c(n-1)=c(n+1)+c(n+2)=12

For example n = 29 - 3 = 26 1s a solution of the equation ( 7 ).

The equation :

c(n)+c(n-1)=c(n-2)~c(n-3)+c(n-4)=2c(n-5) (9)
( see property 7 ) has as solution n = p - 5, where p is a prime, such that between p - 6 and p
there is not another prime. Indeed we have 0 + 1 +2 +3 + 4 =2.5.

Thus. using the properties of the function ¢ we can decide if an equation, which has a
similar form with the above equations, has or has not solutions.

But a difficult problem is : " For any even number a, can we find consecutive primes
such that p,_, - p, =a” "

The answer is useful to find the solutions of the above kind of equations, but is also
important to give the answer in order to solve another open problem :

" Can we get. as large as we want. but finite decreasing sequence k, k-1, .., 2, 1,0
( odd k ), included in the sequence of the values of c?"

If someone gives an answer to this problem, then it is easy to give the answer ( it will
be the same ) at the similar following problem :

" Can we get, as large as we want. but finite decreasing sequence k. k-1,...,2,1,0
( even k), included in the sequence of the values of c?"
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We suppose the answer is negative.

cn)

In the same order of ideea. it is interesting to find max —;
n

It is wellknown ( see [ 4 ]. page 147 ) that p_, -p, <(Inp, ). where p, and p,  are

two consecutive primes.

Moreover. c_(nrﬂ p. < n < p,., reaches its maximum value forn=p, — . where
p, Is a prime.

So. in this case :
@ _ Pei-pi- 1 - (lan‘ -1 ko=

pr 1 pi=+1
Using this resuit. we can find the maximum value of c__(nql
1 2 _ 1 2 _
For p > 100 we have (nTpil— < _(_lnl(l)g+ < %

Using the computer, by a straight forward computation, it is easy to prove that

c(n 3.
max cm) 2 wich is reached for n = 8.
2ensioo D ( &
c(n . c(n 3
Because -2 < L1 for every n>100 it resuits that max on) 2
n 4 n22 n 8

reached for n= 8.

Remark

There exists an infinite number of finite sequences { ¢ (k, ), c(k,+1),...,c(k,)}
Ko

such that Z c(k) is a three-cornered number for k,, k, € N* (the n-th three-cornered
h=h,

. det 1
number is T, = n(n2+ ), n € N*).

For example. in the case k, = p, and k, = p,_, , two consecutive primes. we have the

finite sequence {c(p, ), c(p,*1),.., ¢(p_,-1), ¢(p,.,)}and

Pi-i - -1 o=
Sek) = O+(prer-pi-1)+.+2+1-0 = (Pros =Py = (Pt — o =Ty peet

k=, 2

Of course. we can define the functionc¢': N\ { 0.1 }=» N, ¢'(n)=n -k, where k is
the smallest natural number such that n - k is a prime number, but we shall give some

properties of this function in another paper.
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