ON SMARANDACHE CONCATENETED SEQUENCES I: FACTORIAL SEQUENCE

Maohua Le Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

∞ ∝

Abstract. let $A=\{n!\}_{n=1}$, and let $C(A)=\{c_n\}_{n=1}$ denote the Smarandache concatenated sequence of A. In this paper we prove that if n>1, then c_n does not belong to A.

Let $A=\{n!\}_{n=1}$, and let $C(A)=\{c_n\}_{n=1}$ denote the Smarandache concatenated sequence of A. In this part we prove the following result.

Theorem. If n>1, then c_n does not belong to A.

Proof. By the definition of the Smarandache concatenated sequence of A (see [1]), we have

(1)
$$c_{-}=1!2!...n!$$

if n>1 and c_n belongs to A, then

$$(2) c_n = m!,$$

where m is a positive integer with m>n>1. Notice that c_n =12, 126, 12624, 12624120, 12624120720, 126241207205040 and 1262412072050404040320 for n=2,3,4,5,6,7 and 8, which are none factorial. We may assume that n≥9. Then we have m>9.

For any positive integer a, let d(a) denote the figure number of a in the decimal system. Since $n \ge 9$, we see from (1) that

(3)
$$c_n = n! + (n-1)! \cdot 10^{d(n!)} + \dots + 9! \cdot 10^{d(n!)} + \dots + d(10!)$$

+12624120720504040320*10^{±(n1)}-----^{±(101)}----^{±(101)}------

Since 3^2 !12624120720504040320 and 3^4 |k! for $k{\ge}9,$ we get from (3) that

(4)
$$3^2 \mid C_1, n \geq 9$$
.

Hoever, since m>n≥9, we obtain frpm (2) that $3^{\frac{1}{2}} \mid c_n$, which contradicts (4). Thus, if n>1, then c_n does not belong to A. The Theorem is proved.

Reference

1.M.-H.Le, On Smarandache concatenated sequences I:Prime power sequence, Smarandache Notions J.