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Abstract A Smarandache sequence partial perfect additive

sequence is studied completely in the first paragraph. In the second
paragraph both Smarandache square-digital subsequence and  square-
partial-digital subsequence are studied.
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§1 Smarandache partial perfect additive sequence

The Smarandache partial perfect additive sequence is defined to
be a sequence:l, 11 03 27 _17 19 1, 3: _29 07 Os 2’ 0’ 2 27 41
—3)_1’ —ls 19 —11 ]-9 L 3, —1, 13

This sequence has the property that:

p 2p
J.a=Ya, for all p>1.
=

J=p+l

It is constructed in the following way:

@ =a, =1,
a2p+l = ap+1 —1’
and Qpy =4, +1 for all p>1.

In [1] M. Bencze raised the following two questions:

(@) Can you, readers, find a general expression of a

n

(as

function of =#)?
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Is it periodical or convergent or bounded?

(b) Please design (invent) yourselves other Smarandache perfect
(or partial perfect) f-sequences.

In this paper we solved the question (a) completely.

Supposc the bmary notation of #(n=22) as n=(g,6, " &),
among which £, =1,6=0 or 1 (i=0L---,k-1). Define f(n) are the
numbers of & =Wi=0L--,k), g(n) is the minimum of  that
makes & =1.

Thus we may prove the expression of a(m)( ie. a, ) as the

following:

( k, if 80=€1=“'=£k-1=0’
a(n):l r )
—k+2f(n)+2g(n)~3 otherwise

We may use mathematical induction to prove it
a(D)=1a(3)=0=-1+2x2+2x0-3=-1+27(3)+2g(3)-3.

So the conclusion is wvalid for n=23

Suppose that the conclusion is also valid for

23,--.,n—1(n>3).Let’s consider the cases of n.
1 When ¢g,=¢g=-=¢£_,=0.
a(n) = a((£,€,_, " £,6,),) = a((&,&,_, &) +1
=k-1+1=k%.
2 When not all the ¢g,¢, £, arc zeroes, two kinds of

cases should be discussed.
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DI £=0.
Then f(n)= f((6.6:y  &85)2) = F(EErs " 6)1) = f(;)y

g(n)=g((6,8, 65,),) = g((€L64y +6),)+ 1= g(g) +1
According to inductive hypothesis, we have
a(n)= a(§)+ 1=—(k-1)+ 2f(§)+ 2g(-;’-)- 3+1

=—k+2f(n)+2g(n)-1)-1
=—k+2f(n)+2g(n)-3.
(2 ¥ ¢g,=1, threc subcases exist
(i) If g=0.
Then  f(n)= f((£:501 - £150)2) = fUE801 00 E,1),)
=f ([g}'- 1), the notaion [x] denotes the greatest integer not
more than x.
()= g(rtr6:50):) = 8(Ex5r -+ 6:8,1),) = g@} D=0.
so, it's easily known from inductive hypothesis

a(n)=a(‘i—;-}+1)—l=—(k-—l)+ 2f({—2’£]+1)+2g([§}+1)—3—1

=-k+2f(n)+2g(n)-3.

(i)Hfg =¢6,==¢=Le,=01<i<k-2.

n
n=(E,8, " EEp)ys [E-l+1= (£r84y 8140618 8:8)), + (1),
i
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= (&84 "'Emlwz .

So, f([g}l):f(n)—i, g(B} D=i=i+g(n).
Then, According to inductive hypothesis, we have
a(n) = a([:—g:l+ D-1=—(k-1+ 2‘f(B]+ D+ 2g(B]+ D-3-1

=—k+2(f(n)-i)+2(i + g(n)) -3
=—k+2f(n)+2g(")*3'

(i) g=¢g,==¢_,=¢6,=1, then

f(m=k+1, g(n)=0. I:g'-l+1=(€k£k-l"'£2£1)z +(1),

=(00:--0),, so from 1

k times

a({ﬂﬂ)zk.

Then a(n)=a([—2’£]+l)—-1=k—l

= —k+2k+1)+2x0-3=-k+2f(n)+2g(n)-3.
From the above, the conclusion is true for all the

natural numbers m(n=2).
Having proved above fact, the remaining problem in

question (4) can be solved easily For if »=2*, we have

a(n)=k, so sequence ja(n)} is unbounded, therefore cannot be

periodical and convergent.
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§2 Smaranche square-digital subsequence and

Smaranche square-partial-digital subsequence
The Smaranche square-digital subsequence is defined to be a
subsequence:
0, 1, 4 9, 49, 100, 144, 400, 441,

ie. from 0, L 4, 9, 16, 25 36, -, n*’, --- we choose only the

terms those digits are all perfect squares (Therefore only 0, 1 4
and 9)

In {1] MBencze questioned: Disrega.rding the square numbers of
the form NQ---0, where N is also a perfect square, how many

2k times

other numbers belong to this sequence ?
We find that 1444, 11449, 491401, also belong to the

sequence by calculating.
In fact, we may find infinitely many numbers that belong to
the sequence.

(2:10* +1)* =4-10* +4.10* +1,

(10* +2)? =10% + 4-10% + 4 for all k>1.

Smarandache square-partial-digital subsequence is defined to be a
sequence:
49, 100, 144, 169, 400, 441,

ie. the square numbers that can be partitioned into groups of
digits which are also perfect squares (169 can be partitioned as
16=4> and 9=3% etc)).

In the same way it is questioned: Disregarding the square
numbers of the form NOQ---0, where N is also a perfect square,

2k times

how many other numbers belong to this sequence ?
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We may find 22 numbers in the form a0’ (there neither a
or b is zero).
10404, 11025, 11449, 11664, 40401, 41616, 42025, 43681,

93025, 93636, 161604, 164025, 166464, 251001, 254016, 259081,
363609, 491401, 641601, 646416, 813604, 819025.

We may construct infinitely many numbers by adding zero
the middle of there numbers like 102%, 105%, 1072, 108%, 2017, 204,

2052, 209%, 305%, 306%, 402%, 405%, 408%, SO12, 5042, 5092, 603?,

7012, 801%, 804%, 902°, 905° as well . we may find some other
numbers as the following:
3243601, 10246401, 2566404, 1036324, 4064256, 36144144, 49196196,

81324324, 64256256, 121484484, 169676676, 196784784, 484434121,

576576144, 676676169, 784784196 900900225, 1442401, 3243601, 4004001,

4844401, 10246401 20259001, 24019801, 25010001, 49014001, 64016001.

§3 Smaranche cube-partial-digital subsequence

1000, 8000, 10648, 27000,

ie. the cube numbers that can be partitioned into groups of
digits which are also perfect cubes (10648 can be partitioned as

1=1°0=0°,64=4°, and 8=2%)

Same question: disregarding the <cube numbers of the form:
MO0.--0 , where M is also a perfect cube, how many other

3k times

numbers belong to this sequence?
As the above said, we may find infinitely many numbers that
belong to the sequence as well

151



(3-10%*2 +3),(6-10*** +1)%,(6-10*" + 6)*,(10** + 6)° for all k>0
for example 27818127 = 303°, 216648648216 = 6006 ,

216108018001 = 6001°, 1018108216 = 1006” .
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