The sequence of prime numbers

Sebastián Martín Ruiz

9 October 2000

This article lets out a law of recurrence in order to obtain the sequence of prime numbers $\{p_k\}_{k\geq 1}$ expressing p_{k+1} as a function of p_1, p_2, \dots, p_k .

Suppose we can find a function $G_k(n)$ with the following property:

$$G_k(n) = \begin{cases} -1 & \text{if } n < p_{k+1} \\ 0 & \text{if } n = p_{k+1} \\ \text{something if } n > p_{k+1} \end{cases}$$

This is a variation of the Smarandache Prime Function [2].

Then we can write down a recurrence formula for p_k as follows.

Consider the product:

$$\prod_{s=p_k+1}^m G_k(s)$$

If $p_k < m < p_{k+1}$ one has

$$\prod_{s=p_k+1}^m G_k(s) = \prod_{s=p_k+1}^m (-1) = (-1)^{m-p_k}$$

If $m \geq p_{k+1}$

$$\prod_{s=p_k+1}^m G_k(s) = 0$$

since $G_k(p_{k+1}) = 0$

Hence

$$\sum_{m=p_k+1}^{2p_k} (-1)^{m-p_k} \prod_{s=p_k+1}^m G_k(s) =$$

$$=\sum_{m=p_k+1}^{p_{k+1}-1}(-1)^{m-p_k}\prod_{s=p_k+1}^{m}G_k(s)+\sum_{m=p_{k+1}}^{2p_k}(-1)^{m-p_k}\prod_{s=p_k+1}^{m}G_k(s)$$

(The second addition is zero since all the products we have the factor $G_k(p_{k+1})=0$)

$$= \sum_{m=p_k+1}^{p_{k+1}-1} (-1)^{m-p_k} (-1)^{m-p_k}$$
$$= p_{k+1} - 1 - (p_k+1) + 1 = p_{k+1} - p_k - 1$$

SC

$$p_{k+1} = p_k + 1 + \sum_{m=v_k+1}^{2p_k} (-1)^{m-p_k} \prod_{s=v_k+1}^m G_k(s)$$

which is a recurrence relation for p_k .

We now show how to find such a function $G_k(n)$ whose definition depends only on the first k primes and not on an explicit knowledge of p_{k+1} .

And to do so we define¹:

$$T_k(n) = \sum_{i_1=0}^{\log_{p_1} n} \sum_{i_2=0}^{\log_{p_2} n} \cdots \sum_{i_k=0}^{\log_{p_k} n} \binom{n}{\prod_{s=1}^k p_s^{i_s}}$$

Let's see the value which $T_k(n)$ takes for all $n \geq 2$ integer. We distinguish two cases:

Case 1:
$$n < p_{k+1}$$

The expression $p_1^{i_1}p_2^{i_2}\cdots p_k^{i_k}$ with $i_1=0,1,2\cdots\log_{p_1}n$ $i_2=0,1,2\cdots\log_{p_2}n$... $i_k=0,1,2\cdots\log_{p_k}n$ all the values occur $1,2,3,\cdots,n$ each one of them only once and moreover some more values, strictly greater than n.

We can look at is. If $1 \le m \le n$ one obtains that $m < p_{k+1}$ for which $1 \le m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n} \le n$. From where one deduces that $1 \le p_s^{\alpha_s} \le n$ and for it $0 \le \alpha_s \le \log_{p_s} n$ for all $s = 1, \dots, k$

Therefore, for $i_s = \alpha_s$ $s = 1, 2, \dots, k$ we have the value m. This value only appears once, the prime number descomposition of m is unique.

In fact the sums of $T_k(n)$ can be achieved up to the highest power of p_k contained in n instead of $\log_{p_k} n$.

Therefore one has that

$$T_k(n) = \sum_{i_1=0}^{\log_{p_1} n} \sum_{i_2=0}^{n \log_{p_2} n} \cdots \sum_{i_k=0}^{\log_{p_k} n} \binom{n}{\prod_{s=1}^k p_s^{i_s}} = \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n - 1$$

¹Given that i, $s = 1, 2, \dots, k$ only takes integer values one appreciates that the sums of $T_k(n)$ are until $E(\log_{p_x} n)$ where E(x) is the greatest integer less than or equal to x.

since, in the case $p_1^{i_1}p_2^{i_2}\cdots p_k^{i_k}$ would be greater than n one has that:

$$\left(\begin{array}{c} n\\ \prod_{s=1}^k p_s^{i_s} \end{array}\right) = 0$$

Case 2: $n = p_{k+1}$

The expression $p_1^{i_1}p_2^{i_2}\cdots p_k^{i_k}$ with $i_1=0,1,2\cdots\log_{p_1}n$ $i_2=0,1,2\cdots\log_{p_2}n$... $i_k=0,1,2\cdots\log_{p_k}n$ the values occur $1,2,3,\cdots,p_{k+1}-1$ each one of them only once and moreover some more values, strictly greater than p_{k+1} . One demonstrates in a form similar to case 1. It doesn't take the value p_{k+1} since it is coprime with p_1,p_2,\cdots,p_k .

Therefore,

$$T_k(n) = {n \choose 1} + {n \choose 2} + \cdots + {n \choose n-1} = 2^n - 2$$

In case 3: $n > p_{k+1}$ it is not necessary to consider it. Therefore, one has:

$$T_k(n) = \begin{cases} 2^n - 1 & \text{if } n < p_{k+1} \\ 2^n - 2 & \text{if } n = p_{k+1} \\ \text{something if } n > p_{k+1} \end{cases}$$

and as a result:

$$G_k(n) = 2^n - 2 - T_k(n)$$

This is the summarized relation of recurrence: Let's take $p_1 = 2$ and for $k \ge 1$ we define:

$$T_k(n) = \sum_{i_1=0}^{\log_{p_1} n} \sum_{i_2=0}^{n \log_{p_2} n} \cdots \sum_{i_k=0}^{\log_{p_k} n} \left(\prod_{s=1}^k p_s^{i_s} \right)$$

$$G_k(n) = 2^n - 2 - T_k(n)$$

$$p_{k+1} = p_k + 1 + \sum_{m=p_k+1}^{2p_k} (-1)^{m-p_k} \prod_{s=p_k+1}^m G_k(s)$$

References:

- (1) The Smarandache Notions Journal. Volume 11. Number 1-2-3. Page 59.
- (2) E. Burton, "Smarandache Prime and Coprime Functions", http://www.gallup.unm.edu/~smarandache/primfnct.txt

SEBASTIAN MARTIN RUIZ. Avda, de Regla 43. CHIPIONA 11550 SPAIN.