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This article lets out a law of recurrence in order to obtain the sequence of

prime numbers {px }kzl expressing pryy as a function of py,ps, - -, ps-
Suppose we can find a function Gi(n) with the following property:
-1 if n<prq
Ge(n)=4 0 if n=pep
something if n> pryy

This is a variation of the Smarandache Prime Function [2).
Then we can write down a recurrence formula for p; as follows.
Consider the product:

m

I Gits)

s=pr+1
pr < m < ppyq one has

II 6= T] (-1)=(-1ym»

s=py+41 s=pr+1
Hm>peys
I] Gy =0
s=pi+1
since Gr(pry1) =0
Hence .
2P mn
Z (=1)™Px H Gi(s) =
m=pi+1 s=pp 41
Pr4+1—1 m 2ps m
= 2 o7 I G+ > (yme I Gl
m=p;+1 s=py+1 m=pryq s=pp+1
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(The second addition is zero since all the products we have the factor Gi(pg41) =
0)

Prtr1~1

= Y (=TTl

m=pr+1

=pra1—1—(pe+1)+1=pey1—pe — 1

so ' - o
pri=ptle Y ()7 [ Gis)
m=pi+1 s=pi+1

which is a recurrence relation for py.

We now show how to find such a function Gi(n) whose definition depends
only on the first k& primes and not on an explicit knowledge of pg.;.

And to do so we define!:

l°gn nlog,, n Iog“ n n

k
Tim= ) ) ) e
f1=0 1= =0 b,

=1

Let’s see the value which Ti(n) takes for all n > 2 integer. We distinguish
two cases:

Case 1: n< prys

The expression p’;‘p;’ = -p’,;" with 4, =0,1,2---log, n i, =0,1,2---log, n
- i =10,1,2---log, n all the values occur 1,2,3,---,n each one of them only
once and moreover some 1more values, strictly greater than n.

We can look at is. If 1 < m < n one obtains that m < pg4; for which
1< m=p{"p3? - p~ < u. From where one deduces that 1 < p® < n and for
0Ly <log, nforalls=1,---,k

Therefore, for i; = a; s=1,2,-.-,k we have the value m. This value only
appeats once, the prime number descomposition of m is unique .

In fact the sums of Ty(n) can be achieved up to the highest power of pi
contained in n instead of log, n.

Therefore one has that

log,, nlog, n log"k n n
k n n n
Ti(n) = E E E H)i' :( l>+(2)+-~+(n)=2n—l
=0 i3=0 =0 v, .
s=1
1Given that i, s=1,2, - -,k only takes integer values one appreciates that the sums of Ti(n)

are until E(log,, n) where E(z) is the greatest integer less than or equal to x.
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since, in the case plipi? - - pi“ would be greater than n one has that:

n

k
I | ="
3=

Case 2: n=pep1

The expression pi‘p;’ . ~-p;;" with i1 =0,1,2-- log, n i3 =0,1,2- --log,. n
i = 0,1,2---log, n the values occur 1,2,3,--- ,Pe+1 — 1 each one of
them only once and moreover some more values, strictly greater than pry;.One
demonstrates in a form similar to case 1. It doesn’t take the value Dr+1 Since it
is coprime with py,p2,---, pe.
Therefore,

Tk(n)=(';>+(g)+--~+<njl ):2"—2

In case 3: n > pry it is not necessary to consider it.
Therefore, one has:

2n—1 if n<pryr
T;_- (n) = " —-2 if = Peyy
somelhing if n> pey

and as a result:

Gi(n) =2" - 2—-Ti(n)

This is the summarized relation of recurrence:
Let’s take p; = 2 and for k > 1 we define:

log,, n log, n log, o« n
T/,.(n): Z Z Z k i
i1=0 fo=0 ir=0 ]:l;p,
Gi(n) =2" -2 —-Ti(n)
2pr m
Prer=pr+14 Y (=17 H Gi(5)
m=p; +1 s=pr+1
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