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Abstract: In this paper we introduce the definition of σ-coloring and perfect σ-coloring

for the plane which is equipped by tiling ℑ. And we investigate the σ-coloring for the

r-monohedral tiling.
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§1. Introduction

For an integer k ≥ 1, a Smarandache k-tiling of the plane is a family of sets called k-tiles

covering each point in the plane exactly k times. Particularly, a Smarandache 1-tiling is usually

called tiling of the plane [8]. Tilings are known as tessellations or pavings, they have appeared

in human activities since prehistoric times. Their mathematical theory is mostly elementary,

but nevertheless it contains a rich supply of interesting problems at various levels. The same

is true for the special class of tiling called tiling by regular polygons [2]. The notions of tiling

by regular polygons in the plane is introduced by Grunbaum and Shephard in [3]. For more

details see [4, 5, 6, 7].

Definition 1.1 A tiling of the plane is a collection ℑ = {Ti : i ∈ I = {1, 2, 3, ...}} of closed

topological discs (tiles) which covers the Euclidean plane E2 and is such that the interiors of

the tiles are disjoint.

More explicitly, the union of the sets T1, T2, ..., tiles, is to be the whole plane, and the

interiors of the sets Ti topological disc it is meant a set whose boundary is a single simple

closed curve. Two tiles are called adjacent if they have an edge in common, and then each

is called an adjacent of the other. Two distinct edges are adjacent if they have a common

endpoint. The word incident is used to denote the relation of a tile to each of its edges or

vertices, and also of an edge to each of its endpoints. Two tilings ℑ1 and ℑ2 are congruent if ℑ1

may be made to coincide with ℑ2 by a rigid motion of the plane, possibly including reflection

[1].

Definition 1.2 A tiling is called edge-to-edge if the relation of any two tiles is one of the

following three possibilities:

(a) they are disjoint, or

1Received April 8, 2009. Accepted May 18, 2009.



σ-Coloring of the Monohedral Tiling 47

(b) they have precisely one common point which is a vertex of each the of polygons, or

(c) they share a segment that is an edge of each of the two polygons.

Hence a point of the plane that is a vertex of one of the polygons in an edge-to-edge tiling

is also a vertex of every other polygon to which it belongs and it is called a vertex of the

tiling. Similarly, each edge of one of the polygons, regular tiling, is an edge of precisely one

other polygon and it is called an edge of the tiling. It should be noted that the only possible

edge-to-edge tilings of the plane by mutually congruent regular convex polygons are the three

regular tilings by equilateral triangles, by squares, or by regular hexagons. A portion of each

of these three tilings is illustrated in Fig.1.

Fig.1

Definition 1.3 The regular tiling ℑ will be called r-monohedral if every tile in ℑ is congruent

to one fixed set T . The set T is called the prototile of ℑ, where r is the number of vertices for

each tile [2].

§2. σ-Coloring

Let R2 be equipped by r-monohedral tiling ℑ, and let V (ℑ) be the set of all vertices of the

tiling ℑ.

Definition 2.1 σ-coloring of the tiling ℑ . Is a portion of V (ℑ) into k color classes such that:

(i) different colors appears on adjacent vertices, and for each tile Ti ∈ ℑ there exist per-

mutation σ from some color k.

(ii) The exist at least σi such that O(σi) = k . where O(σi) is the order the permutation

σ.

We will denote to the set of all permutation the σ-coloring by J(ℑ).

Definition 2.2 The σ-coloring is called perfect σ-coloring if all tiles have the same permutation.

Theorem 2.1 The 3-monohedral tiling admit σ-coloring if and only if k = 3.

Proof Let R2 be equipped by 3-monohedral tiling ℑ . If k < 3, then there exist adjacent

vertices colored by the same color, which it contradicts with condition (i). If k > 3, then the
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condition (i) satisfied but the condition (ii) not satisfied because as we know that each tile has

three vertices, so it cannot be colored by more than three colors, see Fig. 2.

Fig.2

Hence the 3-monohedral tiling admit σ-coloring only if k = 3, and σwill be σ = (123). see

Fig.3.

Fig.3

Corollary 2.1 Every σ-coloring of 3-monohedral tiling is perfect σ-coloring.

Theorem 2.2 The 4-monohedral tiling admit σ-coloring if and only if k = 2 and k = 4.

Proof Let R2 be equipped by 4-monohedral tiling ℑ . If the k > 4, then the condition

(ii) not satisfied as in the 3-monohedral case, then k have only three cases k = 1, 2, 3 and 4.

If k = 1then there exist adjacent vertices colored by the same color which contradicts this will

contradicts with condition (i). If k = 3, the first three vertices colored by three colors, so the

forth vertex colored by color differ from the color in the adjacent vertices by this way the tiling

will be colored but this coloring is not σ-coloring since the permutation from colors not found.
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Then the condition (i) not satisfied. If k = 2, the two condition of the σ-coloring are satisfied

and so the tiling admits σ-coloring by permutation σ = (12), for all tiles Ti ∈ ℑ, see Fig. 4.
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If k = 4, then V (ℑ) colored by four colors, and in this case the 5-monohedral tiling admit

σ-coloring by two methods. The first method that all tiles have the permutation σ = (1234),

and in this case the σ-coloring will be perfect σ-coloring, see Fig. 5.
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The second method, if the Ti has the permutation σ = (1234). As we know, each tile surround-

ing by eight tiles four tiles adjacent to Ti by edges, and other four tiles adjacent to Ti, by vertices

then we can colored these tiles by the four colors such that all tiles have the permutation σ

= (1234) and the tiles which adjacent by vertices will colored by some colors of k , such that each

tile has one of these permutation {α, β, γ, δ}, where α = (12), β = (23), γ = (34) and δ = (41),

see Figure 6. Then will be J(ℑ) = {σ = (1234), α = (12), β = (23), γ = (34), δ = (41)}. �

Corollary 2.2 The 4-monohedral tiling admit prefect σ-coloring if and only if k = 2.

Theorem 2.3 The 6-monohedral tiling admit σ-coloring if and only if k = 2, k = 3. and

k = 6.

Proof If k > 6, then the condition (ii) not satisfied as in the 3-monohedral case. Now

we will investigate the cases where k = 1, 2, 3, 4, 5 and 6. If k = 1, then the condition (i) not

satisfied as in the 4-monohedral case. If k = 5or k = 4 we known that each tile has six vertices,

then in each case k = 5 or k = 4 the tiling can be colored by 5 or 4 colors but these colors

not satisfied the condition (i). Then at k = 5or k = 4the coloring not be σ-coloring. If k = 2,

the tiling coloring by two color then the vertices of each tile colored by two color, and the

permutation will be σ = (12) for all tiles see Fig. 7.

Fig.7

If k = 3, the tiling coloring by three colors. So suppose that Ti tile colored by σ = (123), we

know that each tile surrounding by six tiles, then if the tile which lies on edge e1 = (v1v2) ∈
Ti has the permutation σ = (123) thus the tiles which lies on e4 = (v4v5) will colored by

α = (12) and the converse is true. Similarly the edges {e2, e5}with the with the permutation

{σ = (123456), β = (34)} and {e3, e6} with {σ = (123456), δ = (56)}. Then permutation

{σ = (123), β = (23)} and {e3, e6} with {σ = (123), δ = (13)}, then J(ℑ) = {σ = (123), α =

(12), β = (23), δ = (13)}. see Fig. 8.
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Fig.8

If k = 6. the tiling coloring by six colors. Then if the tile which lies on edge e1 = (v1v2) ∈ Ti

has the permutation σ = (123456) thus the tiles which lies on e4 = (v4v5) will colored by

α = (12) and the converse is true. Similarly the edges {e2, e5} J(ℑ) = {σ = (123456), α =

(12), β = (34), δ = (56)}, see Fig. 9. �

Fig.9

Corollary 2.3 The 6 -monohedral tiling admit prefect σ-coloring if and only if k = 2.
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