
THE NORMAL BEHAVIOR OF 

THE SMARANDACHE FUNCTION 

KEVIN FORD 

Let S(n) be the smallest integer k so that nlk!. This is known as the Smarandache 
function and has been studied by many authors. If P( n) denotes the largest prime 
factor of n, it is clear that S(n) ;;:: P(n). In fact, S(n) = P(n) for most n, as noted 
by Erdos [E]. This means that the number, N(x), of n ~ x for which S(n) i= P(n) 
is o(x). In this note we prove an asymptotic formula for N(x). 

First, denote by p( u) the Dickman function, defined by 

p( u) = 1 (0 ~ u ~ 1), P(U)=1_jU p(V-1)dV (u>l). 
1 v 

For u > 1 let ~ = ~(u) be defined by 

u=--
~ 

It can be easily shown that 

where logk x denotes the kth iterate of the logarithm function. Finally, let Uo = 

uo(x) be defined by the equation 

log x = u6~(uo). 

The function Uo (x) may also be defined directly by 

log x = Uo (xl/U~ - 1) . 

It is straightforward to show that 

Uo= 1- + + --( 1) ( 
2 log x) ~ ( log3 X log 2 0 (( 10g3 X ) 2) ) 
log2 X 2 log2 X 2 log2 X log2 X • 

We can now state our main result. 
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Theorem 1. We have 

N() y0r(1 + log 2) (1 1 )3/4 1 l/UOp('1/n). 
X '" 23/ 4 og X og2 X X "'U 

There is no way to write the asymptotic formula in terms of "simple" functions, 
but we can get a rough approximation. 

Corollary 2. We have 

N(x) = xexp {-(V2 + 0(1)) Vlog x log2 x}. 

The asymptotic formula can be made a bit simpler, without reference to the 
function p as follows. 

Corollary 3. We have 

where ,= 0.5772 ... is the Euler-Mascheroni constant. 

This will follow from Theorem 1 using the formula in Lemma 2 which relates 
p( u) and ~ ( u ). 

The distribution of S(n) is very closely related to the distribution of the func­
tion P( n). We begin with some standard estimates of the function \lI (x, y), which 
denotes the number of integers n ~ x with P(n) ~ y. 

Lemma 1 [HT, Theorem 1.1]. For every E > 0, 

( (
log(u + 1))) w(x, y) = xp(u) 1 + 0 logy , 

uniformly in 1 ~ u ~ exp{ (log y)3/5 <o}. 

Lemma 2 [HT, Theorem 2.1]. For u ~ 1, 

log x 
u=--

logy' 

p(u) ~ (1+0 G)) JE~~) exp {'Y - [ W) dt} 
= exp { -u (log u + log2 u - 1 + 0 (l~~:) ) } . 

Lemma 3 [HT, Corollary 2.4]. If u > 2, Ivl ~ u/2, then 

p(u - v) = p(u) exp{v~(u) + 0((1 + v 2 )/u)}. 

Further, if u > 1 and 0 ~ v ~ u then 

p(u - v) «p(u)ev~(u). 
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We will show that most of the numbers counted in N(x) have 

Let 

Y1 = exp { ~ Vlog X 10g2 x } , Y2 = y 1
6 = exp { 2 Vlog X 10g2} . 

Let Nl be the number of n counted by N(x) with P(n) ~ YI, let N2 be the number 
of n with P(n) ~ Y2, and let N3 = N(x) - Nl - N2. By Lemmas 1 and 2, 

Nl ~ w(x,Yt) = xexp{-(1.5 + 0(1)) Vlog x 10g2 x}. 

For the remaining n ~ x counted by N(x), let p = P(n). Then either p21n or for 
some prime q < p and b ~ 2 we have qb II n, qb f p!. Since p! is divisible by q[p/q] 
and b ~ 2logx, it follows that q > pl(3logx) > pl/2. In all cases n is divisible by 
the square of a prime ~ Y2 I (3 log x) and therefore 

'"' x 6x log x { } ~ 2" ~ «xexp -1.9y1logxlog2 x . 
p Y2 

>-~ P"31ogz 

Since q > pl/2 it follows that q[p/q] II p!. If n is counted by N3, there is a number 
b ~ 2 and prime q E [Plb,p] so that qbl n . For each b ~ 2, let N3,b(X) be the number 
of n counted in N3 such that qb II n for some prime q ~ p lb. We have 

Next, using Lemma 1 and the fact that p is decreasing, for 3 ~ b ~ 5 we have 

L ( 1 (logx b) L 1 (logx -logp - blOgq)) «x -p --- + -p 
Pb Iocr P pqb Iocr P 

Y1 <P<Y2 0 p/2<q<p 0 

«x L p b P (~:: x - (b + 1)) . 
Y1 <P<Y2 oP 

By partial summation, the Prime ~ umber Theorem, Lemma 2 and some algebra, 

N 3 ,b «exp {-(1.5 + o(l))Vlogx 10g2 x}. 
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The bulk of the contribution to N(x) will come from N 3,2. Using Lemma 1 we 
obtain 
(2) 

N3,2 = L (qJ (;,p) + L qJ (p~2,q)) 
Y1 <P<Y2 ~ <q<p 

=(1+0( ~))x ~ (P(~-2) + ~ pcOg~g~gp-2)). 
log x ~ p2 ~ pq2 

Y1 <P<Y2 p/2<q<p 

By Lemma 3, we can write 

The contribution in (2) from p near Yi or Y2 is negligible by previous analysis, and 
for fixed q E [YI , Y2/2] the Prime Number Theorem implies 

~ ~ = log 2 +O((logq) 2) = log 2 +0 ( 1 ). 
~2 P log q log P log2 YI q<p< q 

Reversing the roles of p, q in the second sum in (2), we obtain 

log x)) L 1 ( (log x ) log 2 (log x ) ) _2_ X - -- - 2 + --p -- - 3 
logx p2 P logp logp logp . 

Y1 <P<Y2 

By partial summation, the Prime Number Theorem with error term, and the change 
of variable u = log x/log p, 

(3) 

where 

lOg2 X )) xlu2 
(p(u - 2) + log 2 p(u _ 3)) x I/udu 

logx u log x ' 
Ul 

1 
UI =-

2 

log x 
log2 x' 

The integrand attains its maximum value near u = Uo and we next show that the 
most of the contribution of the integral comes from u close to Uo. Let 

Uo 
W -

o - 100' 

where K is a large absolute constant. Let h be the contribution to the integral in 
(3) with lu - uol > wo, let h be the contribution from WI < lu - uol ~ Wo, let h 
be the contribution from W2 < lu - uol ~ WI, and let 14 be the contribution from 
lu - uol ~ W2· First, by Lemma 2, the integrand in (3) is 

exp {- (~ - ~ + 0(1)) V10g x log2 x} , 
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The function l/e + e/2 has a minimum of J2 at e = V2, so it follows that 

II « exp { - ( J2 + 10 5) Jlog X 10g2 X } • 

Let u = uo - v. For WI ~ Ivl ~ wo, Lemma 2 and the definition (1) of uo imply 
that the integrand in (3) is 

{
log x ( V v

2 
v

3 
) (V2 ) } ~ p(uo)exp vE(uo) - -- 1 + - + 2 + 3" +0 - +logUO 

UO Uo Uo Uo Uo 

«p(uo)x I/uo exp { - ~~ log x + 0 (~: + loguo) } 

« p( uo)x I/uo exp { -0.9 ~~ log x} 

for K large enough. It follows that 

12« uop{uo)x I/uo exp{-2010g2 x} «(logx) 10p(uO)x l/uo . 

For the remaining u, we first apply Lemma 3 with v = 2 and v = 3 to obtain 

h +14 = (1 + 0 ( log2 x p(u)x l/u _e __ + ~e3~(u) du )) l uO+Wl (2~(U) 1 2 ) 
log x U 100" X 

Uo Wl b 

\Ve will show that h + 14» p{uo)x l/uo (1ogx)3/2, which implies 

(4) N(x) = (1 + 0 ( )) l uo+wl (2~(U) 1 2 ) 
log2 x (u)x l/u _e __ + ~e3~(u) 
log x p u log x 

uo Wl 

duo 

This provides an asymptotic formula for N (x), but we can simplify the expression 
somewhat at the expense of weakening the error term. First, we use the formula 

E{u) = logu + 10g2 u + 0 (l~~:) , 

and then use u = Uo + O(u~/2) and (1) to obtain 

By Lemma 3, when W2 ~ Ivl ~ WI, where u = Uo - v, we have 

1 

p(uo - v)x "0 v « p(uo)x 

« p{uo)x 

« p(uo)x 

«p(uo)x ,,10(10g2 X ) 3 
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provided K is large enough. This gives 

1 p(u)x· l/Udu«p(Uo)X 1/uO(logX)1/4(log2X) 3.5 

w2~lu UOI~Wl 

For the remaining v, Lemma 3 gives 

Therefore, 

The extension of the limits of integration to (-00,00) introduces another factor 
1+0((1og2x) l),soweobtain 

and Theorem 1 follows. Corollary 2 follows immediately from Theorem 1 and (1). 
To obtain Corollary 3, we first observe that ~/(u) "-J uland next use Lemma 2 to 
write 

e'Y {JUO } p(uo) "-J ~ exp - ~(t) dt . 
27rUo 1 

By the definitions of ~ and Uo we then obtain 

J
UO l~(UO) eV - 1 

~(t) dt = eV 
- dv 

1 0 v 

= e~(uo) _ 1 _ e - dv l
~(UO) v 1 

o v 

= logx _1 1US
{ e

V 

- 1 dv. 
Uo 0 v 

Corollary 3 now follows from (1). 
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