THE NORMAL BEHAVIOR OF
THE SMARANDACHE FUNCTION

KEeEvVIN FORD

Let S(n) be the smallest integer & so that n|k!. This is known as the Smarandache
function and has been studied by many authors. If P(n) denotes the largest prime
factor of n, it is clear that S(n) > P(n). In fact, S(n) = P(n) for most n, as noted
by Erdés [E]. This means that the number, N(z), of n < z for which S(n) # P(n)

is o(z). In this note we prove an asymptotic formula for N(z).
First, denote by p(u) the Dickman function, defined by

p)=1 (0<usy), pay=1- [ 2
1
For u > 1 let £ = &(u) be defined by
v et —1
3
It can be easily shown that

&(u) =logu + logou+ O (

where log,  denotes the kth iterate of the logarithm function. Finally, let ug =

up(z) be defined by the equation
log z = ugé(uo)-
The function ug(z) may also be defined directly by
logz = ug (:1:1/"g — 1) .

It is straightforward to show that

() o = <210g:z:>§ (1 log, z 4 log 2

log, ~ 2logyz | 2logyz

We can now state our main result.
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Theorem 1. We have

N(z) ~ V7(1 + log2)

HE (log z log, x)3/ 4z 1/vo

p(uo).

There is no way to write the asymptotic formula in terms of “simple” functions,
but we can get a rough approximation.

Corollary 2. We have

N(z)=zexp {—(\/5-1- o(1))y/log = log, :z:} .

The asymptotic formula can be made a bit simpler, without reference to the
function p as follows.

Corollary 3. We have

log =
e”(1 +log2) 1 1 2/ / o e -1
Y ——— o z uo d
N(z) NG (log z)z(log, )z exp ; ——dve,

where v = 0.5772 ... is the Euler-Mascheroni constant.

This will follow from Theorem 1 using the formula in Lemma 2 which relates
p(u) and £(u).

The distribution of S(n) is very closely related to the distribution of the func-
tion P(n). We begin with some standard estimates of the function ¥(z,y), which
denotes the number of integers n < z with P(n) < y.

Lemma 1 [HT, Theorem 1.1]. For every € > 0,

log(u + 1) " log z
logy " logy’

U(z,y) = zp(w) (1 +0 <

uniformly in 1 < u < exp{(logy)3/® <}.
Lemma 2 [HT, Theorem 2.1]. Foru > 1,

o) = (1+0(3)) S o - [Cew )
— exp {—u (logu+log2u ~1+0 (lﬁ)g;;“‘)) }

Lemma 3 [HT, Corollary 2.4]. If u > 2, |v] < u/2, then

plu—v) = p(u) exp{vé(u) + O((1 +v*)/u)}-

Further, if u > 1 and 0 < v < u then

p(u—v) < p(u)ers).
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We will show that most of the numbers counted in N(z) have

P(n) ~ exp {\/%log:z:logzz}.

y1=exp{§\/m}, Y2=y16=exp{2\/m}.

Let N; be the number of n counted by N(z) with P(n) < Y3, let N2 be the number
of n with P(n) > Y5, and let N3 = N(z) — N; — No. By Lemmas 1 and 2,

Let

N1 < U(z,Y;) = zexp{—(1.5+ o(1))+/logz log, z}.

For the remaining n <  counted by N(z), let p = P(n). Then either p*|n or for
some prime q < p and b > 2 we have ¢* || n, ¢° { p!. Since p! is divisible by ¢/?/9
and b < 2logz, it follows that ¢ > p/(3logz) > p'/2. In all cases n is divisible by
the square of a prime > Y5/(3logz) and therefore

6z logz
N, < Z %g Y, <<xexp{—1.9\/log:clog2x}.

p
Yz
pZSlogz

Since g > p'/? it follows that ¢/l || p!. If n is counted by N3, there is a number
b > 2 and prime g € [p/b, p] so that ¢°|n. For each b > 2, let N3 (z) be the number
of n counted in N3 such that ¢° || n for some prime ¢ > p/b. We have

31 ¥
ZNg,b Lz < )o/gz) < xexp{—(5/3+o(1))\/log:clog2:z:}.
1

Next, using Lemma 1 and the fact that p is decreasing, for 3 < b < 5 we have

s 3 (2(30) 5 o ()

Y1 <p<Y> p/b<qg<p
1 loo 1 logz —logp —blogq
<z ¥ (pe(rt) T (e
Yi<p<Y2 ° p/2<q<p °
logz
Lz Z D bp(locr — (b 1))
Y1<p<Y2 &P

By partial summation, the Prime Number Theorem, Lemma 2 and some algebra,

N3 < exp {—(1.5 + o(1))/log z log, :1:} .
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The bulk of the contribution to N(z) will come from N33. Using Lemma 1 we
obtain :

(2)
wom 2 (0(39)+ 20 ()

Y1 <p<Y2 £<q<p
p(lgz_r ) (Me_2>
log g P log g
=(1ro(VEE))e X (2 ¥
Y1<p<Y> p/2<q<p

By Lemma 3, we can write

logz —logp logz logy
ST el _9) = -3]{1+0 — )]
g < loggq ) g (logq logz

The contribution in (2) from p near Y] or Y> is negligible by previous analysis, and
for fixed q € [Y1,Y2/2] the Prime Number Theorem implies

> =22y o(osa) )= e+ 0 ()

2
gopso P logdg logp log” Y3

Reversing the roles of p, ¢ in the second sum in (2), we obtain

1 log z log2 (logzx
, _ log, - _ S _
Moz = (HO(V ng))x 2 <p<logp 2) +10gpp<logp 3))

Yi<p<Ys

By partial summation, the Prime Number Theorem with error term, and the change
of variable u = log z/ log p,

uz
- log, z p(u _ 2) log 2 _ 1/u
(3)  Nspo <1 +0 ( s )) Z/ul ( —+ logxp(u 3) |z Mdu,

where

logz _6
Uy = = y U2 = bus.
log,

The integrand attains its maximum value near u = uy and we next show that the
most of the contribution of the integral comes from u close to uy. Let

logs = 1/2
log, = ’

ug

Wo = 1507 w; = K\/ugp, w2=w1<

where K is a large absolute constant. Let I; be the contribution to the integral in
(3) with |u — ug| > wo, let I be the contribution from wy < |u — up| < wo, let I3
be the contribution from w2 < Ju — up| < wy, and let Iy be the contribution from
|u — up| < we. First, by Lemma 2, the integrand in (3) is

oo - (o) o) o= (32)

log z
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The function 1/c + ¢/2 has a minimum of V2 at ¢ = V2, so it follows that

L < exp'{— (v2+109) Viogzlog,z } .

Let u = ug — v. For w; < |v| < wp, Lemma 2 and the definition (1) of ug imply
that the integrand in (3) is

2 3 2
< plug) exp {vé(uo) - l‘foz (1+ 2 5+s ) +O( +10gu0)}

v? v?
< plug)z /™ exp {-—;ﬁlog:c +0 (U_o + loguo)}
0

2
< pug)z /%0 exp {—0.95—3 logz}
0
for K large enough. It follows that
L < upplug)z /™ exp{—20log, z} < (logz) °p(ug)z Vuo,
For the remaining u, we first apply Lemma 3 with v = 2 and v = 3 to obtain

uotwy 2(v)  Joe?2
13 +I4 = (1 + O ( 1;)g21:>> / p(u)z 1/u (e + _Og__esf(u)) du
ogT u u log x

0o w

We will show that I3 + Iy > p(ug)z /“0(logz)3/2, which implies

up+wsy 2¢(u) 1
(4) N(z)= (1 +O< %))/ p(u)z (e g2 35("’) du.

wo wy u log:z:

This provides an asymptotic formula for N(z), but we can simplify the expression
somewhat at the expense of weakening the error term. First, we use the formula

B log, u
&(u) = logu + logou + O ( oz 4 ) ,

and then use u = uy + O(u0/2) and (1) to obtain

logs = 1 g fuotwi
13+I4=(1+O<°g I)) (1 +log2)z(lo :z:)i(logzzﬁ/ plu)z V¥ du.

log, =
o wi

By Lemma 3, when wq < |v| < w;, where u = ug — v, we have

1 1 logx v v
plug —v)z %% < plug)z 5 exp { v€(ug) — — (uo T T u—3)}

< plug)z o exp

{
& plug)z 0 exp {—v2 log x}
{

< plug)z % (log, z)



provided K is large enough. This gives
/ plw)z V* du < pluo)s /*(log2)/*(log, ) .
wag|u uo{Swy
For the remaining v, Lemma 3 gives
1 log. = 1/ v?
plug —v)z Ve ¥ = (1 +0 (ﬁi_r_)) p(ug)z */“° exp {—E logx} .
0

Therefore,

ug+wsz ws L .
p(uo) l;cilo—/ p(u)z V¢du = (1 +0 (i_ggg))/ exp {—v2 Ogs:r} do.

0 w2 w2 Ug

The extension of the limits of integration to (—o0,o0) introduces another factor
1+ O((log, ) 1), so we obtain

P (1 + log 2 L
Iy + 1= (140 ((ot22)) VIO 08D (100 2 1og, )2/ 4p(ug) 5

and Theorem 1 follows. Corollary 2 follows immediately from Theorem 1 and (1).
To obtain Corollary 3, we first observe that £/(u) ~ u ! and next use Lemma 2 to

write
eY o
plue) ~ ——exp {—/1 0 dt}.

By the definitions of £ and ug we then obtain

ug §(uo) v_1
/ £(t) dt = / e - "y
1 0 v

€(uo) pv _
=e€<u°>-1—/ el
0 v

dv.

Ug v

logz
__log:z:_/ u% e -1
0

Corollary 3 now follows from (1).
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