NUMERICAL FUNCTIONS AND TRIPLETS

I. Bălăcenoiu, D. Bordea, V. Seleacu

We consider the functions: f_s , f_d , f_p , $F: \mathbb{N}^* \to \mathbb{N}$, where $f_s(k) = n$, $f_d(k) = n$, $f_p(k) = n$, F(k) = n, n being, respectively, the least natural number such that k/n! - 1, k/n! + 1, $k/n! \pm 1$, k/n! or $k/n! \pm 1$. This functions have the next properties:

1. Obviouvsly, from definition of this function, it results:

$$F(k) = \min\{S(k), f_p(k)\} = \min\{S(k), f_s(k), f_d(k)\}\$$

where S is the Smarandache function (see [3]).

- 2. $F(k) \le S(k)$, $F(k) \le f_s(k)$, $F(k) \le f_d(k)$, $F(k) \le f_p(k)$
- 3. F(k) = S(k) if k is even, $k \ge 4$. **Proof.** For any $n \in \mathbb{N}$, $n \ge 2$, n! is even, $n! \pm 1$ are odd. If k is even, then k cannot divide $n! \pm 1$. So $F(k) = S(k) = n \ge 2$ if k is even, $k \ge 4$.
- 4. If p > 3 is prime number, then $F(p) \le p 2$.

 Proof. According to Wilson's theorem $(p-1)! + 1 = M_p$. Because (p-2)! 1 + (p-1)! + 1 = (p-2)!p results for p > 3, $(p-2)! 1 = M_p$ and so $F(p) \le p 2$.
- 5. $F(m!) = F(m! \pm 1) = S(m!) = m$.
- 6. The equation F(k) = F(k+1) has infinitly many solutions, because, according to the property 5), there is the solutions k = m!, $m \in \mathbb{N}^*$.

7. If F(k) = S(k) and n is the least natural number such that k/n!, then k not divide $s! \pm 1$ for s < n.

Let $k = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_r^{\alpha_r}$. According to $S(k) = \max_{1 \leq i \leq r} \{S_{p_i}(\alpha_i)\}$, it results that $S(k) \geq p_h$, where $p_h = \min\{p_1, p_2, \dots, p_r\}$.

If k not divide $s! \pm 1$ for $s \le p_h$, then k not divide $t! \pm 1$ for $t > p_h$. Consequently, if k not divide (n-1)!, k/n! and k not divide $s! \pm 1$ for $s \le \min\{n, p_h\}$, then F(k) = S(k) = n.

Obviously, the numbers k=3t, t being odd, $t \neq 1$, have $p_h=3$ and they satisfy the condition 3t not divide $s! \pm 1$ for s=1,2,3.

Therefore, for k = 3t, t odd, $t \neq 1$, F(3t) = S(3t) = n, n being the least natural number such that 3t/n!.

8. The partition "bai" of the odd numbers.

Let
$$A = \{k \in \mathbb{N} | k \text{ odd and } F(k) = S(k)\}$$

$$B = \{k \in \mathbb{N} | k \text{ odd and } F(k) < S(k)\}$$

(A, B) is the partition "bai" of the odd numbers.

Into A there are numbers k=3t, t odd, $t\neq 1$. Obviously, A has infinitly many elements.

Into B there are numbers $k = t! \pm 1$ with $t \ge 3$, $t \in \mathbb{N}$. Obviously, B has infinitly many elements.

Definition 1 Let $n \in \mathbb{N}^*$. We called triplet \hat{n} , the set: n-1, n, n+1.

Definition 2 Let k < n. The triplets \hat{k} , \hat{n} are separated if k+1 < n-1, i.e. n-k > 2.

Definition 3 The triplets \hat{k} , \hat{n} are l_s -relatively prime if (k-1, n-1) = 1, $(k+1, n+1) \neq 1$.

For example: $\hat{6}$ and $\widehat{72}$ are l_s -relatively prime.

Definition 4 The triplets \hat{k} , \hat{n} are l_d -relatively prime if $(k-1,n-1) \neq 1$, (k+1,n+1) = 1.

Definition 5 The triplets \hat{k} , \hat{n} are l-relatively prime if (k-1, n-1) = 1, (k+1, n+1) = 1.

Definition 6 The triplets \hat{k} , \hat{n} are d-relatively prime if (k-1,n+1)=1, (k+1,n-1)=1.

For example: $\hat{2}$ and $\hat{6}$ are d-relatively prime.

Definition 7 Let k < n. The triplets \hat{k} , \hat{n} are d_s -relatively prime if $(k-1,n+1)=1, (k+1,n-1) \neq 1$.

For example: $\hat{6}$ and $\widehat{120}$ are d_s -relatively prime.

Definition 8 Let k < n. The triplets \hat{k} , \hat{n} are d_d -relatively prime if $(k-1,n+1) \neq 1$, (k+1,n-1) = 1.

Example: $\hat{6}$ and $\widehat{24}$ are d_d -relatively prime.

Definition 9 The triplets \hat{k} , \hat{n} are p-relatively prime if (k-1, n-1) = 1, (k-1, n+1) = 1, (k+1, n-1) = 1, (k+1, n+1) = 1.

Obviously, if \hat{k} , \hat{n} are p-relatively prime, then they are l and d-relatively prime.

For example: $\widehat{24}$ and $\widehat{120}$ are p-relatively prime.

Definition 10 Let k < n. The triplets \hat{k} , \hat{n} are F-relatively prime if

$$(k-1, n-1) = 1, (k+1, n-1) = 1,$$

 $(k-1, n) = 1, (k+1, n) = 1$
 $(k-1, n+1) = 1, (k+1, n+1) = 1.$

Definition 11 The triplets \hat{k} , \hat{n} are t-relatively prime if $(k-1,n-1)\cdot (k-1,n)\cdot (k-1,n+1)\cdot (k,n-1)\cdot (k,n)\cdot (k,n+1)\cdot (k+1,n+1)\cdot (k+1,n+1)=6$.

For example: $\hat{2}$ and $\hat{4}$ and t-relatively prime.

Definition 12 Let $H \subset \mathbb{N}^*$. The triplet \hat{n} , $n \in H$ is, respectively, l_s , l_d , l, d, d, d, d, p, F, t-prime concerned at H, if $\forall s \in H$, s < n, the triplets \hat{s} , \hat{n} are, respectively, l_s , l_d , l, d, d, d, p, F, t-relatively prime.

Let $H = \{n! | n \in \mathbb{N}^*\}$. For the triplets $\hat{m}, m \in H$ there are particular properties.

Proposition 1 Let k < n. The triplets $\widehat{(k!)}$, $\widehat{(n!)}$ are separated if $n > \max\{2, k\}$.

Proof. Obviously, n! - k! > 2 if n > 2 and k < n, i.e. $n > \max\{2, k\}$.

Proposition 2 Let $n > \max\{2, k\}$ and $M_{kn} = \{m \in \mathbb{N} | k! + 1 < m < n! - 1\}$. If $k_1 < k_2$ and $n_1 > \max\{2, k_1\}$, $n_2 > \max\{2, k_2\}$, then $n_1 - k_1 \le n_2 - k_2 \Rightarrow card M_{k_1 n_1} < card M_{k_2 n_2}$.

Proof. For n > k > 2 it is true that

$$n! - (n-1)! > k! - (k-1)! \tag{1}$$

Let $n > k \ge 2$, $1 \le s \le k$. Using (1) we can write:

By summing this inequalities, it results:

$$n! - (n-s)! > k! - (k-s)!$$
 (2)

Let $2 \le k_1 < n_1$, $2 \le k_2 < n_2$, $k_1 < k_2$, $n_1 - k_1 \le n_2 - k_2$. Then $n_2 - n_1 \ge k_2 - k_1 \ge 1$ and there is n_3 such that $n_2 > n_3 \ge n_1$ and $n_2 - n_3 = k_2 - k_1$. Using (2) we can write:

 $n_2! - n_3! > k_2! - k_1!$

Since $n_3! \geq n_1!$ we have:

$$n_2! - n_1! > k_2! - k_1! \tag{3}$$

According to $card M_{k_1 n_1} = n_1! - 1 - (k_1! + 1)$, $card M_{k_2 n_2} = n_2! - 1 - (k_2! + 1)$, it results that:

$$card M_{k_2n_2} - card M_{k_1n_1} = n_2! - n_1! - (k_2! - k_1!)$$

That is, taking into account (3), $card M_{k_1 n_1} < card M_{k_2 n_2}$.

Definition 13 Let k < n. The triplets $\widehat{(k!)}$, $\widehat{(n!)}$ are linked if k! - 1 = n or k! + 1 = n.

Proposition 3 For $k \in \mathbb{N}^*$ there is p prime number, such that for any $s \geq p$ the triplets $\widehat{(k!)}$, $\widehat{(s!)}$ are not F-relatively prime.

Proof. Obviously, for k = 1 and k = 2, the proposition is true. If $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_i^{\alpha_i}$ divide k! - 1 or k! + 1, then $p_j > k \ge 3$, for $j \in \{1, 2, ..., i\}$.

Let $\bar{n} = p_1 \cdot p_2 \cdots p_i$ and $p = \max_{1 \leq j \leq i} \{p_j\}$.

Obviously, $\bar{n} \geq 3$ because $p > \bar{k} \geq 3$, $\bar{n}/k! - 1$ or $\bar{n}/k! + 1$.

For any $s \ge p$, $\bar{n}/s!$ and so, the triplets (k!), (s!) are not F-relatively prime.

Remark 1 i) Let k < n. If $\widehat{(k!)}$, $\widehat{(n!)}$ are linked, then $n-k=k!-k\pm 1$. If $2 < k_1 < n_1$, $\widehat{(k_1!)}$ with $\widehat{(n_1!)}$ are linked and $k_2 < n_2$, $\widehat{(k_2!)}$ with $\widehat{(n_2!)}$ are linked, then $k_1 < k_2 \Rightarrow n_1 - k_1 < n_2 - k_2$ and in view of the proposition 2, results $\operatorname{card} M_{k_1 n_1} < \operatorname{card} M_{k_2 n_2}$.

ii) There are twin prime numbers with the triplet $(\widehat{n!})$. For example 5 with 7 are from $(\widehat{3!})$.

Definition 14 Considering the canonical decomposition of natural numbers $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, we define $\tilde{n} = \{p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_r^{\alpha_r}\}$, $\mathcal{M} = \{\tilde{n} | n \in \mathbb{N}^*\}$.

Definition 15 On \mathcal{M} we consider the relation of order \sqsubseteq defined by:

$$\{p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_r^{\alpha_r}\} \sqsubseteq \{q_1^{\beta_1}, q_2^{\beta_2}, \dots, q_t^{\beta_t}\}$$

if and only if $\{p_1,p_2,\ldots,p_r\}\subset\{q_1,q_2,\ldots,q_t\}$ and if $p_i=q_j$, then $\alpha_i\leq\beta_j$.

Remark 2 For any triplet $(\widehat{n!})$, $n \in \mathbb{N}^*$, we consider the sets:

 $A_n = \{k \in \mathbb{N}^* | \tilde{k} \sqsubseteq \widetilde{n!} \}, A_n^* = \{k \in A_n | k \not\in A_h \text{ for } h < n\}$

 $B_n = \{k \in \mathbb{N}^* | \tilde{k} \sqsubseteq n! - 1\}, B_n^* = \{k \in B_n | k \not\in B_h \text{ for } h < n\}$

 $C_n = \{k \in \mathbb{N}^* | \tilde{k} \sqsubseteq n! + 1\}, C_n^* = \{k \in C_n | k \not\in C_h \text{ for } h < n\}$

 $M_n = \{k \in \mathbb{N}^* | \tilde{k} \sqsubseteq \tilde{n}! \text{ or } \tilde{k} \sqsubseteq \tilde{n}! - 1 \text{ or } \tilde{k} \sqsubseteq \tilde{n}! + 1\}$

 $M_n^* = \{k \in M_n | k \notin M_h \text{ for } h < n\}.$

It is obvious that:

 $A_n^* = S^{-1}(n)$, $B_n^* = f_s^{-1}(n)$, $C_n^* = f_d^{-1}(n)$, $M_n^* = F^{-1}(n)$.

If $k \in A_n^*$, it is said that k has a factorial signature which is equivalent with the factorial signature of n! (see [1]).

Let $k \in B_n^*$, $k = t_1^{r_1} \cdot t_2^{r_2} \cdot \cdot \cdot t_i^{r_i}$. Then $\{t_r\} \not\sqsubseteq \widetilde{n!}$ for $r = \overline{1,i}$ and for any h < n, there are $t_i^{r_j}$, $1 \le j \le i$, such that $\{t_i^{r_j}\} \not\sqsubseteq h! - 1$.

Similarly, for $k \in C_n^*$: $\{t_r\} \not\sqsubseteq \widetilde{n!}$ for $r = \overline{1,i}$ and for any h < n, there are $t_j^{r_j}$, $1 \le j \le i$, such that $\{t_j^{r_j}\} \not\sqsubseteq h! + 1$.

References

- [1] Bălăcenoiu I., The Factorial Signature of Natural Numbers, Smarandache Notions Journal, vol. 9, 1998, p. 70-78.
- [2] Bălăcenoiu I., Seleacu V., Properties of the triplets \hat{p} , Smarandache Notions Journal, vol. 8, 1997, p. 152-156.
- [3] Smarandache F., A function in the Number Theory, An. Univ. Timişoara, Ser. Şt. Mat., vol. XXVIII, fasc. 1, 1980, p. 79-88.

Current address:

Department of Mathematics, University of Craiova 13, Al. I. Cuza st., Craiova 1100, Romania