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ABSTRACT. The main purpose of this paper is to study the distribution
properties of &-pawer free numbers and k-power complement numbers, and
give an interesting asymptotic formula.

1. INTRODUCTION AND RESULTS

Let k > 2 is a positive integer, a natural number n is called a k-power
free number if it can not be divided by any p*, where p is a prime number.
One can obtain all k-power free number by the following method: From
the set of natural numbers (except 0 and 1)

-take off all multiples of 2%(i.e. 2F, 2k+1 0k+2

-take off all multiples of 3%.

-take off all multiples of 5*.

-..and so on (take off all multiples of all k-power primes).

For instance, the k-power free number sequence is called cube free sieve
if k = 3, this sequence is the following 2, 3,4, 5,6,7,9,10,11, 12, 13, 14, 15, 17

Let n > 2 is any integer, a(n) is called a k-power complement about n
if a(n) is the smallest integer such that n x a(n) is a perfect k-power, for
example a(2) = 2871 q(3) = 351 g(25) =1, - -- .

In reference [1], Professor F. Smarandache asked us to study the prop-
erties of the k-power free number sequence and k-power complement num-
ber sequence. About these problems, it seems that none had studied them
before. In this paper, we use the elementary method to study the dis-
tribution properties of these sequences, and obtain an interesting asymp-
totic formula. For convenience, we define Q(n) and w(n) as following:
Qn) =o1+as +...+a;, w(n) =7, if n=pfps? - -p be the factor-
ization of n into prime powers. Then we have the following Theorem.
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Theorem. Let A denotes the set of all k-power free numbers. Then for
any real number £ > 2, we have the asymptotic formula

3 ofam) = e S a0 (),

neA

where ((s) is the Riemann zeta-function, u(k) is a constant depending only
on k .

2. SEVERAL LEMMAS

Lemma 1. For any real number x > 2, we have the asymptotic formula

S w(n )—xln]nx+Am+O(1 x)

naT

Zﬂ(n) =zlnlhz+Bz+0 (ﬁ;)

n<s

whereAz’Y-l-Zp:(ln(l—;l)) )B A Zp(p—l)

Proof. (See reference [2]).

Lemma 2. For any real number x > 2, we have the asymptotic formula

Z w(n) = ¢ Hk)zlnlng + Az~ (k) + Cz + O (ln_m_a;) .

n<zx
ncA

Proof. Let (u,v) denotes the greatest common divisor of w and v. Then
from Lemma 1 we have

Yowm) = wm) Y ud= Y whnd)ud= 3 ud Y wind)

ngji ngz dkln dkﬂSE d<:1:7t' ﬂ-S-’-E/dk
ne =
= 2. uld) [ > (wcn)w(d)—w((n,d)»}
d<a® n<z/d
=3 uld) 3w+ Y wded 5] - X k@Y 3
a<zt nSafdk d<z® d<z® uld HST/d"

Az . z
= Z u(d) |:dk ].Il].n dk +‘ dk +O(IIHI1 (1,#—1%_@;))]

d<z®

+$Zg—@%:igd—)—r0(z’klnm)—2p(d)z [ }

d<z® d<z® uld
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o] foe) _ﬁﬂ
= zinloe ; H% . AI; “ék Z u(d)cu(d) Z w(d) 0 5

d=1
-1 -1 e
(K)zlnlnz + Az¢ (k)+cx+o(m).
where )
= p(dw(d) S op(d) Y,
C = Z Lkt el A Z e w

d=1 d=1
This proves Lemma 2.

Lemma 3. For any real number z > 2, we have the asymptotic formula

> Qn) = ¢ k)rlninz + Be¢™ ()+Dx+o(E%).

R<x
neA

Proof. From Lemma 1, we have

2_0m=3"0m Y ud= Y Qndud =3 pd) 3 Qmd)

<z < kin i L n<zc/d*
2;A n<z dk| df*n<z d<z® <z/d
= wd) { > (9<n)+kﬂ(d))}

d<I-‘1: ﬂSI/d"
= Z @ Y o Z d) kY d)[ ]

dgmk n<z/d d<mk
= 2 1aln & B‘“ 0 {min (1, -
= % w0 e e B0 (s (152

d<z¥

+ kx Z u(d)ﬂ (a:% Inz:)
d<zk

— mmif_‘gﬂ +B$i%§;ﬂ +’wi u(dzl?(d)
d=1 _

= ¢"YB)xInlnz + Bo(=' (k) + Dz + O ( nx) ,
where

2, w(dQ(d
D=kZ'u( c)ik()'
d=1

This proves Lemma 3.

3. Proor or THE THEOREM

In this section, we shall complete the proof of the Theorem. According
to the definition of k-power complement number and &- -power free number,
and applying Lemma 2, 3, we have

Y Qnxan) =k wn)= .0+ 3 Qa(n))

n<z n<z n<x n<z
ngA neA ncA neAd
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or

Y. Q@m) =k wmn) -3 Qn)

nsz n<z n<z
neA ncA nEA

=k [¢TMk)rtalng + Az¢H (k) + Cz + O (fg”
— [C“l(k)mlnlnﬂs-f- Bl‘qu(k) +Dz+0 (_‘7:_)}

Inz
_(k=Dazlhlnz ?(z)lnm +uBs+0 (2.
where kA— B
u(k) = —C—(—k)— +kC —-D
This completes the proof of the Theorem .
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