
A PARALLEL LOOP SCHEDULING ALGORITHM BASED ON

THE SMARANDACHEf-INFERIOR PART FUNCTION

Tatiana Tabirca* Sabin Tabirca**

·Department of Computer Science, Manchester Uni versity

··Department of Computer Science, "Transilvania" University of Brasov

Abstract. This article presents an application of the inferior Smarandache f-part

function to a particular parallel loop-scheduling problem. The product between

an upper diagonal matrix and a vector is analysed from parallel computation

point of view. An efficient solution for this problem is given by using the

inferior Smarandache I-part function. Finally, the efficiency of our solution is

proved experimentally by presenting some computational results.

Parallel programming has been intensely developed in order to solve difficult

problems that contain either a big number of computation or a large volume of data.

These often occur both in real word applications (e.g. Weather Prediction) or

theoretical problems (e.g. Differential Equations). Unfortunately, there is not a

standard for writing parallel programs; this depends on the parallel language used or

the parallel platform on which the computation is performed. A common fact of this

diversity is represented by easiness to parallelise loops. Loops represent an important

source of parallelism occurring in at most all the scientific applications. Many

algorithms dealing to the scheduling of loop iterations to processors have been

proposed so far.

I.Introduction

Consider that there are p processors denoted in the following by PI, P2, ... , Pp and a

single parallel loop (see Figure 1.).

DO PARALLEL I=l,N
CALL LOOP _BODY(I)

END DO
Figure 1. Single Parallel Loop

28

We also assume that the work of the routine loop_body(i) can be evaluated and is

given by the function w: N ~ R, where w(i) = Wi represents either the number of

routine's operations or its running time (presume that w(O)=O). The total amount of

N

work for the parallel loop is L w(i). The efficient loop-scheduling algorithm
i=!

distributes equally this total amount of work on processors such that a processor

receives a quantity of work equal to ~. f w(i) .
P i=!

Let I j and h j be the lower and upper loop iteration bounds, j = 1,2, ... , p, such that

processor j executes all the iteration between 1 j and h j. These bounds are found

distributing equally the work on processors by using

It· 1 N

~ w(i) == _. L w(i) ('r;fj = 1,2, ... , p).
.=Ij P i=l

(1)

Moreover, they satisfy the following conditions

11 = 1. (2.a)

if we know 1 j' then h j is given by t w(i) ==.!... f w(i) = W (2.b)
i=l j P i=l

I j+l = h j + 1. (2.c)

Suppose that Equation (2.b) is computed by a less approximation. This means that if

we have the value 1 j' then we find h j as follows:

(3)

In the following, we present an optimal parallel solution for the product between an

upper diagonal matrix and a vector. This is an important problem that occurs in many

algorithms for solving linear systems. The Smarandache inferior part function is used

to distribute equally the work on processors.

29

2. The Smarandache Inferior Part Function

The inferior part function (sometime is named the floor function) [,]; R ~ Z , defined

by [xl = k ¢:::> k :S x < k + 1, is one of the most used elementary functions. The

Smarandache inferior part function represents a natural generalisation of the floor

function [Smara1]. Smarandache proposed and studied this generalisation especially

in connection to Number Theory functions [Smara1, Smara2]. In the following, we

present equation for some Smarandache inferior part functions.

Consider J: Z ~ R a function that is strict increasing and satisfies lim J(n) =-00

" -
and lim J (n) = 00. The Smarandache J-inferior part function denoted by J[] : R ~ Z

" -
is defined by

J[] (x) = k ¢:::> J(k):S x < J(k + 1) . (4)

The function J[] is well defined because of the good properties off When J(k) = k

the floor function [x] is obtained. In the following we study the Smarandache J-
k

inferior part function when J(k) = ~>a .
j=1

Remark. Sometime, we will study only the positive inferior part by considering

function J: N ~ R, J (0) = 0 . In this case, we only consider J[] : [0,00) ~ Z .

k

Theorem 1. If J(k) = .~>, then the SmarandacheJ-inJerior part is given by
j=1

(5)

k k+l

Proof The proof is obtained by starting from the double inequality L i :S x < L i .
j=1 j=1

k· (k + 1)
Observe that the equation x> 0 has only one positive root given by

2

-1+.J1 +8· x
k = > 0 . The following equivalences prove Theorem 1

2

{. . < ~ . k . (k + 1) < (k + 1) . (k + 2)
L.J z - x < L.J l ¢:::> - X < ¢:::>
j=1 j=1 2 2

30

Thus, the equation for the Smarandache i-inferior part is ia(x) ~ [-1 +.J~ + 8 x] .

•
k

Theorem 2. If f(k) = ,~>2 , then the Smarandachef-inferior part is given by
;=1

Proof We use the Cardano equation for solving x 3 + px + q = O. A real root of this

equation is given by

(7)

k· (k + 1) . (2· k + 1)
The equation = x > 0 is transfonned as follows:

6

k· (k + 1)· (2· k + 1) 2 k 3 3 k 2 k 6 0 x¢::>· +. + -x= ¢::>
6

¢::> (apply the transfonnation k = y -.!.) ¢::> i _.!.. y - 3· x = O.
2 4

Applying Equation (7), we find that

()

2
3·x 1
2 + 1728'

The SrnarandacheJ-inferior part is given by:

~ .2 < ~ .2 k . (k + 1)· (2· k + 1) < (k + 1) . (k + 2) . (2 . k + 3)
L..J1 _X<L..Jl ¢::> _x< ¢::>

i=1 i=1 6 6

()

2
3· x 1
- +-- <k+l<=>

2 1728

r 1 3·x
¢::> k=I--+ 3 --

L 2 2

(3· X}2 1 3· x
l2 + 1728 + 3 2 + (

3. X)2 1 1
2 + 1728 i'

j

•
31

3. An Efficient Algorithm for the Upper Diagonal Matrix-Vector Product

In this section, we present an efficient algorithm for the product y = a . x between an

upper diagonal matrix a = (a i •j)i,j=l.n EM n (R) and a vector XE Rn. This problem is

quite important occurring in several other important problems such us solving linear

systems or LUP matrix decomposition.

Because a is an upper diagonal matrix, the product y = a . x is given by

i

y; = Lai,j . Xj 'Vi = 1,2, ... n.
j=1

(8)

The product can be computed in parallel by using a simple computation shown below.

DO PARALLEL i=l,n
y, =0

DOj=l,i

Yi = Yi + ai,j . x j

END DO
END DO

Figure 2. Parallel Computation for the Upper Matrix - Vector Product.

For this parallel loop we have the following elements:

• The work of iteration i is wci) = i,i = 1,2, ... ,n; the total work is

~>= n'(n+I).
;=1 2

• The quantity of work received by a processor should be approximately equal

to W = n . (n + I)
2·p

The difficult problem for the efficient loop scheduling algorithm is how Equation (I)

is implemented. To find the upper bounds from this is quite expensive and can be

done in O(logn +~) [Jaja]. But, we want to find the upper bounds in at most O(p)
p

complexity and we show that this is possible for our problem. For that we use the

following theorem

32

(9)

Proof The Smarandache [inferior part function presented in Theorem 1 is used to

obtain the proof. We found that if I(k) = t,i then In (x) = [-\ +,/~ + 8 · x] \Ix" O.

Since each processor receives a quantity equal to W = n' (n + 1) , we find that the
2·p

firstj-I processors have received approximately (j -1)· W. Thus, the upper bound of

processor j is the biggest number k such that all the previous work done by processors

I,2, ... j should be approximately equal to j. W . Mathematically, this can be written

as follows

1 + 2 + ... + h j :5 j. W < 1 + 2 + ... + h j + (h j + 1) ¢:::>

1 ~I 4
. n' (n + 1) - + +. J . --'----=-

p

2
, j = 1,2, ... , P

A more rigorous and technical explanation can be found in [TabiJ. •
According to this theorem, the efficient scheduling is obtained using the upper bound

from Equation (9). These bounds certainly give the better approximation of Equation

1. Thus, the part of parallel loop scheduled on processor j is presented in Figure 3.

This processor computes all the sums of Equation (8) between h j_1 + 1 and h j •

33

DOi=

-1 + ~1 + 4. (j -1) < n . C: + 1)

2

1 ~1 4
. n· Cn + 1)

- + + 'J'---
P

+1, ----~------------
2

Yi =0
DOj=l,i

Yi = Yi +ai.j ,x j

END DO
END DO

Figure 3. Computation of Processor j.

4. Computational Results and Final Conclusions

This section presents some computational results of scheduling the parallel loop from

Figure 3. In order to find that the proposed method is efficient from the practical point

of view, two other scheduling algorithms are used. The first scheduling algorithm

named uniform scheduling, divides the parallel loop into p chunks with the same size

[;]. Obviously, this represents the simplest scheduling strategy but is inefficient

because all the big sums are computed on processor p. The second scheduling

algorithm named interleaving, distributes the work on processors from p to p, such

that a processor does not compute two consecutive works. This scheduling distributes

the large work equally on processors. All the algorithms have been executed on SGI

Power Challenge 2000 parallel machine with 16 processors for a upper diagonal

matrix of dimension 300. The running time are presented in Table 1.

P=1 P=2 P=3 P=6 P=8

Balanced 1.878 1.377 0.974 0.760 0.472

Interleaving 2.029 1.447 1.041 0.803 0.576

Uniform 2.028 2.122 1.660 1.335 0.970

Table 1. Computational Times for three Scheduling Algorithms.

The first important remark that can be outlined is that there is no way to develop

efficient methods in Computer Science without Mathematics and this article is a

prove for that. Using a special function named the Smarandache inferior part, it has

34

been possible to find an efficient scheduling algorithm for the upper diagonal matrix­

vector product.

The second important remark is that the scheduling proposed in this article is efficient

in practice as well. Table 1 shows that the times for the line balanced are smallest It

can be seen that the interleaving strategy also offers good times. Table 1 also shows

that the uniform strategy gives the largest times.

References

[Jaja] J.Jaja, (1992) Introduction to Parallel Algorithms, Adison-Wesley.

[Smara1] F. Smarandache, A Generalisation of The Inferior Part Function,

http://www.gallup.unm.edul-smarandache.

[Smara2] F.Smarandache, (1993) Only Problems ... Not Solutions, Xiquan Publishing

House, Phoenix-Chicago.

[Tabi]T. Tabirca and S. Tabirca, (2000) Balanced Work Loop-Scheduling, Technical

Report, Department of Computer Science, Manchester University. [In

Preparation]

35

