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Introduction

In [3] and [5] the authors ask how many primes are of the form z¥ + 3%,
where ged (z, ¥) = 1 and z, y > 2. Moreover, Jose Castillo (see [2])
asks how many primes are of the Smarandache form z7* + z2™ + ... + z,™*,
where n > 1, 1, Z2, ..., Tn > 1 and ged (21, Z2, ..., Tn) =1 (see [9]).

In this article we announce a lower bound for the size of the largest
prime divisor of an expression of the type az¥ + by®, where ab# 0, z, y > 2
and ged (z, y) = 1.

For any finite extension F of Q let dr = [F : Q] For any algebraic
number { € F let Np({) denote the norm of .

For any rational integer n let P(n) be the largest prime number P
dividing n with the convention that P(0) = P(£1) = 1.

Theorem 1. Let o and B be algebraic integers with o - 8 # 0. Let
K = Qla, 8]. For any two positive integers x and y let X = max (z, y)-
There ezist computable positive numbers Cy and Cz depending only on
and 8 such that

x 1/(dx+1)
P(NK(a:ry+ﬁy"))> C1< 3X)

whenever z, y > 2, ged (z, y) =1, and X > Ca.

The proof of Theorem 1 uses lower bounds for linear forms in logarithms
of algebraic numbers (see [1] and (7]) as well as an idea of Stewart (see [10]).

Erdés and Oblath (see [4]) found all the solutions of the equation n! =
zP +yP with ged (z, ¥) = 1 and p > 2. Moreover, the author (see [6]) showed
that in every non-degenerate binary recurrence sequence (un)n>o0 there are
only finitely many terms which are products of factorials.

We use Theorem 1 to show that for any two given integers a and b with
ab # 0, there exist only finitely many numbers of the type az¥ + by*, where
z, y > 2 and ged (z, y) = 1, which are products of factorials.

Let PF be the set of all positive integers which can be written as
products of factorials; that is

k
PF={w|w= H-m,-!, for some m; > 1}.
=1



Theorem 2. Let f1, ..., fs € Z[X, Y] be s > 1 homogeneous polynomi-
als of positive degrees. Assume that f;(0, Y)- fi(X, 0) #£0 fori=1, ..., s.
Then, the equation

fulel, vi) - folad, o5) € PF, 1)

with ged (z;, ¥:) =1 and z;, ¥ 2 2, for i =1, .., s, has finitely many
solutions 1, Y1, - Ts, Ys. Moreover, there exists a computable positive
number C depending only on the polynomials f1, ..., fs such that all solu-
tions of equation (1) satisfy max (Z1, Y1, - Ts, Ys) < C.

We also have the following inhomogeneous variant of theorem 2.

Theorem 3. Let fi, ..., fs € Z[X] be s > 1 polynomials of positive
degrees. Assume that f;(0) =1 (mod 2) fori=1, ..., s. Letas, ..., s and
by, ..., bs be 2s odd integers. Then, the equation

1 (alxzfl + bly:fl) ceer fs (asxg’ + bsy:‘) € PF, (2)

with ged (2, wi) =land x, ¥ 22, fori=1, .., s, has finitely many
solutions 1, Y1, -- Zs, Ys- Moreover, there ezists a computable posi-
tive number C depending only on the polynomials fy, ..., f, and the 2s
numbers ay, b1, ..., Gs, bs, such that all solutions of equation (2) satisfy
max (T1, Y1, - Zsy ¥s) <C.

We conclude with the following computational results:

Theorem 4. All solutions of the equation
¥ +y® € PF with ged (z, y) =1l and z, y > 2,

satisfy max (z, y) < expl77.

Theorem 5. All solutions of the equation
¥ +y* +2°=n! with ged (z, ¥, z) =land z, ¥, 22> 2,

satisfy max (z, y, z) <expdl8.
2. Preliminary Results

The proofs of theorems 1-5 use estimations of linear forms in logarithms
of algebraic numbers.

Suppose that (i, ..., {; are algebraic numbers, not 0 or 1, of heights not
exceeding Ay, ..., A, respectively. We assume Anp,>efform=1, .. [
Put Q = log A;...log A;. Let F' = Ql¢1, - G- Let ng, ..., mu be integers,
not all 0, and let B > max |n,|. We assume B > ¢2. The following result
is due to Baker and Wiistholz.
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Theorem BW ([1]). If (T*..(H # 1, then

1
G — 1 > 5 exp(—(16(1 + 1)dp)2 3 Qlog B). (3)

In fact, Baker and Wiirtholz showed that if log(;, ..., log(; are any
fixed values of the logarithms, and A =njlog{i + ... + nilog ¢ # 0, then

log|A] > —(16ldr) 2+ D Qlog B. (4)

Now (4) follows easily from (3) via an argument similar to the one used by
Shorey et al. in their paper [8].

We also need the following p-adic analogue of theorem BW which is due
to van der Poorten. o

Theorem vdP ([7]). Let « be a prime ideal of F lying above a prime
integer p. Then,

dr
Ordr(CI‘l--- lnl _ 1) < (16(l+ ].)dp) 12(l+1)1(p)_°_p'Q(10g B)Z. (5)
(=]
The following estimations are useful in what follows.

Lemma 1. Let n > 2 be an integer, and let p < n be a prime number.
Then

(i)
n? <nl <n™ (6)
(ii) n n
< 1<
-1 < ordyn ) (M
Proof. See [6].

Lemma 2. (1) Let s > 1 be a positive integer. Let C and X be two
positive numbers such that C > exps and X > 1. Let y > 0 be such that
y < Clog® X. Then, ylogy < (ClogC)log°*! X.

(2) Let s > 1 be a positive integer, and let C > exp(s(s +1)). If X is
a positive number such that X < Clog’ X, then X < C log""1 C.

Proof. (1) Clearly,
ylogy < Clog® X (log C + sloglog X).
It suffices to show that
logC + sloglog X < logClog X.
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The above inequality is equivalent to
logC(log X — 1) > sloglog X.

This last inequality is obviously satisfied since logC > s and logX >
loglog X + 1, for all X > 1.

(2) Suppose that X > Clog’t! C. Since s > 1 and C > exp(s(s + 1)),
it follows that Clog®*!C > C > exps. The function 1

- Is increasing
og" y
for y > exps. Hence, since X > C log"t! C, we conclude that

Clog’t'C < X

log*(C log**? C) ~ log X <C.
The above inequality is equivalent to
log**' C .
<logC +(s+1)log logC)
o loglog C'\*
logC < (1 +(s+ 1)%) .

By taking logarithms in this last inequality we obtain

loglog C

loglogC
logC '

loglog C < slog(1+(s+1) oz
(=]

)<s(s+1)

This last inequality is equivalent to log C < s(s + 1), which contradicts the
fact that C > exp(s(s + 1)).

3. The Proofs

The Proof of Theorem 1. By Cy, Cs, ..., we shall denote computable
positive numbers depending only on the numbers @ and 3. Let d = dk. Let

Nk (ax¥ + By*)= pf‘ - -pi"

where 2 < p; < pa < ... < px are prime numbers. For p =1, ..., d, let
a®z¥ + gB)y* be a conjugate, in K, of az¥ + By*. Fixi=1, ..., k. Let
7 be a prime ideal of K lying above p;. We use theorem vdP to bound
ord. (a®z¥ + g y*). We distinguish two cases:

CASE 1. p; | zy. Suppose, for example, that p; | y. Since (z, ¥) =1,
it follows that p; f z. Hence, by theorem vdP,

- (&)
(W¥ 1 gy = (1) v (BN 2y
ord, (oM z¥ + B#y*) = ordx(a'*'z¥) + ordx (1 ( a(ﬂ))y z ) <
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p?

log p:

<Ci+C; Iog4 X. _ (8)

where C; = d - log, Nk (), and Ca can be computed in terms of « and
using theorem vdP.

CASE 2. p; [ zy. In this case

Taw) v

(&) z
ord, (a®z¥ + B¥y*) = ords (a!)z¥) + ord, <1 - ( ks ) ¥ ) <

p?

log p;

<C1+C; log* X. 9)

Combining Case 1 and Case 2 we conclude that

d

ord, (aWz¥ + gWy7) < CgEZ"E log? X, (10)
where C3 = 2 - max (C1, C2). Hence,
8; = ordy, (NK (az¥ + ﬁy’)) < Cy P log* X. | (11)
log p;

where Cy = dC3. Denote pi by P. Since p; < P fori =1, ..., k, it follows,
by formula (11), that

k
log(NK (az¥ + ﬁy‘)) < Z 6: - logp: < kC4P%log* X. (12)
i=1

Clearly k < 7(P), where w(P) is the number of primes less than or equal to
P. Combining inequality (12) with the prime number theorem we conclude

that
d1

P
log(Nx (oz¥ + ﬁy’)) <Cs o P log* X. (13)
o

We now use theorem BW to find a lower bound for Iog(NK (az¥ + ﬁy’)).
Suppose that X =y. For g =1, ..., d, we have
) 8

where Cs = min (log la®| | u=1, ..., d), and C7 can be computed using
theorem BW. Hence,

x

1_( ﬁ(p)) v

- a(#) i

log<la(")xy + ﬁ(“)yzl) = log(ja®z¥]) + log(

> Cs + Xlog2 — Crlog® X.

log(NK (az? + ﬂy“)) > dCs + dX log2 — dC-log® X. (14)
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Let Cs = dCs, Cy = dlog?2, and Cio = dC7. Let also C1; be the smallest
positive number such that

1
3ng > Cio log3 y — Cs, for y > Cy1.

Combining inequalities (13) and (14) it follows that

d+1 1
Cs Tog P lOg4 X >Cs+CyX —Cyo lOg3 X > §CgX, (15)
for X > Cy1. Inequality (15) clearly shows that
Feay
P>C , for X > Cy;.
12 (log3 X) =Cu
The Proof of Theorem 2. By Ci, Ca, ..., we shall denote computable
positive numbers depending only on the polynomials f;, ..., fs. We may
assume that fj, ..., fs are linear forms with algebraic coefficients. Let

fi(X) Y) = aiX +)6tY where aiﬁi # O) and let K = Q[ah ﬂl’ -y Qg .63]‘
Let (z1, ¥1, -, Ts, ¥s) be a solution of (1). Equation (1) implies that

3
HNK(aixi"' +Biyf") =ngl-...ong! (16)
i=1
We may assume that 2 < 1y < ng < ... < ne. Let X = max (z;, ¥ 1=
1, ..., s). It follows easily, by inequality (10), that

ords (H Nk (auz? + ﬁiyf‘)) < Clog* X. (17)
i=1

Hence,

k
> orden;t < Cylog? X.

i=1

By lemma 1, it follows that
ne < 4C log4 X. (18)

On the other hand, by theorem 1, there exists computable constants Ca;
and Cs;, such that

. X. 1/(dx+1)
P(NK (a,-xf.“ + &-yf*)) > Czi (IOT;_X—) (19)
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whenever z;, 1; > 2, ged (zi, ¥:) = 1 and X; = max (z;, y:) > Ca:. Let
Cy =min (Co; |i =1, ..., s)and let C3 = max (Cs; | i =1, ..., 5). Suppose

that X > Cs. From inequality (19) we conclude that

, 5\ VD
P H Nk (ouz¥ + Biyf) | > Co| = . (20)
i=1 Iog X

k
Since P | Hni!, it follows that P < ng. Combining inequalities (18) and

(20) we conclude that

1/(dx+1)
C < 4C; log* X. 21
2 (log3X> 1108 (21)

Inequality (21) clearly shows that X < Cy.

The Proof of Theorem 3. By Cy, Cs, ..., we shall denote computable
positive numbers depending only on the polynomials fi, ..., fs and on the
numbers a;, by, ..., s, bs- Let (Z1, ¥1, -, Ts, Ys) be a solution of (2).
Let X; = max (i, ¥:), and let X =max (X; |i=1, .., 5). Finally, let

d;
f(2y=ca]](Z2-¢s)
j=1

Let K = Q[Gis] 15:s; , and let d = [K:Q], D= Zdt, and c_Hc,

Let 7 be a prime ideal of K lying above 2. Let Z = g;z¥ + b,y’*. We
first bound ordy fi(Z;). First, notice that ord,(a;b:) = 0. Moreover since
£:(0) = 1 (mod 2), it follows that ord.({;;) =0, for all j =1, ..., di. We
distinguish 2 cases:

CASE 1. Assume that 2 f z;5:. Then fi(Z;) = £f:(0) = 1 (mod 2).
Hence, ordr fi(Z;) = 0.

CASE 2. Assume that 2 | z;. In this case, ord.(y) = 0. Fix j =

., d;. Then,

ord, (Zi - Ci,j) = ord, (G.«;:I:?‘ + (biyf‘ — (;,j)). (22)
Since ord, (b;y7*) = ord«(¢: ;) =0, it follows, by theorem vdP, that
ord, (bty::' - Ci,j) = ord, (b,yf‘ (Cg,j)—l fand 1) < Cl 10g3 X;. ) (23)

We distinguish 2 cases:
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CASE 2.1. y; > C log3 X;. In this case, from formula (22) and in-
equality (23), it follows that :

ord«(Z: — Gi,;) = orda (biyT* ~ ;) < C1log® X:. (24)
CASE 2.2. y: < Cy log® X;. In this case,
ord. (Z; — (i ;) = ordg (biyf" + (aiz¥ — Ci,j)>. (25)
Let A = a;x¥* — (;,;. Let H(A) be the height of A. Clearly,
H(A) < Coz¥s,

Hence,
log(H(A)) < logCa + diy: log z: < C3 + Cylog® X,

where C; = log Cy, and Cy = Cy -max (d; | i=1, ..., s). Since ord«(b:) =
ord.(y™) = 0, it follows, by theorem vdP, that

ord, (Z; — Cij) = ord (1 — b7 y;7™A) < Cslogy: log (H(A)) log?z: <
< Cslog® X:(Cs + Cylog* X). (26)
Let Cs = 2C4Cs. Also, let
Cr = exp((C3/Ca)'*).

From inequalities (23) and (26), it follows that

ord, (Z; — (:;)) < Cslog” X, for X > Cr. (27)
Hence,
ords (] £:(2)) < Calog” X, for X > Cr, (28)
i=1

where Cg = 2max (sDCs, ¢). Suppose now that

3 k
H fi(Z:) = Hnj!, (29)
i=1 j=1

where 2 < n; < ng < ... < ng. From inequality (28) and lemma 1, it follows
that

k .
an < Cq log7X,

i=1
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where Cq = 4C3. Hence,

k k k k k
log(H n;l) = Zlognj! < an logn; < (znj)log(zm) <
j=1 j=1 j=1 j=1 j=1

< Colog’ X (log Cs + Tloglog X ), for X > C7. (30)

Let C;o be the smallest positive number > C7 such that
y > logCy + Tloglogy, for y > Cio-
From inequality (30), it follows that

k
log(H n;!) < Cslog® X, whenever X > Cio. (31)
j=1

We now bound log(H f,-(Zi)). Fix i =1, ..., s. Suppose that y; = X;. By

i=1
) >

> Ci1 + Xilog2 — Cialog® X, ' (32)

where Ci1 = min (Ja;] | i =1, ..., §), 2nd Ci2 can be computed using theo-
rem BW. Let C3 = (log?2)/2, and let Cy4 be the smallest positive number
> C1o such that

Theorem BW,

log |Z;] =logla:z? + biyi*| = log(la,-l.'z:iy") + log ( 1-— (—%)yf"xi_y‘

Ci +ylog2— leog;3 y > C13y, for y > Ci4-
From inequality (32) it follows that
max (log|Z:]) > CisX, for X > Ciq4. (33)

On the other hand, for each i = 1, ..., s, there exists two computable
constants C; and C! such that

lf,,(Z,,)I > CilZiIdi, whenever IZI' > C:

Let Cys = min (C; |i=1, .., s), and let Cjs = max (C] | i =1, ..., s).
Finally, let Cy7 = max (C14, (logCis)/C13). Suppose that X > C;7. Since
|fi(Z)] > 1, foralli=1, ..., s, it follows, by inequality (33), that

log(f[ F:(Z)) > max (loglfi(Z:)|i=1, ..., s) >

i=1
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> log C1s + max (log|Zi| | i =1, .., s) >logCys + C13X, for X > Cyr.
(34)
From equation (29) and inequalities (31) and (34), it follows that

logC15 + Ci13X < Co Iog8 X, for X > Ci+. (35)

Inequality (35) clearly shows that X < Cis.

The Proof of Theorem 4. Let X = max (z, y). Notice that if
z¥ + y* € PF, than zy is odd. Hence, by theorem vdP,

2

log 2

orda (z¥ +y%) = orda(1 — (Fy)*z7¥) < 48% - log? X. (36)

Suppose that
Iy:tyz =ng!- ...-nk!, (37)

where 2 < n; < ... < ng. From inequality (36) and lemma 1 it follows that
k k 3
. < 1 4 6, _° . 4 9. 36 _ 4 ]
;nt _4(;ord2(n, )) <48 og 2 log X <12-48%% -log* X. (38)
It follows, by lemma 2 (1), that

k k k
log(z¥ £ y*) = IogHm! = Zlogn,-! < Zmlogn,- <

i=1 i=1 i=1

< (i n,-) log (Xk: n,-) <12-48%8 log(12 ~4836) -log® X < 1703-48% log® X.
i=1 i=1 (39)
Suppose now that X = y. Then, by theorem BW,
log |z¥ £ y*| > log|z¥ — ¥*| = log(z¥) + log |1 — y*z7¥| >
> Xlog3 —log?2 — 48'%1og® X. (40)

Combining inequalities (39) and (40), we conclude that
X < Xlog3 < log2 + 48°1og® X + 1703 - 48%% log® X < 1704 - 48% log® X.
Let C = 1704 - 4836 and let s = 5. Since log C =log 1704 + 36log 48 >(43%)),
it follows, by lemma 2 (2), that

X < C-logf C <1704 - 48% - 1475 (42)
Hence, log X < 177.
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The Proof of Theorem 5. Suppose that (z, y, z, n) is a solution
of z¥ + y* + z° = n!, with ged (z, y, 2z) = 1 and min (z, y, z) > 1. Let
X = max (z, y, z). We assume that logX > 519. Clearly, not all three
numbers z, y, z can be odd. We may assume that 2 | z. In this case, both
y and z are odd. By theorem vdP,

2
orda(y* + 2%) = orda(1 — (—y) 77z%) < 48% ——log* X < 3- 48 log* X.

log2
(43)
We distinguish two cases:
CASEl.y=>3- 48%% log* X. In this case, by lemma 1,

n/4 < orden! = orda(z¥ + y* + 2%) = orda(y* +2%) < 3- 48% log* X. (44)

Hence,
n < 12-48%log? X. (45)

By lemma 2 (1), it follows that
nlogn < 12 -48% log(12 - 48°%) log® X < 1703-48% log® X.  (46)
We conclude that
X log?2 < log(z¥ + y* + 2%) = logn! <nlogn <1703 - 48%6 1og® X.

Let C = 1703 - 483 /log?2, and let s = 5. Since logC > 30, it follows, by
lemma 2 (2), that

X < Clog® C < 2457 - 48% . 148°.

Hence, log X < 178, which is a contradiction.

CASE 2. y < 3-48% log* X. Let p be a prime number such that p | y.
We first show that p }z. Indeed, assume that p | z. Since ged (z, ¥, 2) = 1,
it follows that p J z. QWe conclude that p [ n!, therefore n < p. Hence,

n<p<y<3-48¢log* X.

In particular, n satisfies inequality (45). From Case 1 we know that log X <
178, which is a contradiction.
Suppose now that p [ z. Then, by theorem vdP,

ord,(z¥ + 2%) = ordp(1 — (—x) 7¥2%) < 483610—";5 log* X <

< 48%ylog* X < 3-487log® X. (47)
We distinguish 2 cases:
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CASE 2.1. z>3-487%10og® X. In this case, by lemma 2 (1) and in-
equality (47), ”

n
— <ord,n! =ord,(y* + (z¥ + 2%)) =

= ord,(z¥ + 2%) < 3- 48" log® X.
Hence,
n<12(p—1)-48™log® X <12y -487log® X < 36-48'®log'? X. (48)
From lemma 2 (1) we conclude that
Xlog?2 < log(z¥ +y* + 2%) =logn! <nlogn <

< 36 - 481%8 10g(36 - 481%8) log!3 X < 317 - 48! log!? X. (49)

Let C = 317 - 481%%/log 2, and let s = 13. Since logC > 182, it follows, by
lemma 2 (2), that

X < Clog'' C < 458 - 48199 In'%(458 - 481%%) < 458 - 481%° . 4294,

Hence, log X < 513, which is a contradiction.
CASE 2.2. z < 3-487 log8 X. By theorem vdP, it follows that

orda (z* + (z¥ + y*)) = orda (1 — (—z¥ — y‘)z_x) <

< 4836—2— log(z¥ +y7) log® X < 3-48% log(z¥ +y*) log® X (50)
log2 ° ° .

We now bound log(z¥+y7). Let g1 = 3-48% log* X and z; = 3 - 48" log® X.
Since y < y1 and z < zi, it follows that

log(z¥ + y*) < log(X¥* +yi') < log2 + max (y1log X, 21 logy1)-
Since zy logyy > z1 > y1 log X, it follows that

log(z¥ +y*) <log2 + z;logy;.

From lemma 2 (1) we conclude that
log(z¥ + y*) <log2 + z1logy, = log2 + ;—1 (y1 logy1) <
. 1

< log2+48% log* X - (3-48%¢ log(3-48%) ) log® X < 422-487log® X. (51)
o
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From lemma 1 and inequalities (50) and (51) it follows that
n/4 < ordan! = ords (2= + (=¥ + y*)) < 1266 - 481%8 1002 X

Hence,
n < 5064 - 481% log!? X.

By lemma 2 (1), it follows that
Xlog?2 < log(z¥ +y* +2%) = logn! <nlogn <

< 5064 - 481%8 - log(5064 - 48'%®) log™® X < 22- 48! 1og"* X.

Let C = 22 -48"1/log2, and let s = 13. Since logC > 182, it follows, by
lemma 2 (2), that

X < Clog C < 22-48!11 . 43314

Hence, log X < 518, which is the final contradiction.
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