PROPERTIES OF SMARANDACHE STAR TRIANGLE

(Amarnath Murthy, S.E. (E &T), Well Logging Services, Oil And Natural Gas Corporation Ltd., Sabarmati, Ahmedbad, India-380005.)

ABSTRCT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows: Let α_1 , α_2 , α_3 , ... α_r be a set of r natural numbers and p_1 , p_2 , p_3 ,... p_r be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ called the Smarandache Factor Partition of $(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ is defined as the number of ways in which the number

$$N = p_1 p_2 p_3 \dots p_r$$
 could be expressed as the

product of its' divisors. For simplicity, we denote $F(\alpha_1, \alpha_2, \alpha_3, ...$

$$\alpha_r = F(N)$$
, where

and p_r is the rth prime. $p_1 = 2$, $p_2 = 3$ etc.

Also for the case

$$\alpha_1 = \alpha_2 = \alpha_3 = \ldots = \alpha_r = \ldots = \alpha_n = 1$$

Let us denote

$$F(1,1,1,1,1...) = F(1#n)$$

$$\leftarrow n - ones \rightarrow$$

In [2] we define The Generalized Smarandache Star

Function as follows:

Smarandache Star Function

(1)
$$F'(N) = \sum_{d \mid N} F'(d_r)$$
 where $d_r \mid N$

(2)
$$\mathbf{F}^{***}(\mathbf{N}) = \sum_{\mathbf{d}_r/\mathbf{N}} \mathbf{F}^{**}(\mathbf{d}_r)$$

d_r ranges over all the divisors of N.

If N is a square free number with n prime factors, let us denote

$$F'^{**}(N) = F^{**}(1#n)$$

Smarandache Generalised Star Function

(3)
$$F^{n_{\star}}(N) = \sum_{d \neq N} F^{(n-1)_{\star}}(d_r)$$
 $n > 1$

and d_r ranges over all the divisors of N.

For simplicity we denote

$$F'(Np_1p_2...p_n) = F'(N@1#n) , \text{ where}$$

$$(N,p_i) = 1 \text{ for } i = 1 \text{ to } n \text{ and each } p_i \text{ is a prime.}$$

F'(N@1#n) is nothing but the Smarandache factor partition of (a number N multiplied by n primes which are coprime to N).

In [2] I had derived a general result on the Smarandache

Generalised Star Function. In the present note we define SMARANDACHE STAR TRIANGLE' (SST) and derive some properties of SST.

DISCUSSION:

DEFINITION: 'SMARANDACHE STAR TRIANGLE' (SST)

As established in [2]

$$a_{(n,m)} = (1/m!) \sum_{k=1}^{m} (-1)^{m-k} \cdot {}^{m}C_{k} \cdot k^{n}$$
 ----- (1)

we have $a_{(n,n)} = a_{(n,1)} = 1$ and $a_{(n,m)} = 0$ for m > n. Now if one arranges these elements as follows

 $a_{(1,1)}$

 $a_{(2,1)}$ $a_{(2,2)}$

 $a_{(3,1)}$ $a_{(3,2)}$ $a_{(3,3)}$

•

 $a_{(n,1)} \quad \ \ a_{(n,2)} \quad ... \qquad a_{(n,n-1)} \ a_{(n,n)}$

we get the following triangle which we call as the 'SMARANDACHE STAR TRIANGLE' in which $a_{(r,m)}$ is the m^{th} element of the r^{th} row and is given by (A) above. It is to be noted here that the elements are the Stirling numbers of the first kind.

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

. . .

Some propoerties of the SST.

- (1) The elements of the first column and the last element of each row is unity.
- (2) The elements of the second column are $2^{n-1} 1$, where n is the row number.
- (3) Sum of all the elements of the nth row is the nth Bell.

PROOF:

From theorem(3.1) of Ref; [2] we have

$$F'(N@1#n) = F'(Np_1p_2...p_n) = \sum_{m=0}^{n} a_{(n,m)} F^{*m}*(N)$$

if
$$N = 1$$
 we get $F'^{m*}(1) = F'^{(m-1)*}(1) = F'^{(m-2)*}(1) = ... = F'(1) = 1$

hence

or

$$F'(p_1p_2...p_n) = \sum_{r=0}^{n} a_{(n,m)}$$

(4) The elements of a row can be obtained by the following reduction formula

$$a_{(n+1,m+1)} = a_{(n,m)} + (m+1) \cdot a_{(n+1,m+1)}$$

instead of having to use the formula (4.5).

(5) If N = p in theorem (3.1) Ref;[2] we get $F^{m*}(p) = m + 1$. Hence

$$F'(pp_1p_2...p_n) = \sum_{m=1}^{n} a_{(n,m)} F'^{m*}(N)$$

$$B_{n+1} = \sum_{m=1}^{n} (m+1) a_{(n,m)}$$

- (6) Elements of second leading diagonal are triangular numbers in their natural order.
- (7) If p is a prime, p divides all the elements of the pth row except the Ist and the last, which are unity. This has been established in the following theorem.

THEOREM(1.1):

$$a_{(p,r)} \equiv 0 \pmod{p}$$
 if p is a prime and $1 < r < p$

Proof:

$$a_{(p,r)} = (1/r!)$$

$$\sum_{k=1}^{m} (-1)^{r-k} \cdot {}^{r}C_{k} \cdot k^{p}$$

Also

$$a_{(p,r)} = (1/(r-1)!) \sum_{k=0}^{r-1} (-1)^{r-1-k} \cdot r^{-1} C_k \cdot (k+1)^{p-1}$$

$$a_{(p,r)} = (1/(r-1)!)$$

$$\sum_{k=0}^{r-1} [(-1)^{r-1-k} \cdot r^{-1}C_k \cdot \{(k+1)^{p-1} - 1\}] +$$

$$(1/(r-1)!) \sum_{k=0}^{r-1} (-1)^{r-1-k} \cdot {r-1 \choose k}$$

applying Fermat's little theorem, we get

$$a_{(p,r)} = a$$
 multiple of $p + 0$

$$\Rightarrow a_{(p,r)} \equiv 0 \pmod{p}$$

COROLLARY: (1.1)

$$F(1\#p) \equiv 2 \pmod{p}$$
$$a_{(p,1)} = a_{(p,p)} = 1$$

$$F(1\#p) = \sum_{k=0}^{p} a_{(p,k)} = \sum_{k=2}^{p-1} a_{(p,k)} + 2$$

$$F(1\#p) \equiv 2 \pmod{p}$$

(8) The coefficient of the r^{th} term $^{b}_{(n,r)}$ in the expansion of x^{n} as $x^{n} = ^{b}_{(n,1)} x + ^{b}_{(n,2)} x(x-1) + ^{b}_{(n,3)} x(x-1)(x-2) + ... + ^{b}_{(n,r)} {}^{x}P_{r} + ... + ^{b}_{(n,n)} {}^{x}P_{n}$ is equal to $a_{(n,r)}$.

THEOREM(1.2): B_{3n+2} is even else B_k is odd.

From theorem (2.5) in REF. [1] we have

$$F'(Nq_1q_2) = F'*(N) + F'**(N)$$
 where q_1 and q_2 are prime.

and
$$(N,q_1) = (N,q_2) = 1$$

let $N = p_1p_2p_3$. p_n then one can write

$$F'(p_1p_2p_3...p_nq_1q_2) = F'*(p_1p_2p_3...p_n) + F'**(p_1p_2p_3...p_n)$$

or
$$F(1\#(n+2)) = F(1\#(n+1)) + F^{**}(1\#n)$$

but

$$F^{**}(1\#n) = \sum_{r=0}^{n} {^{n}C_{r}} 2^{n-r} F(1\#r)$$

$$F^{**}(1\#n) = \sum_{r=0}^{n-1} {^{n}C_{r} 2^{n-r} F(1\#r)} + F(1\#n)$$

the first term is an even number say = E, This gives us

$$F(1\#(n+2)) - F(1\#(n+1)) - F(1\#n) = E$$
, an even number. ---(1.1)

Case-I: F(1#n) is even and F(1#(n+1)) is also even \Rightarrow

F(1#(n+2)) is even.

Case -II: F(1#n) is even and F(1#(n+1)) is odd $\Rightarrow F(1#(n+2))$ is odd.

again by (1.1) we get

$$F(1\#(n+3)) - F(1\#(n+2)) - F(1\#(n+1)) = E, \Rightarrow F(1\#(n+3))$$
 is

even. Finally we get

F(1#n) is even \Leftrightarrow F(1#(n+3)) is even

we know that $F(1#2) = 2 \Rightarrow F(1#2)$, F(1#5), F(1#8), ... are

even

 $\Rightarrow B_{3n+2}$ is even else B_k is odd

This completes the proof.

REFERENCES:

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
- [3] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
- [4] 'Smarandache Notion Journal' Vol. 10, No. 1-2-3, Spring 1999.

 Number Theory Association of the UNIVERSITY OF CRAIOVA.