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In 1996 the author of this remarks wrote reviews for "Zentralblatt fur Mathematik" for 

books [1) and [2) and this was his first contact with the Smarandache's problems. He solved 

some of them and he published his solutions in [3]. The present paper contains some of the 

results from (3). 

In [1) Florentin Smarandache formulated 105unsolved problems, while in [2] C. Dumitres­

cu and V. Seleacu formulated 140 unsolved problems of his. The second book contains almost 

all the problems from [1 J, but now each problem has unique number and by this reason the 

author will use the numeration of the problems from [2]. Also, in [2J there are some problems, 

which are not included in [IJ. 

When the text of [3] was ready, the author received Charles Ashbacher's book [4) and he 

corrected a part of the prepared results having in mind [4J. 

We shall use the usual notations: [xJ and r xl for the integer part of the real number x 

and for the least integer ~ x, respectively. 

The 4-th problem from [2] (see also IS-th problem from [1]) is the following: 

Smarandache's deconstructive sequence: 

Let the n-th term of the above sequence be an. Then we can see that the first digits of 

the first nine members are, respectively: 1, 2, 4, 7, 2, 7, 4, 2, 1. Let us define the function 

w as follows: 
r 012:3456789 

w(r) 1 1 2 4 7 2 7 4 2 1 

Here we shall use the arithmetic function tjJ, discussed shortly in the Appendix and 

detailed in the author's paper [5] . 
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In [3] it is proved that the form of the n-th member of the above sequence is 

where 
n 

bi = w(n - [9]) 

n 
~ = tjJ(w(n - [-J) + 1) 

9 

n 
bn = tjJ(w(n - [9]) + n - 1). 

00 00 

To the above sequence {an} we can juxtapose the sequence {tjJ( an)} 
n=I n=1 

we can prove (as above) that its basis is [1,5,6,7,2,:3,4,8,9]. 

The problem can be generalized, e.g., to the following form: 

Study the sequence {an} :=1, with its s- th member of the form 

where bt~ ... b •. k E {I, 2, ... , 9} and 

, [8 bi = W (s - 9]) 

, 8 
~ = 1jJ(w (s - [9]) + 1) 

b ... k = t/J(w'(s - [~]) + s.k - 1), 

and here 

r 12 3 4 5 6 

w(r) 1 1jJ(k + 1) 1f,(:3k + 1) 1jJ(6k + 1) 1jJ(10k + 1) 1jJ(15k + 1) 

r 7 8 9 

w(r) V,(21k + 1) 1jJ(28k + 1) tjJ(36k + 1) 

for which 

To the last sequence {an} :=1 we can juxtapose again the sequence {1jJ (an)} :=1 for which 

we can prove (as above) that its basis is [3,9,3,6.3,6,9,8,9]. 
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The 16-th problem from [2J (see also 21-st problem from [1]) is the following: 

Digital sum: 

0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6, 7,8,9,10,2,3,4,5,6, 7,8,9,10,11, 
, 'V" ... " y ... " ". .J 

3,4,5,6,7,8,9,10,11,12,4,5,6, 7,8,9,10,11,12,13,5,6, 7,8,9,10,11,12,13,14, ... 
, ...... " V" .I\" ..... ... 

(d .. ( n) is the sum of digits.) Study this sequence. 

The form of the general term an of the sequence is: 

00 

an = n - 9. 

k=l 

It is not always true that equality ds(m) + ds(n) = ds(m + n) is valid. For example, 

ds (2) + d .. (3) = 2 + 3 = 5 = ds (5), 

but 

d .. (52) + d .. (53) = 7 + 8 = 15 i= 6 = ds(105). 

The following assertion is true 

1

· d .. (m) d .. (n)J ds(m) + ds(n), If ds(m) + ds(n) :::; 9.max([~], [2g ) 
ds(m + n) = 

d(m) den) . 
ds(m) + ds(n) - 9.max([~], [--T-])' otherwIse 

The sum of the first n members of the sequence is 

n n n n-l n 
S = 5.[-].([-] + 8) + (n - 10.[-]).(- - 4.[-]). 

n 10 10 10 2 10 

The 37-th and 38-th problems from [2J (see also :39-th problem from [1]) are the following: 

(Inferior) prime part: 

2,3,3,5,5,7,7,7, 7,11,11,13,13,13,13,17, 17,19,19,19,19,23,23,23,23,23,23,29,29,31, 

31,31,31,31,31,37,37,37,37,41,41,43,43,4:3,43,47, 47, 47, 47, 47, 47,53,53,53,53,53, ... 
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(For any positive real number n one defines pp( n) as the largest prime number less than or 

equal to n.) 

(Superior) prime part: 

2,2,2,3,5,5, 7, 7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23,23,29,29,29,29,29,29, 

31,31,37,37,37,37,37,37,41,41,41,41,43;43,47,47,47,47,53,53,53,53,53,53,59,59, ... 

(For any positive real number n one defines Pp( n) as the smallest prime number greater than 

or equal to n.) 

Study these sequences. 

First, we should note that in the first sequence n 2: 2, while in the second one n 2: 0. It 

would be better, if the first two members of the second sequence are omitted. Let everywhere 

below n 2: 2. 

Second, let us denote by 

the set of all prime numbers. Let Po = 1, and let 7r(n) be the number of the prime numbers 

less or equal to n. 

Then the n-th member of the first sequence is 

and of the second sequence is 

where 

B(n) = { 0, 
1, 

(see [7]). 

if n is a prime number 

otherwise 

The checks of these equalities are straightforward, or by induction. 

Therefore, the values of the n-th partial sums of the two sequences are, respectively, 

k=l k=2 
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n ,..(n) 

Yn = I: Pp(k) = E (Pk - Pk-l)·Pk + (n - P,..(n))·P,..(n)+8{n)' 

k=l k=l 

The 39-th and 40-th problems from [2J (see also 40-th problem from [1]) are the following: 

(Inferior) square part: 

0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16, 16, 16,16,16,16,25,25,25,25,25,25, 

25,25,25,25,25,36,36,36,36,36,36,36,36,36,36,36, 36, 36,49,49, , .. 

(the largest square less than or equal to n.) 

(Superior) square part: 

0,1,4,4,4,9,9,9,9,9,16,16,16,16,16, 16, 16,25,25,25,25,25,25, 

25,25,25,36,36,36,36,36,36,36,36,36, :36, 36, 36, 36, 49, 49, ... 

(the smallest square greater than or equal to n.) Study these sequences. 

The 41-st and 42-nd problems from [1] (see also 41-st problem from [1]) are the following: 

(Inferior) cube part: 

0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27, ... 

(the largest cube less than or equal to n.) 

(Superior) cube part: 

0,1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,64, ... 

(the smallest cube g1'eater than or equal to n.) Study these sequences. 

The n-th term of each of the above sequences is, respectively 

The values of the n-th partial sums of these sequences are: 

A - [y'n - 1]([y'n - 1J + 1)(3[y'n - 1]2 + 5[y'n - 1] + 1) ( [v'n]2 ) [v'nF 
n - 6 + n - n + 1. nJ, 
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c _ [~- 1]([.yn -1] + 1)(5[.yn - 1]4 + 16[.yn - 1]3 
n - 10 

14[{in - 1]2 + [.y1i" -1] -1.) (_ [.yn]3 1) [~nJ3 + 10 + n n + . n, 

The 43-rd and 44-th problems from [2J (see also 42-nd problem from [1]) are the following: 

(Inferior) factorial part: 

1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24,24,24,24, ... 

(Fp(n) is the largest factorial less than or equal to n.} 

(Superior) factorial part: 

1,2,6,6,6,6,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,120, ... 

(fp( n) is the smallest factorial greater than or equal to n.) Study these sequences. 

It must be noted immediately that p is not an index in Fp and fp. 

First, we shall extend the definition of the function "factorial" (possibly, it is already 

defined, but the author does not know this), It is defined only for natural numbers and for 

a given such number n it has the form: 

n! = 1.2. , .. . n. 

Let the new form of the function "factorial" be the following for the real positive number 

y: 

y! = y.(y - 1 ).(y - 2) ... (y - [V] + 1), 

where [y] denotes the integer part of y. 
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Therefore, for the real number y > 0: 

(y + I)! = y!.(y + 1). 

This new factorial has r -representation 

, r(y + 1) 
y. = 

r(y - [y] + 1) 

and representation by the Pochhammer symbol 

Y! = (Y)[y] 

(see, e.g., [8]). 

Obviously, if y is a natural number, y! is the standard function "factorial". 

It can be easily seen that the extended function has the properties similar to these of the 

standard function. 

Second, we shall define a new function (possibly, it is already defined, too, but the author 

does not know this). It is an inverse function of the function "factorial" and for the arbitraty 

positive real numbers x and y it has the form: 

x? = y iff y! = x. 

Let us show only one of its integer properties. 

For every positive real number x: 

[x?] + 1, if there exists a natural number n such 

[(x + I)?] = 
that n! = x + 1 

[x?], otherwise 

From the above discussion it is clear that we can ignore the new factorial, using the 

definition 

x? = y iff (Y)[yj = .r. 

Practically, everywhere below y is a na.tural number, but at some places x will be a 

positive real number (but not an integer). 

Then the n-th member of the first sequence is 
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and of the second sequence it is 

The checks of these equalities is direct, or by the method of induction. 

Therefore, the values of the n-th partial sums of the two above Smarandache's sequences 

are, respectively, 

n [n?] 

Xn = 1": Fp(k) = 1": (k! - (k - l)!).(k - 1)1 + (n - [n?]! + 1).[n?]! 

k=l k=l 

n [n?] 

Yn = 1": fp(k) = 1": (k! - (k - 1)!).k! + (n - [n?]l + l).rn?ll 
k=l k=l 

The 100-th problem from [2J (see also 80-th problem from [ID is the following: 

Square roots: 

0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5, ... 

(Sq (n) is the superior integer part of square root of n.) 

Remark: this sequence is the natural sequence, where each number is repeated 2n + 1 times, 

because between n2 (included) and (n+l)2 (excluded) there are (n+l)2- n2 different numbers. 

Study this sequence. 

The 101-st problem from [2J (see also 81-st problem from [1]) is the following: 

Cubical roots: 

0, 1, 1, 1, 1, 1, 1, 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3, ... 

(cq(n) is the superior integer part of cubical root ofn.} 

Remark: this sequence is the natural sequence, where each number is repeated 3n2 + 3n + 1 

times, because between n 3 (included) and (n + 1)3 (excluded) there are (n + 1)3 - n3 different 

numbers. 

Study this sequence. 

The 102-nd problem from [2] (see also 82-nd problem from [1]) is the following: 

m-power roots: 
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(mq{n) is the superior integer part of m-power root of n.) 

Remark: this sequence is the natural sequence, where each number is repeated (n + l)m - nm 

times. 

Study this sequence. 

The n-th term of each of the above sequences is, respectively, 

Xn = [v'n), Yn = [ifrl), Zn = [yin] 

and the values of the n-th partial sums are, respectively, 

n 

Xn = E Xk, = ([v'n]- 1)[~(4[v'n] + 1) + n - [v'n)2 + 1).[v'n), 

k=1 

([ijn -1)[ijnJ2(3[ijn + 1) ( [3D 3 1) [3D Yn = E Yk = 4 + n - ynj + . ynj, 

k=1 

n n 

k=1 k=1 

The l1S-th Smarandache's problem (see [2]) is: 

"Smarandache's criterion for coprimes": 

If a, b are strictly positive integers, then: a and bare cop rimes if and only if 

a'P(b)+1 + b'P(a)+l == a + b( mod ab), 

where <.p is Euler's totient. 

For the natural number 

k 

n = II p~i, 

;=1 
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where PbPZ, ••• ,PI< are different prime numbers and aI, a2, ... , ak 2: 1 are natural numbers, 

the Euler's totient is defined by: 

I< 

cp(n) = II pfi-1.(Pi - 1). 

i=I 

Below we shall introduce a solution of one direction of this problem and we shall introduce 

a counterexample to the other direction of the problem. 

Let a, b are strictly positive integers for which (a, b) = 1. Hence, from one of the Euler's 

theorems: 

If m and n are natural numbers and (m, n) = 1, then 

m'P(n) ~ l(mod 11,) 

(see, e.g., [6]) it follows that 

a'P(b) ~ l(mod b) 

and 

b'P(b) ~ l(mod a). 

Therefore, 

a'P(b)+l ~ a( mod ab) 

and 

b'P(b)+l ~ b( mod ab) 

from where it follows that really 

a'P(b)+l + b'P(a)+l ~ a + b(mod ab). 

It can be easily seen that the other direction of the Smarandache's problem is not valid. 

For example, if a = 6 and b = 10, and, therefore, (a, b) = 2, then: 

6'P(lO)+l + 10'P(6)+l = 65 + 103 = 7776 + 1000 = 8776 ~ 16(mod 60). 

Therefore, the "Smarandache's criterion for coprimes" is valid only in the form: 

If a, b are strictly positive coprime intege1's, then 

a'P(b)+l + bCP(a)+l ~ a + b(mod ab). 

91 



The 125-th Smarandache's problem (see [2]) is the following: 

To prove that 

k-l . 

n! > kn-kH II [n ~ t]! 
;=0 

for any non-null positive integers nand k. 

Below we shall introduce a solution to the problem. 

First, let us define for every negative integer m : m! = o. 
Let everywhere k be a fixed natural number. Obviously, if for some n: k > n, then the 

inequality (*) is obvious, because its right side is equal to o. Also, it can be easily seen that 

(*) is valid for n = 1. Let us assume that (*) is valid for some natural number n. Then, 

k-l 

(n + I)! - kn -k+2 II [11, - ~ + I]! 
;=0 

(by the induction assumption) 

k-l k-l 

;=0 ;=0 

k-2 

[n-i],(( )[n-k+I], k[n+I],) II -k-·· n + 1 . k . - . -k-· ~ 0, 
;=0 

because 

(n + l).[n - ~ + I]! _ k.[n; I]! 

_ n-k+1 ,_" n-k+I , 
- (n + 1).[ k ]. k.[ k + 1]. 

_ n-k+1, . n+1 
- [ k J .. (n + 1 - k·[-k-D ~ O. 

Thus the problem is solved. 

Finally, we shall formulate two new problems: 
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1. Let y > 0 be a real number and let k be a natural number. Will the inequality 

k-1 . 

y! > p-k+1 II [y ~ z]! 

i=O 

be valid again? 

2. For the same y and k will the inequality 

be valid? 

k-l 
Y - z 

y! > ky -k+1 II -k-! 

i=O 

The paper and the book [3] are based on the author's papes [9-16J. 

APPENDIX 

Here we shall describe two arithmetic functions which were used below, following [5]. 

For 

m 

;=1 

where ai is a natural number and 0 ~ ai ~ 9 (1 ~ i ~ m) let (see [5]): 

'P(n) = 

o , if n = 0 

m 

L: ai ,otherwise 

;=1 

a.nd for the sequence of functions 'Po, 'PI, 'P2, ... , where (l is a natural number) 

'PO(n) = n, 
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let the function 'IjJ be defined by 

'IjJ(n) = 'Pl(n), 

in which 

'PI+1(n) = 'Pl(n). 

This function has the following (and other) properties (see (5]): 

'IjJ(m + n) = 'IjJ('ljJ(m) + 'ljJ(n)), 

'IjJ{m.n) = 'ljJ('IjJ(m).1/;(n)) = 7j;(m.1/;(n)) = 1/;(7j;(m).n), 

1/;(mn) = 1/;( v.,(mr), 

7j;(n + 9) = 'Ij;(n), 

'Ij;(9n) =9. 

Let the sequence aI, az, ... with members - natural numbers, be given and let 

c; = 7j;(ai) (i = 1,2, ... ). 

Hence, we deduce the sequence CI, C2, ... from the former sequence. If k and 1 exist, so that 

1 ~ 0, 

for 1 ~ i ~ k, then we shall say that 

is a base of the sequence CI, C2, ... with a length of k and with respect to function 1/;. 

For example, the Fibonacci sequence {F;}~o, for which 

Fo = 0, FI = 1, Fn+2 = Fn+l + Fn (n 2': 0) 

has a base with a length of 24 with respect to the function 'Ij; and it is the following: 

(1,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4,1,5,6,2,8,1,9]; 

the Lucas sequence {Li}~o, for which 
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also has a base with a length of 24 with respect to the function 7/J and it is the following: 

[2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7,7,5,3,8]; 

even the Lucas-Lehmer sequence {l;}~o, for which 

has a base with a length of 1 with respect to the function 7/J and it is [5]. 

The k - th triangular number tk is defined by the formula 

k(k + 1) 
t k = ---'------"-

2 

and it has a base with a length of 9 with the form 

[1,3,6,1,5,3,1,9,9]. 

It is directly checked that the bases of the sequences {n k} k:l for n = 1, 2, ... , 9 are the 

ones introduced in the following table. 

n a base of a sequence {nk}~l a length of the base 

1 1 1 

2 2,4,8,7,5,1 6 

3 9 1 

4 4,7,1 3 

5 5,7,8,4,2,1 6 

6 9 1 

7 7,4,1 3 

8 8,1 2 

9 9 ! 1 

On the other hand, the sequence {nn}~=1 has a base (with a length of 9) with the form 

[1,4,9,1,2,9,7,1,9], 

and the sequence {kn!} :=1 has a base with a length of 9 with the form 

{ 

[1] 

[9] 

, if k =f 3m for some natural number m 

, if k = 3m for some natural number m 
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We must note that in [5J there are some misprints, corrected here. 

An obvious, but unpublished up to now result is that the sequence {1,b(n!)}:=l has a base 

with a length of 1 with respect to the function 7/J and it is [9]. The first members of this 

sequence are 

1,2,6,6,3,9,9,9, ... 

We shall finish with two new results related to the concept "factorial" which occur in 

some places in this book. 

The concepts of n!! is already introduced and there are some problems in [1,2] related to 

it. Let us define the new factorial n!!! only for numbers with the forms 3k + 1 and 3k + 2: 

n!!! = 1.2.4.5.7.8.10.11...n 

We shall prove that the sequence {1,b(n!!!)}~=l has a base with a length of 12 with respect 

to the function 1,b and it is 

[1,2,8,4,1,8,8,7,1, ,5, 8,1]. 

Really, the validity of the assertion for the first 12 natural numbers with the above 

mentioned forms, i.e., the numbers 

1,2,4,5,7,8,10,11,13,14,16,17, 

is directly checked. Let us assume that the assertion is valid for the numbers 

Then 

(18k + I)!!!, (18k + 2)!!!, (18k + 4)11!, (18k + 5)!!!, (18k + 7)!!!, (18k + 8)11!, 

(18k + 10)!!!, (18k + 11)!!!, (18k + 13)!!!, (18k + 14)!!!, {18k + 16)!!!, 

(18k + 17)!!!. 

1,b((18k + 19)!!1) = 1,b((18k + 17)!!!.(18k + 19)) 

= 1,b(1,b(1Sk + 17)1!!.lj;(1SI.: + 19)) 

= 7/>(1.1) = 1; 

7/>((18k + 20)!!1) = 7/>((18k + 19)111.(18k + 20)) 

= 1,b(7/>(18k + 19)!!1.1,['(181.: + 20)) 
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= 'l/J(1.2) = 2; 

1jJ((18k + 22)!!!) = 1jJ((lSk + 20)!!!'(18k + 22)) 

= 1jJ(1jJ(lSk + 20)!!!.1jJ(lSk + 22)) 

= 1jJ(2.4) = S, 

etc., with which the assertion is proved. 

Having in mind that every natural number. has exactly one of the forms 3k + 3, 3k + 1 

and 3k + 2, for the natural number n = 3k + m, where m E {I, 2, 3} and k ~ 1 is a natural 

number, we can define: 

1.4 ... (3k + 1), if n = :3k + 1 and m = 1 

n!m = 2.5 ... (3k + 2), if n = 3k + 2 and m = 2 

3.6 ... (3k + 3), if n = 3k + 3 and m = 3 

As above, we can prove that: 

• for the natural number n with the form 3k + 1, the sequence {1jJ( n!l)};::='=l has a base with 

a length of 3 with respect to the function '1/1 and it is 

[1, ?/;(3k + 1), 1J; 

• for the natural number n with the form 3k + 2, the sequence {1jJ( n!d };::='=1 has a base with 

a length of 6 with respect to the function 1jJ and it is 

[2, 1jJ(6k + 4), 8,7, 1jJ(3k + 5), 1J; 

• for the natural number n with the form 3k + :3, the sequence {1jJ(n!l)};::='=l has a base with 

a length of 1 with respect to the function 1/1 and it is [9J and only its first member is 3. 

Now we can see that 

n!l! ~ { 

if n = 3k + 1 and k ~ 1 

(3k + 1)h.(3k + 2)!2, if n = 3k + 2 and k ~ 1 
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