MORE RESULTS AND APPLICATIONS OF THE GENERALIZED SMARANDACHE STAR FUNCTION

(Amarnath Murthy, S.E. (E &T), Well Logging Services, Oil And Natural Gas Corporation Ltd., Sabarmati, Ahmedbad, India-380005.)

ABSTRCT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows:

Let α_1 , α_2 , α_3 , ... α_r be a set of r natural numbers and p_1 , p_2 , p_3 , ... p_r be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r) \text{ called the Smarandache Factor Partition of } (\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r) \text{ is defined as the number of ways in which the number}$

 $N = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_r^{\alpha_r}$ could be expressed as the product of its' divisors. For simplicity, we denote $F(\alpha_1, \alpha_2, \alpha_3, \dots \alpha_r) = F'(N)$, where

Also for the case

$$\alpha_1 = \alpha_2 = \alpha_3 = \dots = \alpha_r = \dots = \alpha_n = 1$$

Let us denote

$$F(1, 1, 1, 1, 1, ...) = F(1#n)$$

 $\leftarrow n - ones \rightarrow$

In [2] we define The Generalized Smarandache Star

Function as follows:

Smarandache Star Function

(1)
$$F''(N) = \sum_{d/N} F'(d_r)$$
 where $d_r | N$

(2)
$$F'^{**}(N) = \sum_{d_r/N} F'^{**}(d_r)$$

d_r ranges over all the divisors of N.

If N is a square free number with n prime factors, let us denote

$$F'^{**}(N) = F^{**}(1#n)$$

Smarandache Generalised Star Function

(3)
$$F'^{n*}(N) = \sum_{d_r/N} F'^{(n-1)*}(\dot{d}_r)$$
 $n > 1$

and d_r ranges over all the divisors of N.

For simplicity we denote

$$F'(Np_1p_2...p_n) = F'(N@1\#n) \quad , \text{ where}$$

$$(N,p_i) = 1 \text{ for } i = 1 \text{ to } n \text{ and each } p_i \text{ is a prime}.$$

F'(N@1#n) is nothing but the Smarandache factor partition of (a number N multiplied by n primes which are coprime to N).

In [3] I had derived a general result on the Smarandache

Generalised Star Function. In the present note some more results and applications of Smarandache Generalised Star

Function are explored and derived.

DISCUSSION:

THEOREM(4.1):

$$F'^{n*}(p^{\alpha}) = \sum_{k=0}^{\alpha} {n+k-1 \choose n-1} P(\alpha-k)$$
 -----(4.1)

Following proposition shall be applied in the proof of this

$$\sum_{k=0}^{\alpha} {r+k-1 \choose r-1} = {\alpha+r \choose r} \qquad -----(4.2)$$

Let the proposition (4.1) be true for n = r to n = 1.

$$F'^{r*}(p^{\alpha}) = \sum_{k=0}^{\alpha} {r+k-1 \choose r-1} P(\alpha-k)$$
 -----(4.3)

$$F^{\prime(r+1)*}(p^{\alpha}) = \sum_{t=0}^{\alpha} F^{\prime r*}(p^{t})$$

(pranges over all the divisors of p^{α} for t = 0 to α)

RHS =
$$F'^{r*}(p^{\alpha}) + F'^{r*}(p^{\alpha-1}) + F'^{r*}(p^{\alpha-2}) + ... + F'^{r*}(p) + F'^{r*}(1)$$

from the proposition (4.3) we have

$$F^{r*}(p^{\alpha}) = \sum_{k=0}^{\alpha} r^{+k-1}C_{r-1} P(\alpha-k)$$

expanding RHS from k = 0 to α

$$F'^{r}(p^{\alpha}) = {}^{r+\alpha-1}C_{r-1} P(0) + {}^{r+\alpha-2}C_{r-1} P(1) + \ldots + {}^{r-1}C_{r-1} P(\alpha)$$

similarly

$$F'^{r}(p^{\alpha-1}) = {r+\alpha-2 \choose r-1} P(0) + {r+\alpha-3 \choose r-1} P(1) + \ldots + {r-1 \choose r-1} P(\alpha-1)$$

$$F'^{r}(p^{\alpha-2}) = {}^{r+\alpha-3}C_{r-1} P(0) + {}^{r+\alpha-4}C_{r-1} P(1) + \ldots + {}^{r-1}C_{r-1} P(\alpha-2)$$

$$F'^{r*}(p) = {}^{r}C_{r-1} P(0) + {}^{r-1}C_{r-1} P(1)$$

$$F'^{r*}(1) = {}^{r-1}C_{r-1} P(0)$$

summing up left and right sides separately we find that the

LHS =
$$F'^{(r+1)*}(p^{\alpha})$$

The RHS contains α + 1 terms in which P(0) occurs , α terms in which P(1) occurs etc.

RHS =
$$[\sum_{k=0}^{\alpha} {r+k-1 \choose r-1}] \cdot P(0) + \sum_{k=0}^{\alpha-1} {r+k-1 \choose r-1} P(1) + \dots + \sum_{k=0}^{1} {r+k-1 \choose r-1} P(\alpha-1)$$

$$+ \sum_{k=0}^{0} {r+k-1 \choose r-1} P(\alpha)$$

Applying proposition (4.2) to each of the Σ we get

RHS =
$$^{r+\alpha}C_r P(0) + ^{r+\alpha-1}C_r P(1) + ^{r+\alpha-2}C_r P(2) + ... + ^rC_r P(\alpha)$$

$$= \sum_{k=0}^{\alpha} {r+k \choose r} P(\alpha-k)$$

or
$$F^{(r+1)*}(p^{\alpha}) = \sum_{k=0}^{\alpha} {}^{r+k}C_r P(\alpha-k)$$

The proposition is true for n = r+1, as we have

$$F'^*(p^{\alpha}) = \sum_{k=0}^{\alpha} P(\alpha-k) = \sum_{k=0}^{\alpha} {}^kC_0 P(\alpha-k) = \sum_{k=0}^{\alpha} {}^{k+1-1}C_{1-1} P(\alpha-k)$$

The proposition is true for n = 1

Hence by induction the proposition is true for all n.

This completes the proof of theorem (4.1).

Following theorem shall be applied in the proof of theorem (4.3)

THEOREM (4.2)

$$\sum_{k=0}^{n} C_{r+k}^{r+k} C_r m^k = {}^{n}C_r (1+m)^{(n-r)}$$

PROOF:

$$LHS = \sum_{k=0}^{n-r} {^{n}C_{r+k}}^{r+k}C_{r} m^{k}$$

$$= \sum_{k=0}^{n-r} {(n!)/\{(r+k)!.(n-r-k)!\}} ..(r+k)!/\{(k)!.(r)!\} ..m^{k}$$

$$= \sum_{k=0}^{n-r} {(n!)/\{(r)!.(n-r)!\}} ..(n-r)!/\{(k)!.(n-r-k)!\} ..m^{k}$$

$$= {}^{n}C_{r} \sum_{k=0}^{n-r} {}^{n-r}C_{k} m^{k}$$
$$= {}^{n}C_{r} (1+m)^{(n-r)}$$

This completes the proof of theorem (4.2)

THEOREM(4.3):

$$F^{m*}(1#n) = \sum_{r=0}^{n} {^{n}C_{r}} m^{n-r} F(1#r)$$

Proof:

From theorem (2.4) (ref.[1] ne have

$$F^*(1#n) = F(1#(n+1)) = \sum_{r=0}^{n} {^{n}C_r} F(1#r) = \sum_{r=0}^{n} {^{n}C_r} (1)^{n-r} F(1#r)$$

hence the proposition is true for m = 1.

Let the proposition be true for m = s. Then we have

$$F^{s*}(1#n) = \sum_{r=0}^{n} {^{n}C_{r}} s^{n-r} F(1#r)$$

or

$$F^{s*}(1\#0) = \sum_{r=0}^{0} {^{0}C_{0} s^{0-r} F(1\#0)}$$

$$F^{s*}(1\#1) = \sum_{r=0}^{1} {^{0}C_{1} s^{1-r} F(1\#1)}$$

$$F^{s*}(1#2) = \sum_{r=0}^{2} {^{n}C_{2} s^{2-r} F(1#1)} \qquad F^{s*}(1#3) = \sum_{r=0}^{3} {^{n}C_{1} s^{3-r} F(1#3)}$$

$$F^{s*}(1\#0) = {}^{0}C_{0} F(1\#0) \qquad ----(0)$$

$$F^{s*}(1\#1) = {}^{1}C_{0} s^{1} F(1\#0) + {}^{1}C_{1} s^{0}F(1\#1) \qquad ----(1)$$

$$F^{s*}(1\#2) = {}^{2}C_{0} s^{2} F(1\#0) + {}^{2}C_{1} s^{1}F(1\#1) + {}^{2}C_{2} s^{0}F(1\#2) \qquad ----(2)$$

$$\vdots$$

$$\vdots$$

$$F^{s*}(1\#r) = {}^{r}C_{0} s^{r} F(1\#0) + {}^{r}C_{1} s^{1}F(1\#1) + \dots + {}^{r}C_{r} s^{0}F(1\#r) \qquad ----(r)$$

$$\vdots$$

$$\vdots$$

$$F^{s*}(1\#n) = {}^{n}C_{0} s^{r} F(1\#0) + {}^{n}C_{1} s^{1}F(1\#1) + \dots + {}^{n}C_{n} s^{0}F(1\#r) \qquad ----(n)$$
multiplying the rth equation with ${}^{n}C_{r}$ and then summing up we get the RHS as
$$= [{}^{n}C_{0}{}^{0}C_{0} s^{0} + {}^{n}C_{1}{}^{1}C_{0} s^{1} + {}^{n}C_{2}{}^{2}C_{0} s^{2} + \dots + {}^{n}C_{k}{}^{k}C_{0} s^{k} + \dots + {}^{n}C_{n}{}^{n}C_{0} s^{n}]F(1\#0)$$

$$[{}^{n}C_{1}{}^{1}C_{1} s^{0} + {}^{n}C_{2}{}^{2}C_{1} s^{1} + {}^{n}C_{3}{}^{3}C_{1} s^{2} + \dots + {}^{n}C_{k}{}^{k}C_{1} s^{k} + \dots + {}^{n}C_{n}{}^{n}C_{1} s^{n}]F(1\#1)$$

$$\vdots$$

$$[{}^{n}C_{r}{}^{r}C_{r} s^{0} + {}^{n}C_{r+1}{}^{r+1}C_{r} s^{1} + \dots + {}^{n}C_{r+k}{}^{r+k}C_{r} s^{k} + \dots + {}^{n}C_{n}{}^{n}C_{r} s^{n}]F(1\#r)$$

$$+ {}^{n}C_{n}{}^{n}C_{n} s^{0}]F(1\#n)$$

$$= \sum_{r=0}^{n} \left\{ \sum_{k=0}^{n-r} {}^{n}C_{r+k} {}^{r+k}C_{r} s^{k} \right\} F(1\#r)$$

$$= \sum_{r=0}^{n} {}^{n}C_{r} (1+s)^{n-r} F(1\#n) , \text{ by theorem (4.2)}$$

$$LHS = \sum_{r=0}^{n} {}^{n}C_{r} F^{s*}(1\#r)$$

Let $N = p_1p_2p_3...p_n$. Then there are nC_r divisors of N containing exactly r primes . Then LHS = the sum of the s^{th} Smarandache star functions of all the divisors of N. = $F^{'(s+1)*}(N) = F^{(s+1)*}(1\#n)$.

Hence we have

$$F^{(s+1)*}(1#n) = \sum_{r=0}^{n} {^{n}C_{r}(1+s)^{n-r} F(1#n)}$$
258

$$F^{s*}(1\#0) = {}^{0}C_{0} F(1\#0) \qquad ----(0)$$

$$F^{s*}(1\#1) = {}^{1}C_{0} S^{1} F(1\#0) + {}^{1}C_{1} S^{0}F(1\#1) \qquad ----(1)$$

$$F^{s*}(1\#2) = {}^{2}C_{0} S^{2} F(1\#0) + {}^{2}C_{1} S^{1}F(1\#1) + {}^{2}C_{2} S^{0}F(1\#2) \qquad ----(2)$$

$$\vdots$$

$$F^{s*}(1\#r) = {}^{r}C_{0} S^{r} F(1\#0) + {}^{r}C_{1} S^{1}F(1\#1) + \ldots + {}^{r}C_{r} S^{0}F(1\#r) \qquad ----(r)$$

$$\vdots$$

$$\vdots$$

$$F^{s*}(1\#n) = {}^{n}C_{0} S^{r} F(1\#0) + {}^{n}C_{1} S^{1}F(1\#1) + \ldots + {}^{n}C_{n} S^{0}F(1\#r) \qquad ----(n)$$
multiplying the r^{th} equation with ${}^{n}C_{r}$ and then summing up we get the RHS as
$$= [{}^{n}C_{0}{}^{0}C_{0} S^{0} + {}^{n}C_{1}{}^{1}C_{0} S^{1} + {}^{n}C_{2}{}^{2}C_{0} S^{2} + \ldots + {}^{n}C_{k}{}^{k}C_{0} S^{k} + \ldots + {}^{n}C_{n}{}^{n}C_{0} S^{n}]F(1\#0)$$

$$[{}^{n}C_{1}{}^{1}C_{1} S^{0} + {}^{n}C_{2}{}^{2}C_{1} S^{1} + {}^{n}C_{3}{}^{3}C_{1} S^{2} + \ldots + {}^{n}C_{k}{}^{k}C_{1} S^{k} + \ldots + {}^{n}C_{n}{}^{n}C_{1} S^{n}]F(1\#1)$$

$$\vdots$$

$$[{}^{n}C_{r}{}^{r}C_{r} S^{0} + {}^{n}C_{r+1}{}^{r+1}C_{r} S^{1} + \ldots + {}^{n}C_{r+k}{}^{r+k}C_{r} S^{k} + \ldots + {}^{n}C_{n}{}^{n}C_{r} S^{n}]F(1\#r)$$

$$+ {}^{n}C_{n}{}^{n}C_{n} S^{0}]F(1\#n)$$

$$[{}^{n}C_{r}{}^{r}C_{r} s^{0} + {}^{n}C_{r+1}{}^{r+1}C_{r} s^{1} + ... + {}^{n}C_{r+k}{}^{r+k}C_{r} s^{k} + ... + {}^{n}C_{n}{}^{n}C_{r} s^{n}]F(1\#r)$$

$$+ {}^{n}C_{n}{}^{n}C_{n} s^{0}]F(1\#n)$$

$$= \sum_{r=0}^{n} \left\{ \sum_{k=0}^{n-r} {}^{n}C_{r+k} {}^{r+k}C_{r} s^{k} \right\} F(1\#r)$$

$$= \sum_{r=0}^{n} {}^{n}C_{r} (1+s)^{n-r} F(1\#n) , \text{ by theorem (4.2)}$$

$$LHS = \sum_{r=0}^{n} {}^{n}C_{r} F^{s*}(1\#r)$$

Let $N = p_1p_2p_3 \dots p_n$. Then there are ${}^{n}C_{r}$ divisors of N containing exactly r primes. Then LHS = the sum of the sth Smarandache star functions of all the divisors of N. = $F^{(s+1)*}(N) = F^{(s+1)*}(1#n)$.

Hence we have

$$F^{(s+1)*}(1\#n) = \sum_{r=0}^{n} {^{n}C_{r}(1+s)^{n-r}F(1\#n)}$$

which takes the same format

$$P(s) \Rightarrow P(s+1)$$

and it has been verified that the proposition is true for m = 1hence by induction the proposition is true for all m.

$$F^{m*}(1#n) = \sum_{r=0}^{n} C_r m^{n-r} F(1#r)$$

This completes the proof of theorem (4.3)

NOTE:

From theorem (3.1) we have

F'(N@1#n) = F'(Np₁p₂...p_n) =
$$\sum_{m=0}^{n} a_{(n,m)} F'^{m*}(N)$$

where

$$a_{(n,m)} = (1/m!) \sum_{k=1}^{m} (-1)^{m-k} .^{m}C_{k} .k^{n}$$

If $N = p_1p_2...p_k$ Then we get

$$F(1\#(k+n)) = \sum_{m=0}^{n} [a_{(n,m)} \sum_{t=0}^{k} {C_t} m^{k-t} F(1\#t)] -----(4.4)$$

The above result provides us with a formula to express B_n in terms of smaller Bell numbers. It is in a way generalisation of theorem (2.4) in Ref [5].

THEOREM(4.4):

$$F(\alpha,1\#(n+1)) = \sum_{k=0}^{\alpha} \sum_{r=0}^{n} {^{n}C_{r}} F(k,1\#r)$$

PROOF: LHS = $F(\alpha, 1\#(n+1)) = F'(p^{\alpha} p_1p_2p_3...p_{n+1}) = F'*(p^{\alpha}p_1p_2p_3...p_n)$ + $\sum F'$ (all the divisors containing only p^0) + $\sum F'$ (all the

divisors containing only p^1) + $\sum F'$ (all the divisors containing only p^2) +. . . + $\sum F'$ (all the divisors containing only p^r) +. . . + $\sum F'$ (all the divisors containing only p^α)

$$= \sum_{r=0}^{n} {^{n}C_{r}} F(0,1\#r) + \sum_{r=0}^{n} {^{n}C_{r}} F(1,1\#r) + \sum_{r=0}^{n} {^{n}C_{r}} F(2,1\#r) + \sum_{r=0}^{n} {^{n}C_{r}} F(3,1\#r)$$

+...+
$$\sum_{r=0}^{n} {^{n}C_{r} F(k,1\#r)} + ...+ \sum_{r=0}^{n} {^{n}C_{r} F(\alpha,1\#r)}$$

= $\sum_{k=0}^{\alpha} \sum_{r=0}^{n} {^{n}C_{r} F(k,1\#r)}$

This is a reduction formula for $F(\alpha,1\#(n+1))$

A Result of significance

From theorem (3.1) of Ref.: [2], we have

$$F'(p^{\alpha}@1\#(n+1)) = F(\alpha,1\#(n+1)) = \sum_{m=0}^{n} a_{(n+1,m)} F'^{m*}(N)$$

where

$$a_{(n+1,m)} = (1/m!) \sum_{k=1}^{m} (-1)^{m-k} .^{m}C_{k} .k^{n+1}$$

and

$$F^{*m*}(p^{\alpha}) = \sum_{k=0}^{\alpha} \sum_{m+k-1} C_{m-1} P(\alpha-k)$$

This is the first result of some substance, giving a formula for evaluating the number of Smarandache Factor Partitions of numbers representable in a (one of the most simple) particular canonical form. The complexity is evident. The challenging task ahead for the readers is to derive similar expressions for other canonical forms.

REFERENCE

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
- [3] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
- [4] 'Smarandache Notion Journal' Vol. 10, No. 1-2-3, Spring 1999.

 Number Theory Association of the UNIVERSITY OF

 CRAIOVA.