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Abstract The main purpose of this paper is using the elementary and analytic methods to
study the asymptotic properties of the k-power part residue, and give an inter-
esting asymptotic formula for it.
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§1. Introduction and results
For any positive integer n, the Smarandache k-th power complements bk(n)

is the smallest positive integer such that nbk(n) is a complete k-th power (see
probem 29 of [1].) Similar to the Smarandache k-th power complements, the
additive k-th power complements ak(n) is defined as the smallest nonnegative
integer such that ak(n)+n is a complete k-th power. About this problem, some
authors had studied it, and obtained some interesting results. For example, in
[4] Xu Z.F. used the elementary method to study the mean value properties of
ak(n) and d(ak(n)). in [5] Yi Y. and Liang F.C. used the analytic method to
study the mean value properties of d(a2(n)), and obtained a sharper asymptotic
formula for it.

Similarly, we will define the k-power part residue function as following: For
any positive integer n, it is clear that there exists a positive integer N such that
Nk ≤ n < (N + 1)k. Let n = Nk + r, then fk(n) = r is called the k-power
part residue of n. In this paper, we use the elementary and analytic methods
to study the asymptotic properties of this sequence, and obtain two interesting
asymptotic formulae for it. That is, we shall prove the following:

Theorem. For any real number x > 1 and any fixed positive integer m and
k, we have the asymptotic formula

∑

n≤x

δm(fk(n)) =
k2

2(2k − 1)

∏

p|m

p

p + 1
x2− 1

k + O
(
x2− 2

k

)
,
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where
∏
p|m

denotes the product over all prime divisors of m, and

δm(n) =
{

max{d ∈ N | d|n, (d,m) = 1}, if n 6= 0,
0, if n = 0.

Especially taking m = 1, and note that δ1(fk(n)) = fk(n) we may imme-
diately get the following:

Corollary . For any real number x > 1 and any fixed positive integer k,
we have the asymptotic formula

∑

n≤x

fk(n) =
k2

2(2k − 1)
x2− 1

k + O
(
x2− 2

k

)
.

§2. Proof of Theorem
In this section, we will complete the proof of Theorem. First we need fol-

lowing
Lemma. For any real number x > 1 and positive integer m, we have

∑

n≤x

δm(n) =
x2

2

∏

p|k

p

p + 1
+ O(x

3
2
+ε),

where ε is any positive number.

Proof. Let s = σ + it be a complex number and f(s) =
∞∑

n=1

δm(n)
ns . Note

that δm(n) ¿ n, so it is clear that f(s) is an absolutely convergent series for
Re(s)> 2, by the Euler product formula [2] and the definition of δm(n) we get

f(s) =
∞∑

n=1

δm(n)
ns

=
∏
p

(
1 +

δm(p)
ps

+
δm(p2)

p2s
+ · · ·+ δm(p2n)

pns
+ · · ·

)

=
∏

p|m

(
1 +

δm(p)
ps

+
δm(p2)

p2s
+ · · ·+ δm(p2n)

pns
+ · · ·

)

×
∏

p†m

(
1 +

δm(p)
ps

+
δm(p2)

p2s
+ · · ·+ δm(p2n)

pns
+ · · ·

)

=
∏

p|m

(
1 +

1
ps

+
1

p2s
+ · · ·+ 1

pns
+ · · ·

)

×
∏

p†m

(
1 +

p

ps
+

p2

p2s
+ · · ·+ p2n

pns
+ · · ·

)

=
∏

p|m

(
1

1− 1
ps

) ∏

p†m

(
1

1− 1
ps−1

)
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= ζ(s− 1)
∏

p|m

(
ps − p

ps − 1

)
, (1)

where ζ(s) is the Riemann zeta-function and
∏
p

denotes the product over all

primes.
From (1) and Perron’s formula [3], we have

∑

n≤x

δm(n) =
1

2πi

∫ 5
2
+iT

5
2
−iT

ζ(s− 1)
∏

p|m

(
ps − p

ps − 1

)
· xs

s
ds + O

(
x

5
2
+ε

T

)
, (2)

where ε is any positive number.
Now we move the integral line in (2) from s = 5

2 ± iT to s = 3
2 ± iT . This

time, the function ζ(s − 1)
∏
p|m

(
ps−p
ps−1

)
· xs

s has a simple pole point at s = 2

with residue
x2

2

∏

p|m

p

p + 1
. (3)

Hence, we have

1
2πi

(∫ 5
2
−iT

3
2
−iT

+
∫ 5

2
+iT

5
2
−iT

+
∫ 3

2
+iT

5
2
+iT

+
∫ 3

2
−iT

3
2
+iT

)
ζ(s− 1)

∏

p|m

(
ps − p

ps − 1

)
· xs

s
ds

=
x2

2

∏

p|m

p

p + 1
. (4)

We can easily get the estimate
∣∣∣∣∣∣

1
2πi

(∫ 5
2
−iT

3
2
−iT

+
∫ 3

2
+iT

5
2
+iT

)
ζ(s− 1)

∏

p|m

(
ps − p

ps − 1

)
· xs

s
ds

∣∣∣∣∣∣
¿ x

5
2
+ε

T
, (5)

and
∣∣∣∣∣∣

1
2πi

∫ 3
2
−iT

3
2
+iT

ζ(s− 1)
∏

p|m

(
ps − p

ps − 1

)
· xs

s
ds

∣∣∣∣∣∣
¿ x

3
2
+ε. (6)

Taking T = x, combining (2), (4), (5) and (6) we deduce that

∑

n≤x

δm(n) =
x2

2

∏

p|m

p

p + 1
+ O(x

3
2
+ε). (7)

This completes the proof of Lemma.
Now we shall use the above lemma to complete the proof of Theorem. For

any real number x ≥ 1, let M be a fixed positive integer such that

Mk ≤ x < (M + 1)k. (8)
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Then from (7) and the definition of fk(n), we have
∑

n≤x

δm(fk(n)) (9)

=
M∑

t=1

∑

(t−1)k≤n<tk

δm(fk(n)) +
∑

Mk≤n<x

δm(fk(n))

=
M−1∑

t=1

∑

tk≤n<(t+1)k

δm(fk(n)) +
∑

Mk≤n≤x

δm(fk(n))

=
M∑

t=1

(t+1)k−tk∑

j=0

δm(j) + O


 ∑

Mk≤n<(M+1)k

δm(fk(n))




=
M∑

t=1




(
(t + 1)k − tk

)2

2

∏

p|m

p

p + 1
+ O

(
(t + 1)k − tk

) 3
2
+ε


 + O

(
Mk

)

=
1
2

∏

p|m

p

p + 1

(
M∑

t=1

(
(t + 1)k − tk

)2
)

+ O

(
M∑

t=1

t(k−1)( 3
2
+ε)

)

=
k2

2

∏

p|m

p

p + 1

M∑

t=1

t2(k−1) + O

(
M∑

t=1

t2k−3

)

=
k2M2k−1

2(2k − 1)

∏

p|m

p

p + 1
+ O

(
M2k−2

)
. (10)

On the other hand, we also have the estimate

0 ≤ x−Mk < (M + 1)k −Mk ¿ x
k−1

k .

Now combining (9) and (10) we may immediately obtain the asympotic for-
mula

∑

n≤x

δm(fk(n)) =
k2

2(2k − 1)

∏

p|m

p

p + 1
x2− 1

k + O
(
x2− 2

k

)
.

This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago: Xiquan Pub-
lishing House, 1993.

[2] Tom M. Apostol, Introduction to Analytic Number Theory, New York:
Springer-Verlag, 1976.

[3] Pan Chengdong and Pan Chengbiao, Foundation of Analytic Number
Theory, Beijing: Science Press, 1997.




