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Abstract For any positive integer n, the Smarandache LCM dual function SL*(n) is defined
as the greatest positive integer k such that [1, 2, ---, k] divides n. The main purpose of
this paper is using the elementary method to study the calculating problem of a Dirichlet
series involving the Smarandache LCM dual function SL*(n) and the mean value distribution
property of SL*(n), obtain an exact calculating formula and a sharper asymptotic formula
for it.
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§1. Introduction and result

For any positive integer n, the famous F.Smarandache LCM function SL(n) is defined as
the smallest positive integer k such that n | [1, 2, -+, k], where [1, 2, ---, k| denotes the

least common multiple of all positive integers from 1 to k. That is,
SL(n) =min{k: ke N, n|[1, 2, ---, k]}.

About the elementary properties of SL(n), many people had studied it, and obtained some
interesting results, see references [1] and [2]. For example, Murthy [1] proved that if n be a
prime, then SL(n) = S(n), where S(n) = min{m : n|m!, m € N} be the F.Smarandache

function. Simultaneously, Murthy [1] also proposed the following problem:
SL(n)=S(n), S(n)#n? (1)

Le Maohua [2] solved this problem completely, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as
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n=12 or n=pi'py® - pi"p,

where p1, p2, -+, pr, p are distinct primes and aq, as, -+ -, a, are positive integers satisfying
p>piti=1,2,---, 1.
Zhongtian Lv [3] proved that for any real number 2 > 1 and fixed positive integer k, we
have the asymptotic formula
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where ¢; (i =2, 3, -+, k) are computable constants.
Now, we define the Smarandache LCM dual function SL*(n) as follows:

SL*(n) =max{k: ke N, [1, 2, ---, k] | n}.

For example: SL*(1) = 1, SL*(2) = 2, SL*(3) = 1, SL*(4) = 2, SL*(5) = 1, SL*(6) =
3, SL*(7) = 1, SL*(8) = 2, SL*(9) = 1, SL*(10) = 2, ---. Obviously, if n is an odd
number, then SL*(n) = 1. If n is an even number, then SL*(n) > 2. About the other
elementary properties of SL*(n), it seems that none had studied it yet, at least we have not
seen such a paper before. In this paper, we use the elementary method to study the calculating

problem of the Dirichlet series:

)
Z SL 2)
n=1
and give an exact calculating formula for (2). At the same time, we also study the mean value
properties of SL*(n), and give a sharper mean value formula for it. That is, we shall prove the
following two conclusions:

Theorem 1. For any real number s > 1, the series (2) is absolutely convergent, and

SL*(n = s—1
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where ((s) is the Riemann zeta-function, Z denotes the summation over all primes.

P
Theorem 2. For any real number > 1, we have the asymptotic formula

Z SL*(n) =c-z +O(In’z),

n<zx

oo
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where ¢ = E E a) is a constant.
= 2, -, p°]

Note that ¢(2) = 72/6, from Theorem 1 we may immediately deduce the identity:

SL* 2 p?—1)
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8§2. Some useful lemmas

To complete the proofs of the theorems, we need the following lemmas.
Lemma 1. For any positive integer n, there exist a prime p and a positive integer a such
that
SL*(n) =p* — 1.

Proof. Assume that SL*(n) = k. From the definition of the Smarandache LCM dual
function SL*(n) we have



Vol. 3 On the Smarandache LCM dual function 27

else [1, 2, --+, k, k+1] | n, then SL*(n) > k+ 1. This contradicts with SL*(n) = k. Assume
that k + 1 = p{*p5? -+ - p%=, where p; is a prime, p; <ps < - - <ps,; >1,i=1 27 cee s,
If s > 1, then p{* <k, p5?---p% <k, so
pl |[ 277k]7 pg2p?5 [17277k]
Since (pi", p3* -+ -p§*) = 1, we have
p(1¥1p2 : ‘p?s [1a 2, -0 k]
Namely, K +1 | [1, 2, ---, k]. From this we deduce that k + 1 | n. This contradicts with

SL*(n) = k. Hence s = 1. Consequently k+ 1 = p®. That is, SL*(n) = p® — 1. This completes
the proof of Lemma 1.
Lemma 2. Let L(n) denotes the least common multiple of all positive integers from 1 to

))

n, then we have
—c(lnn)
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In(L(n))=n+0 (n - exp (

where c is a positive constant.

Proof. See reference[4].

§3. Proof of the theorems

In this section, we shall complete the proof of the theorems. First we prove Theorem 1.
From the definition of the Smarandache LCM dual function SL*(n) we know that if
1, 2, -+, k] | n, then [1, 2, ---, k] < n, In([1, 2, ---, k]) < Inn. Hence, from Lemma

SL* 1
2 we have SL*(n) = k <lInn, (n) < an Consequently, if s > 1, then the Dirichlet series
ns

= SL*

Z 75(71) is absolutely convergent. From Lemma 1 we know that SL*(n) = p® — 1, then
n

n=1

2, -, p*—=1]|n Let n=11, 2, ---, p® —1] - m, then p { m, so for any real number

s > 1, we have
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This proves the theorem 1.
From the definition of the Smarandache LCM dual function SL*(n), Lemma 1 and Lemma
2 we also have
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where ¢ = Z % is a constant.
a=1 p [ ) y Ty, P }

This completes the proof of Theorem 2.
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