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Abstract For any positive integer n, the F.Smarandache LCM function SL(n) defined as

the smallest positive integer k such that n | [1, 2, · · · , k], where [1, 2, · · · , k] denotes the

least common multiple of 1, 2, · · · , k. The main purpose of this paper is to use the elementary

methods to study the mean value of the F.Smarandache LCM function SL(n), and give a

sharper asymptotic formula for it.
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§1. Introduction and results

For any positive integer n, the famous F.Smarandache LCM function SL(n) defined as the
smallest positive integer k such that n | [1, 2, · · · , k], where [1, 2, · · · , k] denotes the least
common multiple of 1, 2, · · · , k. For example, the first few values of SL(n) are SL(1) = 1,
SL(2) = 2, SL(3) = 3, SL(4) = 4, SL(5) = 5, SL(6) = 3, SL(7) = 7, SL(8) = 8, SL(9) = 9,
SL(10) = 5, SL(11) = 11, SL(12) = 4, SL(13) = 13, SL(14) = 7, SL(15) = 5, · · · . About the
elementary properties of SL(n), some authors had studied it, and obtained some interesting
results, see reference [3] and [4]. For example, Murthy [3] showed that if n is a prime, then
SL(n) = S(n), where S(n) denotes the Smarandache function, i.e., S(n) = min{m : n|m!, m ∈
N}. Simultaneously, Murthy [3] also proposed the following problem:

SL(n) = S(n), S(n) 6= n ? (1)

Le Maohua [4] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

n = 12 or n = pα1
1 pα2

2 · · · pαr
r p,

where p1, p2, · · · , pr, p are distinct primes, and α1, α2, · · · , αr are positive integers satisfying
p > pαi

i , i = 1, 2, · · · , r.
The main purpose of this paper is to use the elementary methods to study the mean value

properties of SL(n), and obtain a sharper asymptotic formula for it. That is, we shall prove
the following conclusion:
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Theorem. Let k ≥ 2 be a fixed integer. Then for any real number x > 1, we have the
asymptotic formula

∑

n≤x

SL(n) =
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 2, 3, · · · , k) are computable constants.
From our Theorem we may immediately deduce the following:
Corollary. For any real number x > 1, we have the asymptotic formula

∑

n≤x

SL(n) =
π2

12
· x2

lnx
+ O

(
x2

ln2 x

)
.

§2. Proof of the theorems

In this section, we shall prove our theorem directly. In fact for any positive integer n > 1,
let n = pα1

1 pα2
2 · · · pαs

s be the factorization of n, then from [3] we know that

SL(n) = max{pα1
1 , pα2

2 , · · · , pαs
s }. (2)

Now we consider the summation

∑

n≤x

SL(n) =
∑

n∈A

SL(n) +
∑

n∈B

SL(n), (3)

where we have divided the interval [1, x] into two sets A and B. A denotes the set involving
all integers n ∈ [1, x] such that there exists a prime p with p|n and p >

√
n. And B denotes

the set involving all integers n ∈ [1, x] with n /∈ A. From (2) and the definition of A we have

∑

n∈A

SL(n) =
∑

n≤x

p|n,
√

n<p

SL(n) =
∑

pn≤x
n<p

SL(pn) =
∑

pn≤x
n<p

p =
∑

n≤√x

∑

n<p≤ x
n

p. (4)

By Abel’s summation formula (See Theorem 4.2 of [5]) and the Prime Theorem (See Theorem
3.2 of [6]):

π(x) =
k∑

i=1

ai · x
lni x

+ O

(
x

lnk+1 x

)
,

where ai (i = 1, 2, · · · , k) are constants and a1 = 1.
We have

∑

n<p≤ x
n

p =
x

n
· π

(x

n

)
− n · π(n)−

∫ x
n

n

π(y)dy

=
x2

2n2 lnx
+

k∑

i=2

bi · x2 · lni n

n2 · lni x
+ O

(
x2

n2 · lnk+1 x

)
, (5)

where we have used the estimate n ≤ √
x, and all bi are computable constants.
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Note that
∞∑

n=1

1
n2

=
π2

6
, and

∞∑
n=1

lni n

n2
is convergent for all i = 2, 3, · · · , k. From (4) and

(5) we have

∑

n∈A

SL(n) =
∑

n≤√x

(
x2

2n2 lnx
+

k∑

i=2

bi · x2 · lni n

n2 · lni x
+ O

(
x2

n2 · lnk+1 x

))

=
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
, (6)

where ci (i = 2, 3, · · · , k) are computable constants.
Now we estimate the summation in set B. Note that for any positive integer α, the series

∞∑
n=1

1

n
α+1

α

is convergent, so from (2) and the definition of B we have

∑

n∈B

SL(n) =
∑

n≤x

SL(n)=p, p≤√n

p +
∑

n≤x

SL(n)=pα, α>1

pα

¿
∑

n≤x

p|n, p≤√n

p +
∑

2≤α≤ln x

∑

p≤x

∑

npα≤x

pα

¿
∑

n≤x

∑

p≤min{n, x
n}

p +
∑

2≤α≤ln x

∑

n≤x

∑

p≤( x
n )

1
α

pα

¿ x
3
2

lnx
+

x
3
2

lnx
· lnx ¿ x

3
2 . (7)

Combining (3), (6) and (7) we may immediately deduce that

∑

n≤x

SL(n) =
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 2, 3, · · · , k) are computable constants.
This completes the proof of Theorem.
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