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Abstract: Let G be a simple graph with diameter four,if G does not contain complete

subgraph K3 of order three. We prove that the Betti deficient number of G, ξ(G) ≤ 2.

i.e. the maximum genus of G, γM (G) ≥ 1

2
β(G) − 1 in this paper, which is related with

Smarandache 2-manifolds with minimum faces.
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§1. Preliminaries and known results

In this paper, G is a finite undirected simple connected graph. The maximum genus γM (G) of

G is the largest genus of an orientable surface on which G has a 2-cell embedding, and ξ(G) is

the Betti deficiency of G. To determine the maximum genus γM (G) of a graph G on orientable

surfaces is related with map geometries, i.e., Smarandache 2-manifolds (see [1] for details) with

minimum faces.

By Xuong’s theory on the maximum genus of a connected graph, ξ(G) equal to β(G) −
2γM (G), where β(G) = |E(G)| − |V (G)|+ 1 is the Betti number of G. For convenience, we use

deficiency to replace the words Betti deficiency in this paper. Nebeský[2] showed that if G is a

connected graph and A ⊆ E(G), let υ(G,A) = c(G−A) + b(G−A)− |A| − 1, where c(G−A)

denotes the number of components in G−A and b(G−A) denotes the number of components

in G−A with an odd Betti number, then we have ξ(G) = max{υ(G,A)|A ⊆ E(G)}.
Clearly, the maximum genus of a graph can be determined by its deficiency. In case of that

ξ(G) ≤ 1, the graph G is said to be upper embeddable. As we known, following theorems are

the main results on relations of the maximum genus with diameter of a graph.

Theorem 1.1 Let G be a multigraph of diameter 2. Then ξ(G) ≤ 1.

Skoviera proved Theorem 1.1 by a different method in [3]− [4].

Hunglin Fu and Minchu Tsai considered multigraphs of diameter 3 and proved the following

theorem in [5].
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Theorem 1.2 Let G be a multigraph of diameter 3. Then ξ(G) ≤ 2.

When the diameter of graphs is larger than 3, the Betti deficiency of G is unbounded. The

following investigations have focused on graphs with a given diameter and some characters.

Some results in this direction are presented in the following.

Theorem 1.3([16]) Let G be a 3-connected multigraph of diameter 4, then ξ(G) ≤ 4.

Theorem 1.4([16]) Let G be a 3-connected simple graph of diameter 5. Then ξ(G) ≤ 18.

Yuanqiu Huang and Yanpei Liu proved the following result in [6].

Theorem 1.5 Let G be a simple, K3-free graph of diameter 4, then ξ(G) ≤ 4, where K3-free

graph means that there are no spanning subgraphs K3 in G.

The main purpose of this paper is to improve this result.

§2. Main result and its proof

Nebeský’s method is useful and the minimality property of the edge subset A in this method

plays an important role. For convenience, we call a graph with ξ(G) ≥ 2 a deficient graph.

Any set A ⊆ E(G) such that υ(G,A) = ξ(G) will be called a Nebeský set. Furthermore, if A is

minimal, then it will be called a minimal Nebeský set.

Lemma 2.1([5]) Let G be a deficient graph and A a minimal Nebeský set of G. Then

(a) b(G−A) = c(G−A) ≥ 2. More, if G is a simple graph then every component of G−A
contains at least three vertices;

(b) the end vertices of every edge in A belong to distinct components of G−A;

(c) any two components of G−A are joined by at most one edge of A;

(d) ξ(G) = 2c(G−A)− |A| − 1.

With the support of Lemma 2.1, we are able to construct a new graph based on the choice

of A. Let G be a deficient graph and A a minimal Nebeský set of G. GA is called a testable

graph of G if V (GA) is the set of components of G−A and two vertices in GA are adjacent if

and only if they are joined in G by an edge of A. We shall refer the vertices of GA to as the

nodes of GA, and uA, υA,...are typical notation for the nodes.

Lemma 2.2 Let G be a deficient graph and A a minimal Nebeský set of G. Then

ξ(G) = 2p(GA)− q(GA)− 1,

where p(GA) and q(GA) are the numbers of nodes and edges of GA, respectively.

Proof By the definition of GA, we know that p(GA) = c(G−A) and q(GA) = |A|. Applying

Lemma 2.1, we find that

ξ(G) = 2c(G−A)− |A| − 1 = 2p(GA)− q(GA)− 1.
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Lemma 2.3 If G is triangle-free, there exist a ωA ∈ V (GA) such that 2 ≤ |E(ωA, A)| ≤ 3,

where E(ωA, A) denotes the set of edges of GA incident with ωA.

Proof Let TωA
denote the component of G−A which corresponds to ωA in GA. By Lemma

2.1 |V (GA)| ≥ 2. If for all ωA ∈ V (GA), there is |E(ωA, A)| ≥ 4, then

|A| = 1

2

∑

ωA∈V (GA)

|E(ωA, A)| ≥ 2|V (GA)|.

Applying Lemma 2.1 and the definition of GA, ξ(G) = 2V (GA)−|A|−1 ≤ −1, a contradiction.

For G is connected, |E(ωA, A)| ≥ 1. If |E(ωA, A)| = 1, let E(ωA, A) = {e}, e = fh, f ∈
V (TωA

), h ∈ V (TσA
), σA ∈ V (GA). By Lemma 2.1, β(TωA

) is odd and TωA
is simple and

triangle-free, there exists f
′ ∈ V (TωA

) such that f
′ 6= f, ff

′ 6∈ E(G). Similarly, there exists

h
′ ∈ V (TσA

) such that h
′ 6= h, hh

′ 6∈ E(G). Since e is a bridge, dG(f
′

, h
′

) ≥ 5, a contradiction.

So we get that 2 ≤ |E(ωA, A)| ≤ 3.

Theorem Let G be a simple, triangle-free graph of diameter 4, then ξ(G) ≤ 2, i.e., the

maximum genus of G, γM (G) ≥ 1
2β(G) − 1.

Proof Let Π={H |H is a simple graph of diameter 4 and does not contain a spanning

subgraph K3 with ξ(G) > 2 }. We claim that Π is an empty set. Suppose it is not true, let

G ∈ Π be with minimum order. Clearly, G is a deficient graph. Now let A be a minimal Nebeský

set. Applying Lemma 2.1(a), each component of G − A has odd Betti number. Thus, each

component of G−A must be a quadrangle. Otherwise, there exists a graph |V (G
′

)| < |V (G)|.
Now let TxA

denote the component of G − A which corresponds to xA in GA for each node

xA ∈ V (GA).

By Lemma 2.3, choose zA ∈ V (GA) with 2 ≤ |E(zA, A)| ≤ 3, and define D0 = {zA}, D1 =

N(zA) and D2 = V (GA) − N(zA). We call x ∈ V (G) a distance k vertex, if min {d(x, z)|z ∈
V (TzA

)} = k and denote E(Di, Dj) = {xAyA ∈ E(GA)|xA ∈ Di and yA ∈ Dj}, where 0 ≤
i, j ≤ 2 (Note that the order of xA and yA is important throughout of the proof). We also need

the following definitions.

A1={xAyA ∈ E(D2, D1)| there exists a distance 1 vertex of TyA
adjacent to a distance 2

vertex of TxA
, or a distance 2 vertex of TyA

adjacent to a distance 3 vertex of TxA
and a distance

1 vertex of TωA
for some ωA ∈ D1 − {yA}}.

A2={xAyA ∈ E(D2, D2)| xA is not incident with any edge of A1 and yA is incident with

one edge of A1 and TyA
contains a vertex both adjacent to a vertex of TxA

and a vertex of TuA

for some uA ∈ D1} ∪ {xAyA ∈ E(D2, D2)| xA is not incident with any edge of A1 and yA is

incident with at least two edges of A1}.
A3={xAyA ∈ E(D1, D1)| there exists a distance 2 vertex of TxA

adjacent to a distance 1

vertex of TyA
}.

Now, according to these edge subsets A1 − A3 of E(GA), we define a directed graph
−→
GA

based on GA:

(i) V (
−→
GA) = V (GA);

(ii) if xAyA ∈ E
′

= (
⋃3

i=1 Ai)
⋃

(D1, D0), then join two arcs from yA to xA;
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(iii) if xAyA ∈ E(GA)− E′

, then let (xA, yA) and (yA, xA) be arcs of
−→
GA.

By this definition, it is easy to see that

∑

xA∈V (GA)

deg(xA) =
∑

xA∈V (
−→
GA)

deg−(xA),

where deg−(xA) denotes the in-degree of xA in
−→
GA. Therefore, the in-degree sum of

−→
GA gives

2q(GA).

Now, we count the in-degree sum of
−→
GA. Let xA be an arbitrary node in V (

−→
GA).

(1) xA ∈ D0. Then deg−(xA) = 0 clearly.

(2) xA ∈ D2. The situation is divided into the discussions (i)-(iv) following.

(i) xA is not incident with edges of A1, but incident with edges of A2.

Case 1 xA is incident with at least two edges of A2, then deg−(xA) ≥ 4.

Case 2 xA is incident with one edge e of A2. Let x1y1 be an edge of E(G) which corresponds

to the edge e. Accordingly, TzA
is a quadrangle and 2 ≤ |E(zA, A)| ≤ 3. Then there exist

z1 ∈ V (TzA
) and deg(z1) = 2. We know that d(x1, z1) = 4 in G. Let V (TxA

) = {x1, x2, x3, x4}.
In TxA

, x2 must be incident with an edge of E(GA) − E
′

such that d(x2, z1) ≤ 4(in fact

d(x2, z1) = 4). Similar discussion can be done done for vertices x3 and x4. So deg−(xA) ≥ 4.

(ii) xA is not incident with edges of A1

⋃
A2.

Let V (TxA
) = {x1, x2, x3, x4}. In TxA

, x1 must be incident with an edge of E(GA) − E′

such that d(x1, z1) ≤ 4(in fact d(x2, z1) = 4). Similar discussion can be done done for vertices

x2,x3 and x4. So deg−(xA) ≥ 4.

(iii) xA is incident with edges of A1, but not incident with edges of A2.

Case 1 xA is incident with at least two edges of A1, then deg−(xA) ≥ 4.

Case 2 xA is incident with one edge e of A1. Let x1y1 be an edge of E(G) which corresponds

to the edge e. Let V (TxA
) = {x1, x2, x3, x4} and d(x1, z1) ≥ 3. In TxA

, it supposes that x3 is

not incident with x1, then x3 must be incident an edge of E(GA). Let this edge be e
′

. Then

e
′ ∈ E(GA)−E′

, and e
′

contributes one de-agree. So deg−(xA) ≥ 3(in fact, when deg−(xA) = 3,

e
′ ∈ E(D2, D1)).

(iv) xA is incident with edges of A1 and A2.

Case 1 xA is incident with at least two edges of A1, then deg−(xA) ≥ 4.

Case 2 xA is incident with one edge e of A1. Let x1y1 be an edge of E(G) which corresponds

to the edge e. Let V (TxA
) = {x1, x2, x3, x4} and d(x1, z1) ≥ 3. In TxA

, it supposes that x3

is not incident with x1, then x3 must be incident with an edge of E(GA). Let this edge be

e
′

. Then e
′ ∈ A2 or e

′ ∈ E(GA) − E′

. In the former, e
′

must contributes two de-agree for

xA. In the latter, e
′

contributes one de-agree. So deg−(xA) ≥ 3(in fact,when deg−(xA) = 3,

e
′ ∈ E(D2, D1)).

Hence, for xA ∈ D2, deg
−(xA) ≥ 3.
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Let M={xA ∈ D2|deg−(xA) = 3}. We get that

∑

xA∈D2

deg−(xA) ≥ 4|D2| − |M |.

(3) xA ∈ D1.

By the definition of
−→
GA, the edge connects D0 and D1 contributes two de-agree for xA.

Let x1y1 be an edge of E(G) corresponds to this edge(y1 ∈ E(TzA
)).

Let V (TxA
) = {x1, x2, x3, x4}. In TxA

, it supposes that x3 is not incident with x1. In TzA
,

there exists z2 ∈ V (TzA
) so that if d(x3, z2) ≤ 4. If x3 does not connect z2 though x2 or x4,

x3 must be incident with one edge of E(GA). Let that edge be e. Then e ∈ E(GA) − E′

and

deg(xA) ≥ 3. If x3 connects z2 though x2 or x4, x2 or x4 is incident with one edge of E(GA).

Let that edge be e. Then e ∈ E(GA) − E′

or e ∈ A3, and e contributes at least one de-agree.

So deg(xA) ≥ 3.

Hence, for all xA ∈ D1,

∑

xA∈D1

deg−(xA) ≥ 3|D1|+ |M |.

Now by discussions (1) and (2), we get that

2q(GA) =
∑

xA∈V (
−→
GA)

deg−(xA)

≥ 4|D2| − |M |+ 3|D1|+ |M |
= 4p(GA)− |D1| − 4

≥ 4P (GA)− 7.

Applying Lemma 2.2 again, we get that ξ(G) = 2p(GA)− 1− q(GA) ≤ 2, also a contradic-

tion. This completes the proof.

To see that the upper bound presented in our theorem is best possible, let us consider the

following family of infinite graphs, as depicts in Fig. 1. There are even paths with length 2

from m to n. Thus, this graph is triangle-free with diameter 4. It is not difficult to check that

its Betti deficiency are equal to 2.



92 Xiang Ren, WeiLi He and Lin Zhaoo

m

n

Fig.1
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