
Scientia Magna
Vol. 2 (2006), No. 2, 35-39

On the mean value of the Near Pseudo
Smarandache Function

Hai Yang1 and Ruiqin Fu2

1. Research Center for Basic Science, Xi’an Jiaotong University

Xi’an, Shaanxi, P.R.China

2. School of Science, Department of Mathematics, Xi’an Shiyou University

Xi’an, Shaanxi, P.R.China

Abstract The main purpose of this paper is using the analytic method to study the asymp-

totic properties of the Near Pseudo Smarandache Function, and give two interesting asymp-

totic formulae for it.
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§1. Introduction

In reference [1], David Gorski defined the Pseudo Smarandache function Z(n) as: let n be
any positive integer, Z(n) is the smallest integer such that 1 + 2 + 3 + . . . + Z(n) is divisible by
n. In reference [2], A.W.Vyawahare defined a new function K(n) which is a slight modification
of Z(n) by adding a smallest natural number k, so this function is called “Near Pseudo
Smarandache Function”. It is defined as follows: let n be any positive integer, K(n) = m,

where m =
n∑

n=1
n + k and k is the smallest natural number such that n divides m. About the

mean value properties of the smallest natural number k in Near Pseudo Smarandache function,
it seems that none had studied them before, at least we couldn’t find any reference about it.
In this paper, we use the analytic method to study the mean value properties of d(k) and ϕ(k),
and give two interesting asymptotic formulae for it. That is, we shall prove the following:

Theorem 1. Let k is the smallest natural number such that n divides Near Pseudo
Smarandache function K(n), d(n) denotes Dirichlet divisor function. Then for any real number
x ≥ 1, we have the asymptotic formula

∑

n≤x

d(k) =
∑

n≤x

d

(
K(n)− n(n + 1)

2

)
=

3
4
x log x + Ax + O(x

1
2 log2 x),

where A is a computable constant.
Theorem 2. For any real number x ≥ 1, k is the smallest natural number such that n

divides Near Pseudo Smarandache function K(n), ϕ(n) denotes the Euler’s totient function.
Then we have the asymptotic formula

∑

n≤x

ϕ

(
K(n)− n(n + 1)

2

)
=

93
28π2

x2 + O(x
3
2+ε),

where ε denotes any fixed positive number.
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§2. Some lemmas

To complete the proof of the theorems, we need the following several simple Lemmas:
Lemma 1. Let n be any positive integer, then we have

K(n) =





n(n+3)
2 , if n is odd,

n(n+2)
2 , if n is even.

Proof. (See reference [2]).
Lemma 2. For any real number x ≥ 1, we have

∑

n≤x

d(n) = x log x + (2C − 1)x + O
(√

x
)
,

where C is the Euler constant,

∑

n≤x

ϕ(k) =
3
π2

x2 + O(x log x).

Proof. These results can be get immediately from [3].
Lemma 3. For any real number x ≥ 1, we have

∑

n≤x

d(2n) =
3
2
x log x +

(
log 2

2
− 3

2

)
x + O

(
x

1
2 log2 x

)
,

∑

n≤x

ϕ(2n) =
2

7ζ(2)
x2 + O(x

3
2+ε).

Proof. Firstly, we shall prove the first formula of Lemma 3. Let s = σ + it be a complex

number and f(s) =
∞∑

n=1

d(2n)
ns . Note that d(2n) ¿ nε, so it is clear that f(s) is a Dirichlet series

absolutely convergent for Re(s)> 1, by the Euler product formula [3] and the definition of d(n)
we get

f(s) =
∏
p

∞∑
m=0

d(2pm)
pms

=
∞∑

m=0

d(2m+1)
2ms

·
∏
p>2

∞∑
m=0

d(2pm)
pms

= 2ζ2(s) ·

(
∏

p>2

∞∑
m=0

d(pm)
pms

)
·
( ∞∑

m=0

d(2m+1)
2ms

)

∏
p

∞∑
m=0

(
d(pm)
pms

)

= 2ζ2(s) ·

∞∑
m=0

d(2m+1)
2ms

∞∑
m=0

d(2m)
2ms

= ζ2(s)
(

2− 1
2s

)
. (1)
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where ζ(s) is the Riemann zeta-function, and
∏
p

dentoes the product over all primes.

From (1) and the Perron’s formula [4], for b = 1 + ε, T ≥ 1 and x ≥ 1 we have

∑

n≤x

d(2n) =
1

2πi

∫ b+iT

b−iT

f(s)
xs

s
ds + O

∣∣∣∣
xb

T

∣∣∣∣ + O

(
xH(2x) log x

T

)
. (2)

Taking a = 1
2 + ε, we move the integral line in (2). Then

∑

n≤x

d(2n) = Res
s=1

ζ2(s)
(

2− 1
2s

)
xs

s

+
1

2πi

∣∣∣∣∣
∫ a−iT

b−iT

+
∫ a+iT

a−iT

+
∫ b+iT

a+iT

∣∣∣∣∣ ζ2(s)
(

2− 1
2s

)
xs

s
ds

+ O

∣∣∣∣
xb

T

∣∣∣∣ + O

∣∣∣∣
xH(2x) log x

T

∣∣∣∣ ,

where
∣∣∣∣∣
∫ a−iT

b−iT

+
∫ b+iT

a+iT

∣∣∣∣∣ ζ2(s)(2− 1
2s

)
xs

s
ds ¿ x

T
,

∫ a+iT

a−iT

ζ2(s)(2− 1
2s

)
xs

s
ds ¿ x

1
2 log2 T.

Hence, we have
∑

n≤x

d(2n) = Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

∣∣∣ x

T

∣∣∣

+ O
(
x

1
2 log2 T

)
+ O

∣∣∣∣
xb

T

∣∣∣∣ + O

∣∣∣∣xH(2x)
log x

T

∣∣∣∣

= Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

∣∣∣ x

T

∣∣∣

+ O
(
x

1
2 log2 T

)
+ O

∣∣∣∣x1+ε log x

T

∣∣∣∣ . (3)

Taking T = x
1
2+ε in (3), then
∑

n≤x

d(2n) = Res
s=1

ζ2(s)(2− 1
2s

)
xs

s
+ O

(
x

1
2−ε

)
+ O

(
x

1
2 log2 x

)

= Res
s=1

ζ2(s)
(

2− 1
2s

)
xs

s
+ O

(
x

1
2 log2 x

)
. (4)

Now we can easily get the residue of the function ζ2(s)
(
2− 1

2s

) · xs

s at second order pole point
s = 1 with

Res
s=1

ζ2(s)
(

2− 1
2s

)
xs

s
=

3
2
x log x +

(
log 2

2
− 3

2

)
x. (5)

Combining (4) and (5), we may immediately get

∑

n≤x

d(2n) =
3
2
x log x +

(
log 2

2
− 3

2

)
x + O

(
x

1
2 log2 x

)
.
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This completes the proof of the first formula of Lemma 3.

Let h(s) =
∞∑

n=1

ϕ(2n)
ns . From Euler product formula [2] and the definition of ϕ(n) we also

have

h(s) =
∏
p

(
1 +

∞∑
m=1

ϕ(2pm)
pms

)

=

(
1 +

∞∑
m=1

ϕ(2m+1)
2ms

)
·
∏
p>2

(
1 +

∞∑
m=1

ϕ(2pm)
pms

)

=
ζ(s− 1)

ζ(s)
·

∏
p>2

(
1 +

∞∑
m=1

ϕ(pm)
pms

)
·
(

1 +
∞∑

m=1

ϕ(2m+1)
2ms

)

∏
p

(
1 +

∞∑
m=1

ϕ(pm)
pms

)

=
ζ(s− 1)

ζ(s)
·

(
1 +

∞∑
m=1

ϕ(2m+1)
2ms

)

(
1 +

∞∑
m=1

ϕ(2m)
2ms

)

=
ζ(s− 1)

ζ(s)
· 2s

2s + 3
.

By Perron formula [4] and the method of proving the first formula of Lemma 3, we can
obtain the second formula of Lemma 3.

§3. Proof of the theorems

In this section, we will complete the proof of the Theorems. From the first formula of
Lemma 3 we can obtain

∑

n≤ x
2

d(2n) =
3
4
x log x−

(
log 2

2
− 3

8

)
x + O

(
x

1
2 log2 x

)
.

Let f(n) = K(n)− n(n+1)
2 = k, then from Lemma 1 and the first formula of Lemma 2 we

have

∑

n≤x

d(k) =
∑

n≤x

d

(
K(n)− n(n + 1)

2

)

=
∑

n≤x

2|n

d(
n

2
) +

∑

n≤x

2†n

d(n)

=
∑

n≤ x
2

d(n) +
∑

n≤x

d(n)−
∑

n≤ x
2

d(2n)

=
3
4
x log x + Ax + O

(
x

1
2 log2 x

)
,

where A is a computable constant.
This complets the proof of Theorem 1.
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Now we complete the proof of Theorem 2. Noting that ζ(2) = π2

6 , from the second formula
of Lemma 3 we can obtain ∑

n≤ x
2

ϕ(2n) =
3

7π2
x2 + O(x

3
2+ε).

Then from Lemma 1 and the second formula of Lemma 2 we have

∑

n≤x

ϕ(k) =
∑

n≤x

ϕ

(
K(n)− n(n + 1)

n

)

=
∑

n≤x

2|n

ϕ(
n

2
) +

∑

n≤x

2†n

ϕ(n)

=
∑

n≤ x
2

ϕ(n) +
∑

n≤x

ϕ(n)−
∑

n≤ x
2

ϕ(2n)

=
93

28π2
x2 + O

(
x

3
2+ε

)
,

where ε is any fixed positive number.
This complets the proof of Theorem 2.
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