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Mean value of a Smarandache-Type Function
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Abstract In this paper, we use analytic method to study the mean value properties of
Smarandache-Type Multiplicative Functions K,,(n), and give its asymptotic formula . Finally,

the convolution method is used to improve the error term.
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§1. Introduction
Suppose m > 2 is a fixed positive integer. If n = p{'py?...pe*, we define

K,(n) = p[flpéh...pfk, B; = min(ay,m — 1),

which is a Smarandache-type multiplicative function . Yang Cundian and Li Chao proved in
[1] that
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n<z
In this paper, we shall use the convolution method to prove the following

Theorem. The asymptotic formula
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holds, where ¢ is an absolute positive constant and &(z) = (log z)*/®(loglog ) /5.

§2. Proof of the theorem

In order to prove our Theorem, we need the following Lemma, which is Lemma 14.2 of [2].

Lemma. Let f(n) be an arithmetical function for which :
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> 1 f(n) |= O(z" log" ),

n<lx
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where ay > as > ... >a; > 1/k>a>0,r >0,Pi(¢), -+, P(t) are polynomials in t of degrees

not exceeding r, and k£ > 1 is a fixed integer. If

h(n) = 37 w(d)f(n/db),

dk|n
then l
Z h(n) = Zx“"Rj(logx) + E(z),
n<zx j=1
where Ry(t),..., R;(t) are polynomials in t of degrees not exceeding r, and for some
D >0

E(z) < xl/kexp( — D(log z)*/*(log log x)’l/‘r’).

Now we prove our Theorem. Let

K
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According to Euler’s product formula, we write
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where
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Let g, (n) denote the characteristic function of m-free numbers, then

oo 71 -
Z_: Ss—l Zq

Suppose

5) = Z r7(1n)
then

Z ll 117“ lQ

Obviously, when o > 1, R(s) absolutely converges, namely

S <2t (1)

<z

We can write g, (n) as the following form

d*|n
Now we apply the lemma on taking f(n) =1, [ =a; = 1,7 = a =0, then we have

Z gm(n) = ) (I;ecl‘s(“’))

n<z

for some absolute constant ¢; > 0.

By partial summation,

2

D am(n)n = o+ Ol ) (2)

n<zx

holds for some absolute constant ¢, > 0. Let y = 2!~1/2™_ By hyperbolic summation ,

we write
Y Km(n) = > agm(l)hr(ls) (3)
n<z 1<z
= > () Y am)h+ > gm(l r(l2) = Y r(la) > am(l)h
12<y h<gg L<g 1Sﬁ l2<y L<$

= 2t

From (1) we get

+
Y, <D h( ) < B g ghtl/ame, (4)
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Similarly
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Finally for 3, we have by (2)

Sk D B
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- 2@:?;)3(2) + o(f”z;) 4 0<x1+fnecoé(m)>

2
R(2)+0 <m1+mecoé<w>),

X

2¢(m)

if we noticed that

l
IR A
la>y 2
which follows from (1) by partial summation.
Now our Theorem follows from (3)-(6).
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