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Abstract For any positive integer n, the famous Smarandache function S(n) defined as the

smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. The

Smarandache LCM function SL(n) the smallest positive integer k such that n | [1, 2, · · · , k],

where [1, 2, · · · , k] denotes the least common multiple of 1, 2, · · · , k. The main purpose of this

paper is using the elementary methods to study the mean value properties of (SL(n)− S(n))2,

and give a sharper asymptotic formula for it.
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§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) defined as the smallest
positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. For example,
the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3,
S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, · · · · · · . The F.Smarandache
LCM function SL(n) defined as the smallest positive integer k such that n | [1, 2, · · · , k],
where [1, 2, · · · , k] denotes the least common multiple of 1, 2, · · · , k. The first few values of
SL(n) are SL(1) = 1, SL(2) = 2, SL(3) = 3, SL(4) = 4, SL(5) = 5, SL(6) = 3, SL(7) = 7,
SL(8) = 8, SL(9) = 9, SL(10) = 5, SL(11) = 11, SL(12) = 4, · · · · · · .

About the elementary properties of S(n) and SL(n), many authors had studied them, and
obtained some interesting results, see reference [2], [3], [4] and [5]. For example, Murthy [2]
proved that if n be a prime, then SL(n) = S(n). Simultaneously, Murthy [2] also proposed the
following problem:

SL(n) = S(n), S(n) 6= n ? (1)

Le Maohua [3] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

n = 12 or n = pα1
1 pα2

2 · · · pαr
r p,

where p1, p2, · · · , pr, p are distinct primes, and α1, α2, · · · , αr are positive integers satisfying
p > pαi

i , i = 1, 2, · · · , r.
Dr. Xu Zhefeng [4] studied the value distribution problem of S(n), and proved the following

conclusion:
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Let P (n) denotes the largest prime factor of n, then for any real number x > 1, we have
the asymptotic formula

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.
Lv Zhongtian [5] proved that for any fixed positive integer k any real number x > 1, we

have the asymptotic formula fixed positive integer k

∑

n≤x

SL(n) =
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 2, 3, · · · , k) are computable constants.
The main purpose of this paper is using the elementary methods to study the mean value

properties of [SL(n)− S(n)]2, and give an interesting mean value formula for it. That is, we
shall prove the following conclusion:

Theorem. Let k be a fixed positive integer. Then for any real number x > 2, we have
the asymptotic formula

∑

n≤x

[SL(n)− S(n)]2 =
2
3
· ζ

(
3
2

)
· x 3

2 ·
k∑

i=1

ci

lni x
+ O

(
x

3
2

lnk+1 x

)
,

where ζ(s) be the Riemann zeta-function, ci (i = 1, 2, · · · , k) are computable constants.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. In fact for any positive
integer n > 1, let n = pα1

1 pα2
2 · · · pαs

s be the factorization of n into prime powers, then from [2]
we know that

S(n) = max{S(pα1
1 ), S(pα2

2 ), · · · , S(pαs
s )} ≡ S(pα) (2)

and

SL(n) = max{pα1
1 , pα2

2 , · · · , pαs
s }. (3)

Now we consider the summation

∑

n≤x

[SL(n)− S(n)]2 =
∑

n∈A

[SL(n)− S(n)]2 +
∑

n∈B

[SL(n)− S(n)]2 , (4)

where A and B denote two subsets of all positive integer in the interval [1, x]. A denotes the
set involving all integers n ∈ [1, x] such that SL(n) = p2 for some prime p; B denotes the set
involving all integers n ∈ [1, x] such that SL(n) = pα for some prime p with α = 1 or α ≥ 3. If
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n ∈ A and n = pα1
1 pα2

2 · · · pαs
s , then n = p2m with p †m, and all pαi

i ≤ p2, i = 1, 2, · · · s. Note
that S(pαi

i ) ≤ αipi and αi ≤ lnn, from the definition of SL(n) and S(n) we have

∑

n∈A

[SL(n)− S(n)]2 =
∑

mp2≤x

SL(m)<p2

[
p2 − S(mp2)

]2

=
∑

mp2≤x

SL(m)<p2

(
p4 − 2p2S(mp2) + S2(mp2)

)

=
∑

mp2≤x

SL(m)<p2

p4 + O


 ∑

mp2≤x

p2 · p · lnx


 + O


 ∑

mp2≤x

p2 · ln2 x




=
∑

m≤√x

∑

m<p2≤ x
m

p4 + O




∑

p2≤√x

∑

p2<m≤ x
p2

p4


 + O

(
x2

)

=
∑

m≤√x

∑

p≤
√

x
m

p4 + O


 ∑

m≤√x

∑

p2≤m

p4


 + O

(
x2

)

=
∑

m≤√x

∑

p≤
√

x
m

p4 + O
(
x2

)
. (5)

By the Abel’s summation formula (See Theorem 4.2 of [6]) and the Prime Theorem (See The-
orem 3.2 of [7]):

π(x) =
k∑

i=1

ai · x
lni x

+ O

(
x

lnk+1 x

)
,

where ai (i = 1, 2, · · · , k) are computable constants and a1 = 1.

We have

∑

p≤
√

x
m

p4 =
x2

m2
· π

(√
x

m

)
−

∫ √
x
m

3
2

4y3 · π(y)dy

=
x2

m2
· π

(√
x

m

)
−

∫ √
x
m

3
2

4y3

[
k∑

i=1

ai · y
lni y

+ O

(
y

lnk+1 y

)]
dy

=
1
5
· x

5
2

m
5
2
·

k∑

i=1

bi

lni √
x
m

+ O

(
x

5
2

m
5
2 · lnk+1 x

)
, (6)

where we have used the estimate m ≤ √
x, and all bi are computable constants with b1 = 1.

Note that
∞∑

m=1

1
m

5
2

= ζ

(
5
2

)
, and

∞∑
m=1

lni m

m
5
2

is convergent for all i = 1, 2, 3, · · · , k. So
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from (5) and (6) we have
∑

n∈A

[SL(n)− S(n)]2

=
∑

m≤√x

[
1
5
· x

5
2

m
3
2
·

k∑

i=1

bi

lni √
x
m

+ O

(
x

5
2

m
5
2 · lnk+1 x

)]
+ O

(
x2

)

=
2
5
· ζ

(
5
2

)
· x 5

2 ·
k∑

i=1

ci

lni x
+ O

(
x

5
2

lnk+1 x

)
, (7)

where ci (i = 1, 2, 3, · · · , k) are computable constants and c1 = 1.
Now we estimate the summation in set B. For any positive integer n ∈ B. If n ∈ B and

SL(n) = p, then we also have S(n) = p. So [SL(n)− S(n)]2 = [p− p]2 = 0. If SL(n) = pα

with α ≥ 3, then [SL(n)− S(n)]2 = [pα − S(n)]2 ≤ p2α + α2p2 and α ≤ lnn. So we have
∑

n∈B

[SL(n)− S(n)]2 ¿
∑

npα≤x

α≥3

(
p2α + p2 ln2 n

) ¿ x2. (8)

Combining (4), (7) and (8) we may immediately deduce the asymptotic formula

∑

n≤x

[SL(n)− S(n)]2 =
2
5
· ζ

(
5
2

)
· x 5

2 ·
k∑

i=1

ci

lni x
+ O

(
x

5
2

lnk+1 x

)
,

where ci (i = 1, 2, 3, · · · , k) are computable constants and c1 = 1.
This completes the proof of Theorem.
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