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Abstract: Let S be the set of minimal dominating sets of graph G and U, W ⊂ S with

U
⋃

W = S and U
⋂

W = ∅. A Smarandachely mediate-(U, W ) dominating graph DS
m(G) of

a graph G is a graph with V (DS
m(G)) = V ′ = V

⋃
U and two vertices u, v ∈ V ′ are adjacent if

they are not adjacent in G or v = D is a minimal dominating set containing u. particularly,

if U = S and W = ∅, i.e., a Smarandachely mediate-(S, ∅) dominating graph DS
m(G) is

called the mediate dominating graph Dm(G) of a graph G. In this paper, some necessary

and sufficient conditions are given for Dm(G) to be connected, Eulerian, complete graph,

tree and cycle respectively. It is also shown that a given graph G is a mediate dominating

graph Dm(G) of some graph. One related open problem is explored. Finally, some bounds

on domination number of Dm(G) are obtained in terms of vertices and edges of G.

Key Words: Connectedness, connectivity, Eulerian, hamiltonian, dominating set, Smaran-

dachely mediate-(U, W ) dominating graph.
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§1. Introduction

The graphs considered here are finite and simple. Let G = (V, E) be a graph and let the vertices

and edges of a graph G be called the elements of G. The undefined terminology and notations

can be found in [2]. The connectivity(edge connectivity) of a graph G, denoted by κ(G)(λ(G)),

is defined to be the largest integer k for which G is k-connected(k-edge connected). For a

vertex v of G, the eccentricity eccG(v) of v is the largest distance between v and all the other

vertices of G, i.e., eccG(v) = max{dG(u, v)/u ∈ V (G)}. The diameter diam(G) of G is the

max{eccG(v)/v ∈ V (G)}. The chromatic number χ(G) of a graph G is the minimum number of

independent subsets that partition the vertex set of G. Any such minimum partition is called

a chromatic partition of V (G).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. We call G and H to be

isomorphic, and we write G ∼= H , if there exists a bijection θ : V (G) −→ V (H) with xy ∈ E(G)

if and only if θ(x)θ(y) ∈ E(H) for all x, y ∈ V (G).
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Let G = (V, E) be a graph. A set D ⊆ V is a dominating set of G if every vertex in

V − D is adjacent to some vertex in D. A dominating set D of G is minimal if for any vertex

v ∈ D, D− v is not a dominating set of G. The domination number γ(G) of G is the minimum

cardinality of a minimal dominating set of G. The upper domination number Γ(G) of G is the

maximum cardinality of a minimal dominating set of G. For details on γ(G), refer [1].

The maximum number of classes of a domatic partition of G is called the domatic number of

G and is denoted by d(G). The vertex independence number β0(G) is the maximum cardinality

among the independent set of vertices of G.

Our aim in this paper is to introduce a new graph valued function in the field of domination

theory in graphs.

Definition 1.1 Let S be the set of minimal dominating sets of graph G and U, W ⊂ S with

U
⋃

W = S and U
⋂

W = ∅. A Smarandachely mediate-(U, W ) dominating graph DS
m(G) of a

graph G is a graph with V (DS
m(G)) = V ′ = V

⋃
U and two vertices u, v ∈ V ′ are adjacent if

they are not adjacent in G or v = D is a minimal dominating set containing u. particularly, if

U = S and W = ∅, i.e., a Smarandachely mediate-(S, ∅) dominating graph DS
m(G) is called the

mediate dominating graph Dm(G) of a graph G.

In Fig.1, a graph G and its mediate dominating graph Dm(G) are shown.
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s1 = {2, 3}

s2 = {3, 5}

s3 = {2, 4}

s4 = {1, 4, 5}

Observations 1.2 The following results are easily observed.:

(1) For any graph G, G is an induced subgraph of Dm(G).

(2) Let S = {s1, s2, · · · , sn} be the set of all minimal dominating sets of G, then each si;

1 ≤ i ≤ n will be independent in Dm(G).

(3) If G = Kp, then Dm(G) = pK2. (4) If G = Kp, then Dm(G) = Kp+1.
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§2. Results

When defining any class of graphs, it is desirable to know the number of vertices and edges.

It is hard to determine for mediate dominating graph. So we obtain a bounds for Dm(G) to

determine the number of vertices and edges in Dm(G).

Theorem 2.1 For any graph G, p + d(G) ≤ p′ ≤
p(p + 1)

2
, where d(G) is the domatic number

of G and p′ denotes the number of vertices of Dm(G). Further the lower bound is attained if

and only if G = Kp and the upper bound is attained if and only if G is a (p− 2) regular graph.

Proof The lower bound follows from the fact that every graph has at least d(G) number

of minimal dominating sets of G and the upper bound follows from the fact that every vertex

is in at most (p − 1) minimal dominating sets of G.

Suppose the lower bound is attained. Then every vertex is in exactly one minimal domi-

nating set of G and hence, every minimal dominating set is independent. Further, for any two

minimal dominating sets D and D′, every vertex in D is adjacent to every vertex in D′.

Suppose the upper bound is attained. Then each vertex is in exactly (p − 1) minimal

dominating sets hence G is (p − 2) regular.

Conversely, we first consider the converse part of the equality of the lower bound. If

G = Kp, then d(Kp) = 1 and there exist exactly one minimal dominating set S(G). Therefore

by the definition of Dm(G), V (Dm(G)) = p + |S(G)| = p + 1 = p + d(G).

Now, we consider the converse part of the equality of the upper bound. Suppose G is a

(p − 2) regular graph. Then G has
p(p − 1)

2
minimal dominating sets of G. Therefore by the

definition of Dm(G), V (Dm(G)) = p + |S(G)| = p +
p(p − 1)

2
=

p(p + 1)

2
. �

Theorem 2.2 For any graph G, p ≤ q′ ≤
p(p + 1)

2
, where q′ denotes the number of edges of

Dm(G). Further, the lower bound is attained if and only if G = Kp and the upper bound is

attained if and only if G = Kp.

Proof First we consider the lower bound. Suppose the lower bound is attained. Then

p = q′, it follows that G contains no edges in Dm(G). Therefore by observation 3, G = Kp;

p ≥ 2. Conversely, if G = Kp; p ≥ 2 the Dm(G) = pK2. Therefore p = q′.

Now consider the upper bound. Suppose the upper bound is attained. Then q′ =
p(p + 1)

2
.

Therefore δ(Dm(G)) = ∆(Dm(G)) = p−1. Hence Dm(G) = Kp+1. By observation 4, G = Kp.

Conversely, if G = Kp, then Dm(G) = Kp+1, since Kp+1 has p(p+1)
2 edges. Therefore

q′ =
p(p + 1)

2
. �

In the next theorem, we prove the necessary and sufficient condition for Dm(G) to be

connected.

Theorem 2.3 For any (p,q) graph G, the mediate dominating graph Dm(G) is connected if

and only if ∆(G) < p − 1.
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Proof Let ∆(G) < p − 1. We consider the following cases.

Case 1 Let u and v be any two adjacent vertices in G. Suppose there is no minimal dominating

set containing both u and v. Then there exist another vertex w in V which is not adjacent to

both u and v. Let D and D′ be any two maximal independent sets containing u, w and v, w

respectively. Since every maximal independent set is a minimal dominating set, hence u and v

are connected by a path uDwD′v. Thus Dm(G) is connected.

Case 2 Let u and v be any two nonadjacent vertices in G. Then by observation 1, G is an

induced subgraph of Dm(G). Clearly u and v are connected in Dm(G). Thus from the above

two cases Dm(G) is connected.

Conversely, suppose Dm(G) is connected. On the contrary assume that ∆(G) = p − 1.

Let u be any vertex of degree p − 1. Then u is a minimal dominating set of G and V − u

also contains a minimal dominating set of G. It follows that Dm(G) has two components, a

contradiction. �

Theorem 2.4 For any graph G, Dm(G) is either connected or has at least one component

which is K2.

Proof We consider the following cases:

Case 1 If ∆(G) < p − 1, then by Theorem 2.1, Dm(G) is connected.

Case 2 If δ(G) = ∆(G) = p − 1, then G is Kp. By Observation 3, Dm(Kp) = pK2.

Case 3 If δ(G) < ∆(G) = p − 1.

Let u1, u2, · · · , ui be the vertices of degree p− 1 in G. Let H = G−{u1, u2, · · · , ui}. Then

clearly ∆(H) < p−1. By Theorem 2.1, Dm(H) is connected. Since Dm(G) = Dm(H)∪({u1}+

u1)∪({u2}+u2)∪· · ·∪({un}+un). Therefore it follows that at least one component of Dm(G)

is K2. �

Corollary 1 For any graph G, Dm(G) = Kp ∪ K2 if and only if G = K1,p−1.

Proof The proof follows from Observation 3 and Theorem 2.6. �

In the next theorem, we characterize the graphs G for which Dm(G) is a tree.

Theorem 2.5 The mediate dominating graph Dm(G) of G is a tree if and only if G = K1.

Proof Let the mediate dominating graph Dm(G) of G be a tree and G 6= K1. Then by

Theorem 2.3, ∆(G) < p − 1. Hence Dm(G) is connected. Now consider the following cases.

Case 1 Let G be a disconnected graph. If G is totally disconnected graph, then by the

observation 4, Dm(G) = Kp+1, a contradiction.

Let us consider at least one component of G containing an edge uev. Then the smallest

possible graph is G = K2 ∪ K1. Therefore Dm(G) = C3 · C3, a contradiction. Hence for any

disconnected graph G of order at least two, Dm(G) must contain a cycle of length at least three,
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a contradiction. Thus G = K1.

Case 2 Let G be a connected graph with ∆(G) < p−1. By Theorem 2.3, Dm(G) is connected.

For Dm(G) to be connected and ∆(G) < p− 1, the order of the graph G must be greater than

or equal to four. Then there exist at least two nonadjacent vertices u and v in G, which

belong to at least one minimal dominating set D of G. Therefore uvDu is a cycle in Dm(G), a

contradiction. Thus from above two cases we conclude that G = K1.

Conversely, if G = K1, then by the definition of Dm(G), Dm(G) = K2, which is a tree. �

In the next theorem we characterize the graphs G for which Dm(G) is a cycle.

Theorem 2.6 The mediate dominating graph Dm(G) of G is a cycle if and only if G = 2K1.

Proof Let Dm(G) be a cycle. Then by Theorem 2.3, ∆(G) < p − 1. Suppose G 6= 2K1,

then by Theorem 2.5, Dm(G), Dm(G) is either a tree or containing at least one vertex of degree

greater than or equal to 3, a contradiction. Hence G = 2K1.

Conversely, if G = 2K1 then by observation, Dm(G) = K3 or C3 a cycle. �

Proposition 1 The mediate dominating graph Dm(G) of G is a complete graph if and only if

G = Kp.

In the next theorem, we find the diameter of Dm(G).

Theorem 2.7 Let G be any graph with ∆(G) < p−1, then diam(Dm(G)) ≤ 3, where diam(G)

is the diameter of G.

Proof Let G be any graph with ∆(G) < p− 1, then by Theorem 2.3, Dm(G) is connected.

Let u, v ∈ V (Dm(G)) be any two arbitrary vertices in Dm(G). We consider the following cases.

Case 1 Suppose u, v ∈ V (G), u and v are nonadjacent vertices in G, then d
Dm(G)

(u, v) = 1. If

u and v are adjacent in G, suppose there is no minimal dominating set containing both u and

v. Then there exist another vertex w in V (G), which is not adjacent to both u and v. Let D

and D′ be any two maximal independent sets containing u, w and v, w respectively. Since every

maximal independent set is a minimal dominating set, hence u and v are connected in Dm(G)

by a path uDwD′v. Thus, d
Dm(G)

(u, v) ≤ 3.

Case 2 Suppose u ∈ V and v /∈ V . Then v = D is a minimal dominating set of G. If u ∈ D,

then d
Dm(G)

(u, v) = 1. If u /∈ D, then there exist a vertex w ∈ D which is adjacent to both u

and v. Hence d
Dm(G)

(u, v) = d(u, w) + d(w, v) = 2.

Case 3 Suppose u, v ∈ V . Then u = D and v = D′ are two minimal dominating sets of G.

If D and D′ are disjoint, then every vertex in w ∈ D is adjacent to some vertex x ∈ D′ and

vice versa. This implies that, d
Dm(G)

(u, v) = d(u, w) + d(w, x) + d(x, v) = 3. If D and D′ have

a vertex in common, then d
Dm(G)

(u, v) = d(u, w) + d(w, v) = 2. Thus from all these cases the

result follows. �

In the next two results we prove the vertex and edge connectivity of Dm(G).
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Theorem 2.8 For any graph G,

κ(Dm(G)) = min{min(degDm(G)

1≤i≤p
vi), min

1≤j≤n
|Sj |},

where S′
js are the minimal dominating sets of G

Proof Let G be a (p, q) graph. We consider the following cases:

Case 1 Let x ∈ vi for some i, having minimum degree among all v′is in Dm(G). If the degree

of x is less than any vertex in Dm(G), then by deleting those vertices of Dm(G) which are

adjacent with x, results in a disconnected graph.

Case 2 Let y ∈ Sj for some j, having minimum degree among all vertices of S′
js. If degree of

y is less than any other vertices in Dm(G), then by deleting those vertices which are adjacent

with y, results in a disconnected graph.

Hence the result follows. �

Theorem 2.9 For any graph G,

λ(Dm(G)) = min{min(degDm(G)

1≤i≤p
vi), min

1≤j≤n
|Sj |},

where S′
js are the minimal dominating sets of G

Proof The proof is on the same lines of the proof of Theorem 2.8. �

§3. Traversability in Dm(G)

The following will be useful in the proof of our results.

Theorem A([2]) A graph G is Eulerian if and only if every vertex of G has even degree. Next,

we prove the necessary and sufficient conditions for Dm(G) to be Eulerian.

Theorem 3.1 For any graph G with ∆(G) < p − 1, Dm is Eulerian if and only if it satisfies

the following conditions:

(i) Every minimal dominating set contains even number of vertices;

(ii) If v ∈ V is a vertex of odd degree, then it is in odd number of minimal dominating

sets, otherwise it is in even number of minimal dominating sets.

Proof Suppose ∆(G) < p−1. By Theorem 2.3, Dm(G) is connected. If Dm(G) is Eulerian.

On the contrary, if condition (i) is not satisfied, then there exists a minimal dominating set

containing odd number of vertices and hence Dm(G) has a vertex of odd degree, therefore

by Theorem A, Dm(G) is Eulerian, a contradiction. Similarly we can prove (ii). Conversely,

suppose the given conditions are satisfied. Then degree of each vertex in Dm(G) is even.

Therefore by Theorem A, Dm(G) is Eulerian. �

Theorem 3.2 Let G be any graph with ∆(G) < p − 1 and Γ(G) = 2. If every vertex is in

exactly two minimal dominating sets of G, then Dm(G) is Hamiltonian.
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Proof Let ∆(G) < p−1. Then by Theorem 2.3, Dm(G) is connected. Clearly γ(G) = Γ(G)

and if every vertex is in exactly two minimal dominating sets then there exist an induced two

regular graph in Dm(G). Hence Dm(G) contains a hamiltonian cycle. Therefore Dm(G) is

hamiltonian. �

Next, we prove the chromatic number of Dm(G).

Theorem 3.3 For any graph G,

χ(Dm(G)) =





χ(G) + 1 if vertices of any minimal dominating sets colored by χ(G) colors

χ(G) otherwise

Proof Let G be a graph with χ(G) = k and D be the set of all minimal dominating sets of

G. Since by the definition of Dm(G), G is an induced subgraph of Dm(G) and by Observation 2,

D is an independent set. Therefore to color Dm(G), either we can make use of the colors which

are used to color G that is χ(Dm(G)) = k = χ(G) or we should have to use one more new color.

In particular, if the vertices of any minimal dominating set x of G are colored with k−colors,

then we require one more new color to color x in Dm(G). Hence in this case we require k + 1

colors to color Dm(G). Therefore χ(Dm(G)) = k + 1 This implies, χ(Dm(G)) = χ(G) + 1. �

§4. Characterization of Dm(G)

Question. Is it possible to determine the given graph G is a mediate dominating graph of

some graph?

A partial solution to the above problem is as follows.

Theorem 4.1 If G = Kp; p ≥ 2, then it is a mediate dominating graph of Kp−1.

Proof The proof follows from Theorem 2.2. �

Problem 4.1 Give necessary and sufficient condition for a given graph G is a mediate domi-

nating graph of some graph.

§5. Domination in Dm(G)

We first calculate the domination number of Dm(G) of some standard class of graphs.

Theorem 5.1 (i) If G = Kp, then γ(Dm(Kp)) = p;

(ii) If G = K1,p, then γ(Dm(K1,p)) = 2;

(iii) If G = Wp; p ≥ 4 then γ(Dm(Wp)) = γ(Cp−1) + 1;

(iv) If G = Pp; p ≥ 2 then γ(Dm(Pp)) = 2; �

Theorem 5.2 Let G be any graph of order p and S = {s1, s2, · · · , sn} be the set of all minimal

dominating sets of G, then γ(Dm(G)) ≤ γ(G) + |S|.
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Proof Let D = {v1, v2, · · · , vi}; 1 ≤ i ≤ p be a minimum dominating set of G. By

the definition of Dm(G), G is an induced subgraph of Dm(G) and by Observation 2, each si;

1 ≤ i ≤ n is independent in Dm(G). Hence D′ = D ∪ S will form a dominating set in Dm(G).

Therefore γ(Dm(G)) ≤ |D′| = |D ∪ S| = γ(G) + |S|. �

Theorem 5.3 Let G be any connected graph with δ(G) = 1, then γ(Dm(G)) = 2.

Proof Let G be any connected graph with a minimum degree vertex u, such that deg(u) = 1.

Let v be a vertex adjacent to u in G. Then deg
G
(u) = p− 2, and every minimal dominating set

contains either u or v. Hence D = {u, v} is a minimal dominating set of Dm(G). Therefore,

γ(Dm(G)) = |D| = |{u, v}| = 2. �

Corollary 2 For any nontrivial tree T , γ(Dm(T )) = 2.

Furthermore, we get a Nordhaus-Gaddum type result following.

Theorem 5.4 Let G be any graph of order p, then

(i) γ(Dm(G)) + γ(Dm(G)) ≤ p + 1;

(ii) γ(Dm(G)) · γ(Dm(G)) ≤ p.

Further, equality holds if and only if G = Kp.
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