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Abstract. In the present paper we study some series concerning the following function of the
Numbers Theory [1]: "S : N->N such that S(n) is the smallest k with property that k! is
divisible by n".

1. Introduction. The following functions in Numbers Theory are well - known : the
function p(n) of Mdbius, the function &(s) of Riemann (g(s) = i #,s =o+it € C), the function

n=1

A(n) of Mangoldt (A(n)={ logp. if n=p™ ] etc.

o,if n# p™
The purpose of this paper is to study some series concemning the following function of
the Numbers Theory "[1] S : N->N such that S(n) is the smallest integer k with the propriety
that k! is divisible by n"
- - We first prove the divergence of some series involving the S function, using an unitary

method, and then we prove that the series gz m

(71/100, 101/100) and we study some applications of this series in the Numbers Theory .

1s convergent to a number S e

Then we prove that series f} _S(IT)' is convergent to a real numbers s €(0.717, 1.253)
n=2 -

and that the sum of the remarkable series > % 1s a irrational number.
2

2. The main results

Proposition 1. If (xa)ne1 is strict increasing sequence of natural numbers, then the

series :

S Xntl = Xp
, 1
27560 M
is divergent.
Proof. We consider the function f:[Xn, Xar1] >R, defined by f{x) = In In x is meets the
conditions of the Lagrange's theorem of finite increases. Therefore there is Cn € (Xq,Xn+1)

such that :

10 Xou —Inlnx, = ——(x, — Xpe1). @)
calncy,
Because X, < Cp < Xnt1, We have :
X+l —~ Xp X+ — Xp
— <] —lnlnx, <« ==—=2 N, 3
SR <lInlnx, - Inlnx, < N ,(Mn e 3)
ifxa21.
. S(n) )
We know that for each n eN"\{1}, - <lie
0@ 1 (4)

nlnn ~ Inn



s@ _,

from where it results that lim Hence there s k>0 such that

> ninn
S <k, 1e,nlnn> —= S() for any neN",
nlnn c k
Xalnx, < S(xa) ()
Introducing (5) in (3) we obtain :
Inln X —Inlnx, <kx“§2 = 1 (V)n e N*\{1}. (6)

Summing up after n it results :

< Xnrl —Xn 1
—_ > = —Inl .

El SGe) > k(lnlnxm.,.l nxp)

Because lim Xm = © we have ul‘i_rgolnlnxm =0, 1.e., the series :
Xn+l —xn

g S(Xa)

is divergent. The Proposition 1 is proved.

Proposition 2. Series Z L s divergent.

2 S(n)
Proof. We use Proposition 1 for x, = n.
Remarks.
1) Ifx, is the n - the prime number, then the series Z '*S*E ) is divergent.
=] Xn
2) Ifthe sequence (Xn)n>1 forms an arithmetical progression of natural numbers, then
the series Z Zorl ~¥%a i dlvergent

=1 S( n) ”

3) The series Z > 1 etc, areall divergent.

S(2n +1) =1 S¢@n+1)
In conclusion, Proposition 1 offers us an unitary method to prove that the series having

one of the precedent forms are divergent.
Proposition 3. The series

,Z; S(2)S(?}) S )is convergent to a number s € (71/100, 101/100).

Proof. From the definition it results S(n) < n!, (v)n eN*\{1},s0 —=—

I
S( )
Summing up, beginning with n=2 we obtain :
< 1 1
EZ S()SG3)..Sm) - Ez oo
The product S(2) S(3)...S(n) is greater than the product of prime numbers from the set

{1,2, ..., n}, because S(p)=p, for p= prime number. Therefore :
1 n1 i - (7)
[Tsir IIs
i=2

1=2

where p, 1s the biggest number smaller or equal to n.

There are the inequalities :
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where

5= % 1 1 1 »
=2 S(2)S(o) S 5@ S@se) S(2)8(3)S(4)

1 2 |
5(2)8(3) S 27237373 3 5v33.5.7

Pk+1 — Pk :
2.3, 5 711 T Y ppape T ®)
Using the inequality p,p,...p>pi.1, (¥)k > 5[5], we obtain :

1.1, 1 1 1
S<otztcHtTio bt %)
23 15 105 pi p? Piet

WesymbohsebyP—L+—1—+ and observe that P < —— + 4 + ..

p:  p> 13*  14* 157

It results :

ﬁ_( 1.1 L)
P< 6 1+22+32+...+122 s

nr_..1.1.,1
—6——1+——+—+4—2+...(EULER).

22 32
Introducing in (9) we obtain :
1,1, 1 1 = . 1 1 1
S<yt3tstIste Tyt oT

* Estimating with an approximation of an order not more than 1—(1)3 we find :

1
071 <,§; S2)S0G)..5@)

The proposition 3 is proved.

<0,79. (10)

Remark. Giving up at the right increase from the first terms in the inequality (8) we

can obtain a better right ranging :

Ll

1 .
235550) 5@ <> (an

Proposition 4. Let a be a fixed real number, a > 1. Then the series n°
P Ez S(2)S(3).-S()

is convergent.

where pi <n,i € {1,...k}, pxs1 > 1.

Proof. Be (xk)u the sequence of prime numbers. We can write :
2% ..2¢

S 2 =2

3¢ 3«
S(2)S(3) ~ P1p2

4« < 4 p3
S(2)S(3)S(4) Pip2 <Pip2

5@ 5¢ Dy
S(2)S(3)S(4)S(5) Pi1P2P3 " P1pP2Ps3

6% 6* __Ps’

5(7)5(3)5(4)5(5)5(6) Pi1P2P3 " PipzpP3

n% < n¢ < p](:-f-l
S(2)S(3)...S(n) " Pi1Pz2...Px ~ P1pPz2...px’
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Therefore

S n% qa- (px+1 —px) - Pk+1

2 S@SE)-S@ l““z S(2)S()...S(n)
a- _ Piet

<207 +:=Z,2 VIR

Then it exists ks €N such that for any k > ko we have :
P1P2...Pk > Phai -

Therefore

< n¢ ' pen 3 1
<2%1 4 Z = 4 .

n§2 S(2)S(3)...S(m) k1 P1P2--P o, piﬂ

Because the series 2, :— is convergent it results that the given series is convergent

k2ko P+t

too .
Consequence 1. It exists no eN so that for each n > ng we have S(2)S(3) S(n)>n
Proof. Because Ixm =0, there is ng €N so that

5(2)5(3) S(n) 5(2)5(3) S@ *

for each n > no.
Consequence 2. [t exists ng €N so that :
S2)+SB)+...+S(n) > (n- l)nn—l foreachn>ng .
Proof. We apply the inequality of averages to the numbers S(2), S(3), ..., S(n) :
S(2) +S3) +... +S(@) > (n~ )™ /S@)SG)...S(@) > (a— 1)n*T, Vn 2 no.
We can write it as it follows :

1,1.1. 1.1 1,2 4.8 14 am) -
T T TR T TR TR TR +5f+6' Ez > Where 2@ is the

number of - soluti_ons for the equation S(x) =n, n €N, n>
It results from the equality S(x)=n that x is a divisor of n!, so a(n) is smaller than d(n!).

So, a(n) < d(n!).

Lemma 1. We have the inequality :

d(n) <n-2, for eachneN, n>7. (12)

Proof. Be n= pl‘p;2 Pt with pi,p2, ....px prime numbers, and
aj 2 1 for eachie {1,2,...,k}. We consider the function f: [1,20) »R, f{x)=a*-x-2,a2 2,
fixed. It is derivable on [1,0) and f{x) = a*lna— 1. Because a2, and x> 1 it results that

a*>2 so a*lna>2lna=Ina?>In4>Ilne=1, f{x) > 0 for each x € [1,») and a > 2, fixed.

But f{1) = a-3. It results that for a > 3 we have f(x) 20 means a*>x+2.

Particularly, for a =p;,i € {1,2,..,k}, we obtain p:' > a; +2 for each pi 2 3.

Ifn=2s eN* thend(n)=s+1<2-2=n-2fors=3.

So we can assume k > 2, i.e. pz = 3. The following inequalities result :

p?' 2ay+ 1 .

p;z 2a;+1

Pr 2ax+1,
equivalent with
pilza +1,p-12a+1,..,pf—12ac+1 (13)
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By multiplying, member with member, of the inequalities (13) we obtain :

P (P2 = 1Py ~ 1) 2 (a1 + 1)@z + 1)...ak + 1) = d(n). (14)
Considering the obvious inequality :
n-22py'(p;’ - ..oy - 1) (15)

and using (14) it results that :

n-2 > d(n) for eachn > 7.
Lemma 2. d(n!) < (n-2)! foreachn €N, n>7. (16)

Proof. We carry out an induction after n. So, for n=7,
d(71)=d(2%-23-5-7) =60 <120=5!,

We assume that d(n!) < (n-2)!.

d((n+1)!) = d(nl(n+1)) < d(n!) d(n+1) < (n-2)!d(n+1) < (n-2)!(n-1) = (n-1),

because in according to Lemma 1, d(n+l) <n-1.

Proposition 5. The series Z 3 ( =y 1s convergent to a number s € (0.717, 1.253).
=2

Proef. From Lemma 2 it results that a(n) < (n-2)!, so a(n) <1

n! n@m-1)
'n>7 and Z E a(n) Z

e S(n)I = 0l = (n—l)

for every ne N,

Therefore Z a(n ) +—2-+ 4 14+Z . (17)
2 nl 2' 3! =7 n2 -n
Because Z =1 we have there is a number s > 0, s = . 1 .
—n-n =2 S(n)!

From (17) we obtain :

v _1 391 1 1 1
o <T=+1- - - +
Ez S(n)! 360 22-2 32-3.42_4
1 1 751 _5_ 451
+ <1,253.
52—5+62—6 360 6 360
But because S(n) < nfor every n eN” | it results :

,Z;S(n)' Z r=e- 2.

Consequently, for the number s we obtain the range e-2 < s < 1,253, i.e, 0,717 <s <
1,253. -

Because S(n) < n, it results 2, S ) <>, Therefore the series . & is
2 ol T2 (n —1)’ > nl

convergent to a number £,

Proposition 6. The sum f of the series 2. S_IE"Q is an irrational number.
2 1

Proof. From the above results that hm Z Sr(lll) = 1. Under these circumstances that
1—2 H

fe Q,f>0. Therefore it exists a,b €N, (a,b)=1, so that P—_E'
_ . <
Let p be a fixed prime number, p > b, p > 3. Obviously, % > Sl(ll) iy 1(ll) hich
1=2 2p

leads to :
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(p-Dta _ Z » (- DISE) Z (P-DIS®

b 1=2 il il

!
Because p > b results that (p ) 2 eNand E (- ) S0) € N. Consequently we
=2
hav ez(p—l) S0 € N too

Bea= Z (- l) 5@ e N.So we have the relation

_b- 1)'S(p) (e-D!ISe+1) (@-DISE+2)
p! E+D! (r+2)!

Because p is a prime number it results S(p)=p.

So

Sp+1) S(p +2)
18
e+ D pprDE-D 7! ()
We know that S(p+1) <p+ (V)i > 1, with equahty only if the number p+1 is prime.

Consequently, we have

a~1+

L 1,1, 1, _®
a<l+p+ ot gmem - <1l +pt gt =F <2 (19

From the inequalities (18) and (19) results that 1<<2, impossible, because a € N.

The proposition is proved.
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