A FORMULA OF THE SMARANDACHE FUNCTION

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R. China.

Abstract. In this paper we give a formula expressing the Smarandache function S(n) by means of n without using the factorization of n.

For any positive integer n, let S (n) denote the Smarandache function of n. Then we have

(1)
$$S(n) = \min\{ a \mid a \in N, n \mid a! \},$$

(See [1]). In this paper we give a formula of S(n) without using the factorization of n as follows:

Theorem. For any positive integer n, we have

(1)
$$S(n) = n+1 - \left[\sum_{k=1}^{n} n^{-(n \sin(k! \pi/n))^{2}} \right]$$

Proof. Let a = S(n). It is an obvious fact that $1 \le a \le n$. We see from (1) that

(2)
$$n \mid k!, k = a, a+1, ..., n.$$

It implies that

(4)
$$n - (n \sin (k! \pi / n))^2$$
 $= n = 1, k = a, a+1, ..., n.$

On the other hand, since n / k! for k = 1, ..., a-1, we have $\sin(k!\pi/n) \neq 0$ and

(5)
$$(n \sin \frac{k! \pi}{n})^2 \ge (n \sin \frac{\pi}{n})^2 > 1, \quad k = 1, ..., a - 1.$$

Hense, by (5), we get

(6)
$$0 < n$$
 $(n \sin (k! \pi/n))^2$ $< 1/n, k = 1, ..., a-1.$

Therefore, by (4) and (6), we obtain

(7)
$$n+1-a < \sum_{k=1}^{n} n -(n \sin(k! \pi/n))^2 < n+1-a+(a-1)/n < n+2-a.$$

Thus, by (7), we get (1) immediately. The theorem is proved.

Reference

1. F Smarandache, A function in the number theory, Smarandache function J. 1 (1990), No.1, 3 - 17.