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Abstract Let n be a positive integer, pq(n) denotes the product of all positive divisors
of n, ga(n) denotes the product of all proper divisors of n. In this paper, we
study the properties of the sequences of {pa(n)} and {ga(n)}, and prove that
the generalized results for the sequences {pa(n)} and {ga(n)}.
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1. Introduction and results

Let n be a positive integer, p;(n) denotes the product of all positive divisors

of n. Thatis, pg(n) = Hd. For example, py(1) = 1, pa(2) = 2, pg(3) = 3,
din

pa(4) =8, -, pa(p) = p, - - -. qa(n) denotes the product of all proper divisors

of n. That is, g4(n) = H d. For example, ¢4(1) =1, ¢a(2) = 1, qua(3) =
dln, d<n

1, q4(4) = 2, - - -. In problem 25 and 26 of [1], Professor F. Smarandache asked

us to study the properties of the sequences {py(n)} and {gs(n)}. About this

problem, Liu Hongyan and Zhang Wenpeng in [2] have studied it and proved

the Makowsiki & Schinzel conjecture in [3] hold for {p4(n)} and {g4(n)}.

One of them is that for any positive integer n, we have the inequality:

1
o($(pa(n))) = Fpa(n) (1)
where o(n) is the divisor sum function, ¢(n) is the Euler’s function.
In this paper, as the generalization of [2], we will consider the properties of
the sequences of {pg(n)} and {gq(n)} for k-th divisor sum function, and give
two more general results. That is, we shall prove the following:
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Theorem 1. Letn = p®, p be a prime and « be a positive integer. Then for

any fixed positive integer k, we have the inequality
Loy
o (¢(pa(n))) = xra(n),
where oj(n Z d" is the k-th divisor sum function.
dln

Theorem 2. Let n = p®, p be a prime and « be a positive integer. Then for

any fixed positive integer k, we have the inequality

§2. Proof of the theorems

In this section, we shall complete the proof of the theorem. First we need
two Lemmas as following:
Lemma 1. For any positive integer n, then we have the identity pg(n) =

d(n) d(n)
n~z and qd( y=n"z 1
where d(n Z 1 is the divisor function.
dln

Proof. (See Reference [2] Lemma 1).

Lemma 2. For any positive integer n, let n = p{" p5? - - - p& with oy > 2
(1 <i<s),pi(l <j < s) are some different primes with p; < pa - - - ps.
Then for any fixed positive integer &k, we have the estimate

(o)) = ') TT (1+ )

pln p

Proof. From the properties of the Euler’s function we have

p(n) = oPI)ePe?) - d(ps*) (2)
= Pt — D(pa — 1) - (ps — 1)

Here, let (py — 1)(p2 — 1)+ (ps — 1) = p{'p}° - ‘Pﬁsququ -+ q;', where

Bi 20,1 <i<sr; >1,1<j<tandq < g2 < --- < g are different

primes. Note that oy (p®) = 1% + p¥ 4 ... + pF* = & , forany k& > 0.
Then for (2), we deduce that

-1 -1 T
Uk(¢<n>) _ ak<pt111+ﬂ1 pg2+ﬁz . paerﬁs 1q11q'r2 qt ) (3)
k i+0i (T’ +1)
= f[ Dby (@t 1 H g = -1
k k
=1 Pi — P

— plf(a1+/61)p§(a2+52) .. p (as‘f‘ﬁs)qkrl qkT’z e qfrt



Generalization of the divisor products and proper divisor products sequences 31

1
s 1 pk(ai+ﬁz‘) 13 1 k(rj+1)
i J
<[] ——— 1l =
1 _ 1
- k(a 3 t 1 q’f(rj+1)

H 1-— II—
1— L1 — L
i=1 i=1 ! j=1 q;_c

Because
1
n)=n-[[(1-=), 4)
me-;)

then from (3) and (4) we get

1
" ¢k s 1= sy ¢ 1T D
or(o(n) = H — H T
5 1 1
= ¢*(n)- O+ 5+ + FmrmT)
i=1 i D;
t
1 1
XH(1+?+“'+W)
j=1 J 4;
1
> qﬁk(n)-H(l—i-pk).

This completes the proof of Lemma 2.

Now we use Lemma 1 and Lemma 2 to complete the proof of Theorem 1.
Here we will debate this problem in two cases:

(i) Ifnisaprime, then d(n) = 2. So from Lemma 1 we have

d(n)

Pin)=n"2 =n. 5

Noting that ¢(n) = n — 1, then from (5) we immediately get

1 1

oH@(Pam) =ox(n—1) = Y d* = (1) = o0t =

d|(n—1)
(i) If n = p®, p be a prime and o > 1 be any positive integer. Then
d(n) = a+ 1. So that

d(n) a(a+1)

Pin)=n"2 =p 2 . (0)

Using Lemma 2 and (6), we can easily deduce that

a(a+1)

or(¢(Pa(n))) = or(olp™ 2 "))
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This completes the proof of Theorem 1.
Similarly, we can easily prove Theorem 2. That is,
(i) Ifnisaprime, then d(n) = 2. So from Lemma 1 we have

qga(n) =n"z ' =1, (7
hence 1
or(¢(ga(n))) = ox(l) =1 = ﬁqﬁ(n).

(i) If n = p®, pbe a prime and o > 1 be any positive integer. Then
d(n) = o + 1, so that

M_l a(a—1)

qa(n) =n"3 1=pF (8)

Using Lemma 2 and (8), we have

ok(¢(qa(n))) = on(o(p™ 2 )) 2
This completes the proof of Theorem 2.
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