GENERALIZATION OF THE DIVISOR PRODUCTS AND PROPER DIVISOR PRODUCTS SEQUENCES

Liang Fangchi

School of Arts and Science, Air Force Engineering University, Xi'an Shaanxi, People's Republic of China

Abstract Let n be a positive integer, $p_d(n)$ denotes the product of all positive divisors

of n, $q_d(n)$ denotes the product of all proper divisors of n. In this paper, we study the properties of the sequences of $\{p_d(n)\}$ and $\{q_d(n)\}$, and prove that

the generalized results for the sequences $\{p_d(n)\}\$ and $\{q_d(n)\}\$.

Keywords: Divisor and proper divisor product; Generalization; Sequence.

§1. Introduction and results

Let n be a positive integer, $p_d(n)$ denotes the product of all positive divisors of n. That is, $p_d(n) = \prod_{d|n} d$. For example, $p_d(1) = 1$, $p_d(2) = 2$, $p_d(3) = 3$,

$$p_d(4) = 8, \dots, p_d(p) = p, \dots, q_d(n)$$
 denotes the product of all proper divisors of n . That is, $q_d(n) = \prod_{d|n, d < n} d$. For example, $q_d(1) = 1, q_d(2) = 1, q_d(3) = 1$

 $1,q_d(4)=2,\cdots$. In problem 25 and 26 of [1], Professor F. Smarandache asked us to study the properties of the sequences $\{p_d(n)\}$ and $\{q_d(n)\}$. About this problem, Liu Hongyan and Zhang Wenpeng in [2] have studied it and proved the Makowsiki & Schinzel conjecture in [3] hold for $\{p_d(n)\}$ and $\{q_d(n)\}$. One of them is that for any positive integer n, we have the inequality:

$$\sigma(\phi(p_d(n))) \ge \frac{1}{2}p_d(n),\tag{1}$$

where $\sigma(n)$ is the divisor sum function, $\phi(n)$ is the Euler's function.

In this paper, as the generalization of [2], we will consider the properties of the sequences of $\{p_d(n)\}$ and $\{q_d(n)\}$ for k-th divisor sum function, and give two more general results. That is, we shall prove the following:

Theorem 1. Let $n = p^{\alpha}$, p be a prime and α be a positive integer. Then for any fixed positive integer k, we have the inequality

$$\sigma_k(\phi(p_d(n))) \ge \frac{1}{2^k} p_d^k(n),$$

where $\sigma_k(n) = \sum_{d|n} d^k$ is the k-th divisor sum function.

Theorem 2. Let $n = p^{\alpha}$, p be a prime and α be a positive integer. Then for any fixed positive integer k, we have the inequality

$$\sigma_k(\phi(q_d(n))) \ge \frac{1}{2^k} q_d^k(n).$$

§2. Proof of the theorems

In this section, we shall complete the proof of the theorem. First we need two Lemmas as following:

Lemma 1. For any positive integer n, then we have the identity $p_d(n) = n^{\frac{d(n)}{2}}$ and $q_d(n) = n^{\frac{d(n)}{2}-1}$,

 $n^{\frac{d(n)}{2}} \text{ and } q_d(n) = n^{\frac{d(n)}{2}-1},$ where $d(n) = \sum_{d|n} 1$ is the divisor function.

Proof. (See Reference [2] Lemma 1).

Lemma 2. For any positive integer n, let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ with $\alpha_i \geq 2$ $(1 \leq i \leq s)$, $p_j (1 \leq j \leq s)$ are some different primes with $p_1 < p_2 \cdots p_s$. Then for any fixed positive integer k, we have the estimate

$$\sigma_k(\phi(n)) \ge \phi^k(n) \cdot \prod_{p|n} \left(1 + \frac{1}{p^k}\right).$$

Proof. From the properties of the Euler's function we have

$$\phi(n) = \phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\cdots\phi(p_s^{\alpha_s})
= p_1^{\alpha_1-1}p_2^{\alpha_2-1}\cdots p_s^{\alpha_s-1}(p_1-1)(p_2-1)\cdots(p_s-1).$$
(2)

Here, let $(p_1-1)(p_2-1)\cdots(p_s-1)=p_1^{\beta_1}p_2^{\beta_2}\cdots p_s^{\beta_s}q_1^{r_1}q_2^{r_2}\cdots q_t^{r_t}$, where $\beta_i\geq 0,\, 1\leq i\leq s; r_j\geq 1, 1\leq j\leq t$ and $q_1< q_2<\cdots< q_t$ are different primes. Note that $\sigma_k(p^\alpha)=1^k+p^k+\cdots+p^{k\alpha}=\frac{p^{k(\alpha+1)}-1}{p^k-1}$, for any k>0.

Then for (2), we deduce that

$$\sigma_{k}(\phi(n)) = \sigma_{k}(p_{1}^{\alpha_{1}+\beta_{1}-1}p_{2}^{\alpha_{2}+\beta_{2}-1}\cdots p_{s}^{\alpha_{s}+\beta_{s}-1}q_{1}^{r_{1}}q_{2}^{r_{2}}\cdots q_{t}^{r_{t}}) \qquad (3)$$

$$= \prod_{i=1}^{s} \frac{p_{i}^{k(\alpha_{i}+\beta_{i})}-1}{p_{i}^{k}-1} \prod_{j=1}^{t} \frac{q_{j}^{k(r_{j}+1)}-1}{q_{j}^{k}-1}$$

$$= p_{1}^{k(\alpha_{1}+\beta_{1})}p_{2}^{k(\alpha_{2}+\beta_{2})}\cdots p_{s}^{k(\alpha_{s}+\beta_{s})}q_{1}^{kr_{1}}q_{2}^{kr_{2}}\cdots q_{t}^{kr_{t}}$$

$$\times \prod_{i=1}^{s} \frac{1 - \frac{1}{p_i^{k(\alpha_i + \beta_i)}}}{p_i^k - 1} \prod_{j=1}^{t} \frac{1 - \frac{1}{q_j^{k(r_j + 1)}}}{1 - \frac{1}{q_j^k}}$$

$$= n^k \cdot \prod_{i=1}^{s} \left(1 - \frac{1}{p_i}\right)^k \prod_{i=1}^{s} \frac{1 - \frac{1}{p_i^{k(\alpha_i + \beta_i)}}}{1 - \frac{1}{p_i^x}} \prod_{j=1}^{t} \frac{1 - \frac{1}{q_j^{k(r_j + 1)}}}{1 - \frac{1}{q_i^k}}.$$

Because

$$\phi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p} \right),\tag{4}$$

then from (3) and (4) we get

$$\sigma_{k}(\phi(n)) = n^{k} \cdot \frac{\phi^{k}(n)}{n^{k}} \cdot \prod_{i=1}^{s} \frac{1 - \frac{1}{p_{i}^{k(\alpha_{i} + \beta_{i})}}}{1 - \frac{1}{p_{i}^{x}}} \prod_{j=1}^{t} \frac{1 - \frac{1}{q_{j}^{k(r_{j} + 1)}}}{1 - \frac{1}{q_{j}^{k}}}$$

$$= \phi^{k}(n) \cdot \prod_{i=1}^{s} (1 + \frac{1}{p_{i}^{k}} + \dots + \frac{1}{p_{i}^{k(\alpha_{i} + \beta_{i}) - 1}})$$

$$\times \prod_{j=1}^{t} (1 + \frac{1}{q_{j}^{k}} + \dots + \frac{1}{q_{j}^{k(r_{j} + 1) - 1}})$$

$$\geq \phi^{k}(n) \cdot \prod_{p|n} \left(1 + \frac{1}{p^{k}}\right).$$

This completes the proof of Lemma 2.

Now we use Lemma 1 and Lemma 2 to complete the proof of Theorem 1. Here we will debate this problem in two cases:

(i) If n is a prime, then d(n) = 2. So from Lemma 1 we have

$$P_d(n) = n^{\frac{d(n)}{2}} = n. (5)$$

Noting that $\phi(n) = n - 1$, then from (5) we immediately get

$$\sigma_k(\phi(P_d(n))) = \sigma_k(n-1) = \sum_{d|(n-1)} d^k \ge (n-1)^k \ge \frac{1}{2^k} \cdot n^k = \frac{1}{2^k} P_d^k(n).$$

(ii) If $n=p^{\alpha}$, p be a prime and $\alpha>1$ be any positive integer. Then $d(n)=\alpha+1$. So that

$$P_d(n) = n^{\frac{d(n)}{2}} = p^{\frac{\alpha(\alpha+1)}{2}}.$$
 (6)

Using Lemma 2 and (6), we can easily deduce that

$$\sigma_k(\phi(P_d(n))) = \sigma_k(\phi(p^{\frac{\alpha(\alpha+1)}{2}}))$$

$$\geq \phi^k(p^{\frac{\alpha(\alpha+1)}{2}}) \prod_{\substack{p_1 \mid p^{\frac{\alpha(\alpha+1)}{2}}}} \left(1 + \frac{1}{p_1^k}\right)$$

$$= p^{\frac{k\alpha(\alpha+1)}{2}} \cdot \left(1 - \frac{1}{p}\right)^k \cdot \left(1 + \frac{1}{p^k}\right)$$

$$\geq p^{\frac{k\alpha(\alpha+1)}{2}} \cdot \left(1 - \frac{1}{p}\right)^k$$

$$\geq p^{\frac{k\alpha(\alpha+1)}{2}} \cdot \frac{1}{2^k} = \frac{1}{2^k} P_d^k(n).$$

This completes the proof of Theorem 1.

Similarly, we can easily prove Theorem 2. That is,

(i) If n is a prime, then d(n) = 2. So from Lemma 1 we have

$$q_d(n) = n^{\frac{d(n)}{2} - 1} = 1, (7)$$

hence

$$\sigma_k(\phi(q_d(n))) = \sigma_k(1) = 1 \ge \frac{1}{2^k} q_d^k(n).$$

(ii) If $n=p^{\alpha}$, p be a prime and $\alpha>1$ be any positive integer. Then $d(n)=\alpha+1$, so that

$$q_d(n) = n^{\frac{d(n)}{2} - 1} = p^{\frac{\alpha(\alpha - 1)}{2}}.$$
 (8)

Using Lemma 2 and (8), we have

$$\sigma_k(\phi(q_d(n))) = \sigma_k(\phi(p^{\frac{\alpha(\alpha-1)}{2}})) \ge \frac{1}{2^k} q_d^k(n).$$

This completes the proof of Theorem 2.

References

- [1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Chicago, 1993.
- [2] Mark Farris and Patrick Mitchell, Bounding the Smarandache function, Smarandache Notions Journal **13** (2002), 37-42.
- [3] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.