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§1. Introduction

We consider finite connected graphs. Surfaces are orientable 2-dimensional compact manifolds
without boundaries. Embeddings of a graph considered are always assumed to be orientable
2-cell embeddings. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is
a homeomorphism ¢: G — S such that ¢(G) on S has exactly k intersections in ¢(E(G)) for
an integer k. If k = 0, i.e., there are no intersections between in ¢(F(G)), or in another words,
each connected component of S — ¢(G) is homeomorphic to an open disc, then G has an 2-cell
embedding on S. If G can be embedded on surfaces S, and S; with genus r and ¢ respectively,
then it is shown in [1] that for any k with r < k < t, G has an embedding on S;. Naturally, the
genus of a graph is defined to be the minimum genus of a surface on which the graph can be
embedded. Given a graph, how many distinct embeddings does it have on each surface? This is
the genus distribution problem, first investigated by Gross and Furst [4]. As determining the
genus of a graph is NP-complete [15], it appears more difficult and significant to determine the
genus distribution of a graph.
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There have been results on genus distribution for some particular types of graphs (see [3],
[5], [8], [9], [11]-[17], among others). In [6], Liu discovered the joint trees of a graph which
provide a substantial foundation for us to solve the genus distribution of a graph. For a given
embedding G, of a graph G, one can find the surface, embedding surface or associate surface,
which G, embeds on by applying the associated joint tree. In fact, genus distribution of G is
that of the set of all of its embedding surfaces. This paper first study genus distributions of
some sets of surfaces and then investigate the genus distribution of a generic graph by using
the surface sorting method developed in [16].

Preliminaries will be briefed in the next section. In Section 3, surfaces Q; will be intro-
duced. We shall investigate the genus distribution of surface sets Q? and le- for1 <5< 24, and
derive the related recursive formulas. In Section 4, a recursion formula of the genus distribution
for a cubic graph is given. In the last section, we show that the genus distribution of a general
graph can be transformed into genus distribution of some cubic graphs by using a technique we

develop in this paper.

§2. Preliminaries

For a graph G, a rotation at a vertex v is a cyclic permutation of edges incident with v. A
rotation system of G is obtained by giving each vertex of G a rotation. Let p, denote the valence
of vertex v which is the number of edges incident with v. The number of rotations systems of G

is I (pv—1)!. Edmonds found that there is a bijection between the rotations systems of a
veV(G)
graph and its embeddings [2]. Youngs provided the first proof published [18]. Thus, the number

of embeddings of G'is  [] (py, —1)!. Let ¢;(G) denote the number of embeddings of G with
veV(G)
the genus ¢ (i > 0). Then, the genus distribution of G is the sequence go(G), 91(G), 92(G), - - .

The genus polynomial of G is fg(z) = Y g:(G)2".
i>0

Given a spanning tree T of G, the joint trees of G are obtained by splitting each non-tree
edge e into two semi-edges e and e~. Given a rotation system o of G, G, T, and 73% denote the
associated embedding, joint tree and embedding surface which G, embedded on respectively.
There is a bijection btween embeddings and joint trees of G such that G, corresponds to TU.
Given a joint tree T, a sub-joint tree Tl of Tisa graph consisting of 77 and semi-edges incident
with vertices of T} where Ty is a tree and V(T1) C V(T). A sub-joint tree Ty of T is called
mazximal if there is not a tree Ty such that V(T1) C V(Tz) C V(T).

A linear sequence S = abc- - -z is a sequence of letters satisfying with a relation a < b <
¢ < -+ < z. Given two linear sequences S1 and Ss, the difference sequence S1/52 is obtained
by deleting letters of S5 in S7. Since a surface is obtained by identifying a letter with its inverse
letter on a special polygon along the direction, a surface is regarded as that polygon such that
a and a~ occur only once for each a € S in this sense.

Let S be the collection of surfaces. Let v(S) be the genus of a surface S. In order to
determine v(S), an equivalence is defined by Opl, Op2 and Op3 on S as follows:

Op 1. AB ~ (Ae)(e” B) where e ¢ AB;



Genus Distribution for a Graph 101

Op 2. AejesBese] ~ AeBe™ = Ae” Be where e ¢ AB;
Op 3. Aee” B ~ AB where AB # ()

where AB is a surface.
Thus, S is equivalent to one, and only one of the canonical forms of surfaces agpa, and
[1 arbra, b, which are the sphere and orientable surfaces of genus i(i > 1).
k=1
Lemma 2.1 ([6]) Let A and B be surfaces. If a,b ¢ B, and if A ~ Baba~b~, then y(A) =

~v(B)+1.

Lemma 2.2 ([7]) Let A,B,C,D and E be linear sequences and let ABCDE be a surface. If
a,b¢ ABCDE, then AaBbCa~ Db~ E ~ ADCBEaba~b~.

Lemma 2.3 ([13],[16]) Let A, B,C and D be linear sequences and let ABCD be a surface. If
aZzbtc#a #b” #c¢ andif a,b,c ¢ ABCD, then each of the following holds.

(i) aABa~CD ~ aBAa~CD ~ aABa~ DC.
(i) AaBa~bCb~cDc™ ~ aBa~ AbCb~cDc™ ~ aBa~bCb~ AcDc™.
(i) AaBa~bCb~cDc™ ~ BaAa~bCb~cDc¢™ ~ CaAa~bBb~cDc¢™ ~ DaAa"bBb~cCc™.

For a set of surfaces M, let g;(M) denote the number of surfaces with the genus ¢ in

M. Then, the genus distribution of M is the sequence go(M), g1 (M), g2(M),---. The genus
polynomial is far(x) = > gi(M)zt.
i>0

83. Genus Distribution for Q}

Let a,b,¢,d,a,b~,c¢™,d” be distinct letters and let Ag, By, C, Do be linear sequences. Then,

surface sets Q;? are defined as follows for 7 =1,2,3,---,24:
Q% = {A,BxCD}} Q% = {A,.CDyaBra™} Q’g ={AyBrCaDra™}
ij = {A;BraCDra~} Q’g = {AyDraBpCa} Q’g = {A;D,CBy}
Q% = {B,.CDraAra™} Q% = {BiDyCaAra™} Q% = {ArLByDrC}
QY = {AxDrCaBra™} Q% = {AxBiDpaCa™} Q% = {AxDyBraCa™}
Qts = {AxCBy.Dy} Qty = {ArCByaDya~} Qfs = {AxC Dy By}
Q% = {AxCaByDya™} QY. = {AxDyBC} Q% = {CDraAra bBib~}

Qlfg = {BkaaAka_be_} QIQCO = {BkCaAka_kab_} ngl = {AkaaBka_be_}

QIQCQ = {AkCaBka*kab*} Q12€3 = {AkBkaCafkabf} Q]2€4 = {AkaBka*be*chc*}
where £ = 0 and 1, A € {dA(),A()d}, (Bl,Dl) S {(Bod_,Do),(Bo,d_Do)} and a,a”,b,b™,
c,c”,d,d” ¢ ABCD. Let fao () denote the genus polynomial of QY. If AYAY Do By B3C3C1 D,
= (), then fQ? (z) = 1. Otherwise, suppose that fQ? (z) are given for 1 < j < 24. Then,

Theorem 3.1 Let g;;(n) be the number of surfaces with genus i in Q7}. Each of the following
holds.
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9i2(0) + 9i5 (0) + 91, (0) + 945 (0), if j =1

iz (0) + Gizs (0) + g(i—1), (0) + g(i-1),5(0), if j =2

iz (0) + 9i55(0) + 9(i-1), (0) + g(i-1),,(0), if j =3

9i4(0) + 9irs (0) + g(i—1) (0) + g(i-1),(0), if j =4

Gi5(0) + i (0) + g(i—1)6(0) + g(i—1),5(0), if j =5

20is(0) + 2g;,(0), if 7 =6

2g(i_1)15 (0) +29(;—1),,(0), if j =7 and 16
49(i—1),(0), if j =8

29i,(0) + 29i,,(0), if j =9

9i10(0) + 9i15(0) + 9(i-1)6(0) + g(i—1),(0), if j =10
2Giy, (0) + 2g4,,(0), if j =11
9i; (1) = ¢ 2g4,,(0) + 2g;,,(0), if j =12
29i5(0) + 294, (0), if j =13
Gi14(0) + Ging (0) + g(i—1)4(0) + g(i-1),5(0), if j =14

9i(0) + gi1,(0) + gi,5 (0) + gi,4(0), if 5 =15

9i=(0) + 915 (0) + 9i16 (0) + 9i1-(0), if j =17

29(i—-1y,(0) +29(;—1),,(0), if j =18

49(i—1)10 (0), if j =19

29(i-1)5(0) + 2g(i-1),,(0), if j = 20

iz (0) + 9i54 (0) + g(i—1),, (0) + g(i—1),,(0), if j =21
9(i-1)2(0) + 9(i-1)5(0) + g(i-1)10(0) + g(i—1),4(0), if j =22
Gizs(0) + Gins (0) + g(i—1),, (0) + g(i—1),,(0), if j = 23
29(i—1)2, (0) 4 29(i—1),, (0), if j =24

Proof We shall prove the equation for g;,(1), and the proofs for others are similar. Let
U, = {AoddeocBo} U; = {dAoDocBodi}
Us = {AOdDQCBOdi} Uy = {dAodiDocBo}

By the definition of Q}, we have Q} = {U1,Ua, Us, Us}. By the definition of g;,

9is (1) = gi(U1) + gi(U2) + gi(Us) + gi(Ua).
By Op3,

AoddiD()CBO ~ A()D()OB(), and dAoD()CBodi = AoDocBodid ~ A()D()OB().

It follows that
9i(U1) = 9i(U2) = g5 (0). (8)
By Lemma 2.3 (i) and Op2, we have

AogdDoCBod™ = DoCBod™ Agd ~ BoDoCd™ Agd ~ BoDyCaAga™
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and

dA()d_ D()OB() = B()D()CdAod_ ~ B()D()CCLA()CL_.

So

9i(Us) = 9i(Us) = gis (0)- (9)

Combining (1) and (2), we have

Gis (1) = 2gi, (0) + 29 (O)

§84. Embedding Surfaces of a Cubic Graph

Given a cubic graph G with n non-tree edges y; (1 <1 < n), suppose that T is a spanning tree
such that T contains the longest path of G and that T is an associated joint tree. Let X;, Y], Z;
and Fj be linear sequences for 1 <1 < n such that X;UY; =y, Z1UF =y, , X; # Y, and
Zy # .

RECORD RULE: Choose a vertex u incident with two semi-edges as a starting vertex and
travel T along with tree edges of T. In order to write down surfaces, we shall consider three

cases below.

Case 1: If v is incident with two semi-edges ys and y;. Suppose that the linear sequence is

R when one arrives v. Then, write down RX,y,Ys going away from v.

Case 2: If v is incident with one semi-edge ys. Suppose that R; is the linear sequence
when one arrives v in the first time. Then the sequence is R; X; when one leaves v in the first
time. Suppose that Ry is the linear sequence when one arrives v in the second time. Then the

sequence is RoY; when one leaves v in the second time.

Case 3: If v is not incident with any semi-edge. Suppose that Ry, R and R3 are, respectively,
the linear sequences when one leaves v in the first time, the second time and the third time.
Then, the sequences are (R2/R1)R1(R3/R2) and Rs when one leaves v in the third time.

Here, 1 < s,t <n and s # t. If v is incident with a semi-edge y; , then replace X, with Z,
and replace Y with Fj.

Lemma 4.1 There is a bijection between embedding surfaces of a cubic graph and surfaces

obtained by the record rule.

Proof Let T be a spanning tree such that Tisa joint tree of G above. Suppose that o, is
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a rotation of v and that Ry, Ry and R3 are given above.

(Ys, ye, er), if Xy = ys or Fy =y

and v is incident with ys, y; and e,;
(yt,ys,er), ifYy =ys or Zg =y,

and v is incident with ys, y: and e,;
(ys, €1, €2), if Xy =y, or Fy =y,
B and v is incident with ys, e, and eg;
" (e1,Ys,€2), if Vs =ys or Z; =y

and v is incident with ys, e, and eg;
(e1,e2,€3), if the linear sequence is Rj

and v is incident with e,, e, and e,;

(e2,e1,e3), if the linear sequence is (R2/R1)R1(R3/R2)

and v is incident with e, e, and e,

where e,, e, and e, are tree-edges for 1 < p,q,r < 2n—3 and e, # e, # e, for p # ¢ # r. Hence
the conclusion holds. (]

By the definitions for X;, Y}, Z; and Fj, we have the following observation:

Observation 4.2 A surface set H(© of G has properties below.

(1) Either X;, V; € H® or X, V; ¢ HO);

(2) Either Z;, F; € H® or Z;, F;, ¢ H),

(3) If for some I with 1 < I < n, X;,Y;,Z;,F; € HO, then H® has one of the follow-

ing forms X;AQY; B0 7,0 F, DO y;A0 x; B0 7,00 [, DO X; A0y, BO) [, 7, DO or

YA X; BO F,C©) 7, D) These forms are regarded to have no difference through this paper.
If either X; € H®, 7, ¢ HO or X; ¢ H®, 7, € HO| then replace X;, Y}, Z; and F

according to the definition of X;,Y;, Z; and Fj.

RECURSION RULE: Given a surface set H = {X;AQY;BOZ,COFD®} where
A BO) ) and DO are linear sequences.

Step 1. Let A4g = A®, By = B, ¢ = C® and Dy = DIV, Q] is obtained for 2 < j < 5.
Then Hj(-l) is obtained by replacing a,a™ and le with aq,a; and Hj(-l) respectively.

Step 2. Given a surface set H](f)DB j,, for a positive integer k and 2 < j1, j2, j3, -, jk < 5,
without loss of generality, suppose that H;f)ﬁjsjk = {X,AWY, B z.C*) F,D*)} where

A®) B C®) and D® are linear sequences for certain s (1 < s < n). Let 4y = A®),

By = B® ¢ = C® and D, = D). le is obtained for 2 < j < 5. Then gD

(k1) J1,92:985 Tk sJ
+1 -
Hj1,j2 3J35 03Ik J respectively.

is

obtained by replacing a,a™ and Q]l with ag41,a,; and
(m)

Some surface sets Hjl,j2 e i

2 for a positive integer m, 2 < j1,72,73,  * ,Jjm < D and 1 < I < n. It is easy to compute

fypem ().

J1,32:33: »dm

which contain a;,a; ,¥,y; can be obtained by using step
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By Theorem 3.7,
(r)

_ o ggrt1) (pr(r+1)
gi( J1,J2,33, :jr) - l( J1,J2,93, ;ij) + 91( j1,j27j37'”7jm3)
+1 +1
G 5 ) F G ), (1)
ifogrgm_la2§jlaj27j37”' 7j’r S o.

Fig.1: G and Tvo

Example 4.3 The graph Gy is given in Fig.1. A joint tree TO is obtained by splitting non-tree
edges y; (1 <1 < 6). Travel To by regarded vy as a starting point. By using record rule we
obtain surface sets

{ X1y Y121 22 Z3ys F3Y6YsYaZ5 Zayg FaF5 X4 X5 X6 FoF1}
and
(X192 Y121 Z5Y6YsYa Zs Zayg FaFs X4 X5 X6FoF1 Z3ysF3}.

By replacing Zo, F, Z3, F3, X and Y according the definition 16 surface sets U, (1 < r < 16)
are listed below.

U = {X1y2Y121y5 Y5 y3yeYs YaZs Zayg FaFs X4 Xs5F1}
Us = {X1y2Y1Z1y5 y3 y3YsYaZs Zayg FaFs X4 X5y F1 }
Us = {X1y2Y121y5 y3ys Y6 YsYaZs Zayg FaFs X4 X5F1}
Us = {X1y2Y1 21y, y3ys Yo YaZ5 Zayg FaF5 XaX5ysF1}
Us = {X1y2Y121y5 y3ye Y5 YaZs Zayg FuFs X4 X5y, F1}
Us = {X1y2Y1Z1y5 y3YsYaZ5 Zayg FuF5 XaXsysys F1}
Ur = {X1y2Y1Z1y3y5 Y6 Y5 YaZs Zayg FaFs X4 X5y, F1}
Us = {X1y2Y1Z1y3ys YsYaZ5 Zayg FaFs X4 Xsyeys F1}
Ug = {X1y2Y1Z1y5 y6 Y5 YaZ5 Zayg FaFs X4 X5 F1ys ys}
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Uro = {X1y2Y1Z1y5 YsYaZ5 Zayg FaFs XaXsys F1yz ys}
Un = {X192Y1 2195 y6YsYaZs Zayg FaFs X4 X5 Frysys }
Ui = {X1y2Y1Z1y5 YsYaZs Zays FaFs X4 Xsys F1ysys }
Urs = {X12Y1 Z1y6YsYaZs Zayg FuFs X4 Xsy; Frys ys}
Ury = {X192Y1Z1Y5Ya Z5 Zayg FaFs X4 X5yeys Fiys ys}
Urs = {X192Y1 Z1y6Ys Y Zs Zayg FaFs XaX5y5 Fiysys }
Uie = {X1y2Y121Y5Y1Z5 Zays FaFs X4 X5y6y5 Fiysys }-

The genus distribution of U,. can be obtained by using the recursion rule. Since the method
is similar, we shall calculate the genus distribution of U; and leave the calculation of genus
distribution for others to readers.

U, is reduced to {X1y2Y1Z1ys y6YsYaZs5 Zays FaFs X4 X5F} by Op2. Let HO® = G,
Ao = o, Co = yyyeYsYaZs Zayg FuFsX4Xs and By = Dy = . Then HY = H{Y =
{y2ys y6YsYaZs Zayg FaFs XaXs} and H{" = HSY = {ysa1y; yoYsYaZ5 Zays FaF5 X4 Xsa7 }.

HY is reduced to {yYsYaZsZsyg FiF5X4X5} by Op2. Let Ag = XsyeYs, By = Zs,
00 = yg and Dy = F5. Then Hy) = {X5y6Y},y6_F5a2Z5a2_} HYY) = {X5y6Y5Z5y6_a2F5a2_}
H) = {X596Y525a296 Fyaz } and HY) = {X5y6Y5F5a2Z5Z/6 az}. H{Y) = {Xsa1 yoary; vsYs
Y Fsa2Zsa; }, H4,3 = {Xsa] y201y5 Y6 Y5 Z5yg azlsay }, H4,4 = {Xsa; y2a1Y5 y6Ys Z5a2ys Fs
ay } and Hfg = {Xsa] y201y5 y6Ys Fsa2Z5yg a5 } by letting Ay = Xsay yaa1y5 y6Ys, Bo = Zs,
Co =vyg and Dy = Fs.

Slmﬂaﬂ}’v 2 2) > = {Ysazay aBZ/ﬁ a3 |3 H2 2 3= = {Y6¥s a2a3a2 as } H2 2 1 = {Y6ys azazay az }
(3
and H2 2) 5 = Y60y a3Yg 203 }. H2 3.2 — = {Y6¥s a2a2 } H2 ,3,3 = {Y6Ys a2asa; az }, H2,§,4 =
- 3 _ _
{ysasys azay az } and H2(,3,5 = {ysay azyg azaz }. H2,4,2 = {yea2yg a5 }, HQ(,AZ,B = {ysa2ys aza,
_ 3 - 3 — - 3 - 3
az }, H§,£74 = {ysazazyg ay az } and H2(,42,5 = {ysay azazys az }. H2(75),2 = {ysa2ys as }, H§5)3 =
o 3 - 3 - — 3 _
{Z/6a2a3216 ag ag 1, H2(,5),4 = {y6a3a2y6 Qg a3 } and H§5)5 = {y6y6 Qg a3a203 } HAE,Q),Z = {a; y2as
- “aausas)y. H®) . = f47 - = “asl. g® s - = - —
Y2 Y6205 azyg az }, 423 = {a1 y2a1y5 yeys azasas agz }, 4,24 {a1 y2a1y5 yeys asazas az }
3 _ - 3 _ - 3 _ _
and Hzi,2)75 = {aj y2a1y; Ysay azys azagz }. Hi??z = {ay Y2015 Y6Ys 205 }, Hzi,?l:a = {aj Y201y,
_ _ 3 _ _ _ _ _ 3 _ _ _ _ _
Y6Ys azasas az }, Hzi732,4 = {aj y2a19; Yeasys azay ag } and Hzi732,5 = {ai y2a195 Y6 a5 asyg azag }.
_ _ _ 3 _ - - - 3 _ _
Hi i 2= {al y2alyg Y6a2Yg Qg b Hi i 3= {Ch Y2a1Yy y6a2y6 azay g b HMAL = {al y2alyg Yea3a2
Yg Ay ag } and H4 45 = = {ay 2/2@1212 Y6y a3a2yg az t. Hy 5) o = {ay yaaryy yeaz yg ag }, Hy 5) 3=
3) (3)
{ay Y2015 ysazasyg ay az }, H4 54 — = {a] y2a1y; Ysaszazyg as az } and H4 5,5 = {ay y2019; Yo
Yo Gy 30203 }.

By using (1),

fu, (x) = 4 + 322 + 2822,
Thus,

fao(x) = 64 + 512 + 44822,
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85. Genus Distribution for a Graph

Theorem 5.1 Given a graph, the genus distribution of G is determined by using the genus

distribution of some cubic graphs.

Proof Given a finite graph Gy, suppose that u is adjacent to k + 1 distinct vertices vg, v1,
vg, -+, v of Gy with k > 3. Actually, the supposition always holds by subdividing some edges
of G.

A distribution decomposition of a graph is defined below: add a vertex ug of valence 3 such
that us is adjacent to u, vg and vs for each s with 1 < s < k and then obtain a graph G by
deleting the edges uvg and uwvs.

Choose the spanning trees Ts of G4 such that uv,, uus and ugv, are tree edges for 0 < s < k.
Consider a joint tree T of G. Let fs* be the maximal joint tree of Ty such that v, € V(Ty)
and vy ¢ V(TF) for t # s and 0 < s,t < k.

Let v, be the starting vertex of fs* for 0 < s < k. Suppose that A is the set of all sequences
by travelling T and that Qs is the embedding surface set of G,. Then

Qo = {AvAr AryAry -+ A |Ar, € A 1 <y < kyrp # 1g for p# g}
and for 1 <s <k
QS = {AOAsArl ArgArg T ATk_17A0A’r‘1 AT‘QAT‘g T Ark_1A5|Arp S ATpa
1<rp,<krp#s1<pg<k—1, and r, # rq for p # q}.

Let fq.(x) denote the genus distribution of Q5. It is obvious that

1 k
fou(z) =5 > fo.(x).

Thus,

1 k
feul@) =5 > fa(@).
s=1

Since G has finite vertices, the genus distribution of Gy can be transformed into those of

some cubic graphs in homeomorphism by using the distribution decomposition. [

Next we give a simple application of Theorem 5.1.
Example 5.2 The graph Wj is shown in Fig.2. In order to calculate its genus distribution, we
use the distribution decomposition and then we obtain three graph G, for 1 < s < 3 (Fig.2).

It is obvious that G2 are isomorphic to Mébius ladder M Ls and G are isomorphic to Ringel
ladder RLy for s =1 and 3. Since (see [8], [15])

favrs(z) =40z + 242>

and since (see [9], [15])
frL, (%) = 2+ 38z + 2422,
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Il
rO| =
[

fwa () fa. (@)
s=1
1
= 5[4033 + 2422 + 2(2 + 38 + 242?)]
= 24582+ 3622
Vo U1 Vo V1 () V1 (%) V1
e U2 U3
u u
u u
V3 (%) V3 (%) U3 (%) U3 (%)
W4 Gl Gz GB

Fig.2: W, and G
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