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Abstract In this paper we analyze and study the Smarandache idempotents (S-idempotents) in the
ring Z, and in the group ring Z,G of a finite group G over the finite ring Z,,. We have shown the
existance of Smarandache idempotents (S-idempotents) in the ring Z, when n = 2™p (or 3p), where

p is a prime > 2 (or p a prime > 3). Also we have shown the existance of Smarandache idempotents

(S-idempotents) in the group ring Z>G and Z2S, where n = 2™p (p a prime of the form 2™¢ + 1).

§1. Introduction

This paper has 4 sections. In section 1, we just give the basic definition of S-idempotents in
rings. In section 2, we prove the existence of S-idempotents in the ring Z,, where n = 2"p,m €
N and p is an odd prime. We also prove the existence of S-idempotents for the ring Z,, where
n is of the form n = 3p, p is a prime greater than 3. In section 3, we prove the existence of
S-idempotents in group rings Z>G of cyclic group G over Z where order of G is n, n = 2™p (p
a prime of the form 2™¢ + 1). We also prove the existence of S-idempotents for the group ring
73S, where n = 2™p (p a prime of the form 2™¢ 4 1). In the final section, we propose some
interesting number theoretic problems based on our study.

Here we just recollect the definition of Smarandache idempotents (S-idempotent) and some
basic results to make this paper a self contained one.

Definition 1.1[5]. Let R be a ring. An element x € R 0 is said to be a Smarandache
idempotent (S-idempotent) of R if x* = x and there exist a € R x,0 such that

i. a“ =x

. ra=x oOor axr =a.

Example 1.1. Let Z;0={0,1,2,...,9} be the ring of integers modulo 10. Here
62 = 6(mod10), 4% = 6(mod10)

and
6 -4 = 4(mod10).
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So 6 is a S-idempotent in Zig.
Example 1.2. Take Z15 ={0,1,2,...,11} the ring of integers modulo 12. Here

4% = 4(mod12), 8% =4(mod12)

and
4 -8 = 8(mod12).

So 4 is a S-idempotent in Zi,.
Example 1.3. In Z3 = {0,1,2,...,29} the ring of integers modulo 30, 25 is a S-
idempotent. As
25% = 25(mod30), 5% = 25(mod30)

and
25 -5 = 5(mod30).

So 25 is a S-idempotent in Zs3.
Theorem 1.1 [5]. Let R be a ring. If x € R is a S-idempotent then it is an idempotent
in R.

Proof. From the very definition of S-idempotents.

8§2. S-idempotents in the finite ring 7,

In this section, we find conditions for Z,, to have S-idempotents and prove that when n is
of the form 2™p, p a prime {2 or n = 3p (p a prime {3) has S-idempotents. We also explicitly
find all the S-idempotents.

Theorem 2.1. Z, ={0,1,2,...,p — 1}, the prime field of characteristic p, where p is a
prime has no non-trivial S-idempotents.

Proof.  Straightforward, as every S-idempotents are idempotents and Z, has no non-
trivial idempotents.

Theorem 2.2: The ring Zs,, where p is an odd prime has S-idempotents.

Proof. Here p is an odd prime, so p must be of the form 2m + 1 i.e p = 2m + 1. Take

r=p+1 and a=p-—1.

Here
pPP=02m+1)? = 4m® +4m+1
= 2m(2m+1)+2m+1
= 2pm+p
= p(mod2p).
So

p? = p(mod2p).
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Again
2= (p+1)? = p*>+ 1(mod2p)
= p+ 1(mod2p).
Therefore
2=z
Also
a’® = (p—1)> = p+ 1(mod2p),
therefore
a’> =z
And
za = (p+1)(p-1)
- -1
= p— 1(mod2p)
therefore
Ta = a.

So x = p+ 1 is a S-idempotent in Zy,,.
Example 2.1. Take Zg = Z2.3 = {0,1,2,3,4,5} the ring of integers modulo 6. Then
r=341=41is a S-idempotent. As

22 = 4% = 4(mod6),

take a = 2, then a? = 2? = 4(mod6).

Therefore
a? =z,
and
za =4-2 = 2(mod6)
ie

ra = a.
Theorem 2.3. The ring Zy2p,, p a prime > 2 and is of the form 4m + 1 or 4m + 3 has
(at least) two S-idempotents.
Proof. Here p is of the form 4m + 1 or 4m + 3.
If p=4m + 1, then p? = p(mod22p). As
p? = (4m+1)?
= 16m*+8m + 1
= 4dm@dm+1)+4m+1
= dpm+p
= p(mod2?p),
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therefore

p? = p(mod2?p).
Now, take x =3p+ 1 and a = p — 1 then
2=0Bp+1)? = 9P’+6p+1

= 9p+ 6p + 1(mod2?p)
= 3p+ 1(mod2%p)

therefore
=z
And
xza = @Bp+1)(p-1)
= 3p°-3p+p—1
= p—1(mod2?%p)
therefore

ra = a.

So x is an S-idempotent.

Similarly, we can prove that y = p, (here take a = 3p) is another S-idempotent. These are
the only two S-idempotents in Zs2, when p = 4m + 1. If p = 4m + 3, then p? = 3p(mod2?p).

As above, we can show that x = p+1,(a = 3p — 1) and y = 3p, (a = p) are the two
S-idempotents. So we are getting a nice pattern here for S-idempotents in Zsz,:

LIf p=4m+1,then 2 =3p+1, (a=p—1)and y =p, (a = 3p) are the two
S-idempotents.

ILIf p=4m+3, xt=p+1, (a=3p—1)and y = 3p, (a = p) are the two S-idempotents.

Example 2.2. Take Zy25 ={0,1,...,19}, here5=4-14+1.Soxz=3-5+1=16, (a =
5—1=4) is an S-idempotent. As 16% = 16(mod20), 4% = 16(mod20) and 16 - 4 = 4(mod20).
Also y = 5,(a = 3-5 = 15) is another S-idempotent. As 52 = 5(mod20), 15% = 5(mod20) and
515 = 15(mod20).

Example 2.3. In the ring Zs2.7 = {0,1,...,27}, here 7=4-14+3,2=7+1=8,(a = 3-
7 —1 = 20) is an S-idempotent. As 82 = 8(mod28),20% = 8(mod28) and 8 - 20 = 20(mod28).
Alsoy = 3-7 = 21,(a = 7) is another S-idempotent. As 212 = 21(mod28),7? = 21(mod28)
and 21 -7 = 7(mod28).

Theorem 2.4. The ring Zys,, p a prime > 2 has (at least) two S-idempotents of ¢(23)
types (where ¢p(n) is the number of integer less than n and relatively prime to n).

Proof. As pis prime > 2. So p is one of the 8n + 1,8m + 3,8m + 5,8m + 7. Now we
will get the following two S-idempotents for each ¢(22) = 4 types of prime p.

LIfp=8m+1,thenz=7p+1,(a=p—1) and y = p, (a = 7p) are S-idempotents.

I If p=8m+ 3, then x =5p+1,(a = 3p—1) and y = 3p, (a = 5p) are S-idempotents.

I If p=8m+5, then x =3p+1,(a = 5p — 1) and y = 5p, (a = 3p) are S-idempotents.

IV.Ifp=8m+7,thenx =p+1,(a=7p—1) and y = 7p, (a = p) are S-idempotents.
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Example 2.4. In the ring Zos.3 = {0,1,...,23}, here 3 =8-04+3. Soz =5-3+
1 =16,(a = 3-3 —1 = 8) is an S-idempotent. As 16° = 16(mod24),8? = 16(mod24) and
16 - 8 = 8(mod24). Also y = 3-3 = 9,(a = 5-3 = 15) is another S-idempotent. As 9% =
9(mod24),15% = 9(mod24) and 9 - 15 = 15(mod24).

Example 2.5. Take Z3.13 = Z104 = {0,1,...,103}, here 13 =8-14+5. Sox = 3-13+1 =
40,(a = 5-13 — 1 = 64) is an S-idempotent. As 40? = 40(mod104),64* = 40(mod104) and
40 - 64 = 64(mod104). Also y = 5-13 = 65,(a = 3 - 13 = 39) is another S-idempotent. As
652 = 65(mod104), 39% = 65(mod104) and 65 - 39 = 39(mod104).

Theorem 2.5. The ring Zsy, p a prime > 2 has (at least) two S-idempotents for each
of (2%) types of prime p.

Proof. As above, we can list the S-idempotents for all $(2*) = 8 types of prime p.

LIfp=16m+1, then z =15p+1,(a=p—1) and y = p, (a = 15p) are S-idempotents.

II If p=16m+3, then = 13p+1, (a = 3p—1) and y = 3p, (a = 13p) are S-idempotents.

III. If p = 16m+5, then x = 11p+1, (a = 5p—1) and y = 5p, (a = 11p) are S-idempotents.

IV.Ifp=16m+7, then z =9+ 1,(a =Tp—1) and y = 7p, (a = 9p) are S-idempotents.

V.If p=16m+9, then z =7p+ 1, (a

VL If p=16m~+11, then = 5p+1, (a

VII. If p = 16m + 13, then =z = 3p
S-idempotents.

VIIL. If p = 16m+15, then x = p+1, (a = 15p—1) and y = 15p, (a = p) are S-idempotents.

Example 2.6. In the ring Zy1.17 = Zo7o = {0,1,...,271}, here 17 = 16 - 1 + 1. So
r=15-17+1 =256, (a = 17 — 1 = 16) is an S-idempotent. As 256 = 256(mod272),16* =
256(mod272) and 256 - 16 = 16(mod272). Also y = 17,(a = 15 - 17 = 255) is another S-
idempotent. As 172 = 17(mod272), 255% = 17(mod272) and 17 - 255 = 255(mod272).

We can generalize the above result as followings:

Theorem 2.6. The ring Zany, p a prime > 2 has (at least) two S-idempotents for each
of ¢(2™) types of prime p.

Proof. Here p is one of the ¢(2") form:

9p — 1) and y = 9p, (a = 7p) are S-idempotents.

11p—1) and y = 11p, (a = 5p) are S-idempotents.
+1,(a = 13p—1) and y = 13p, (a = 13p) are

2"m1 +1, 2"mo+3, ... 2"m¢(2n) + (2” — 1).

We can find the two S-idempotents for each p as above. We are showing here for the prime
p=2"my + 1 only. If
p=2"mi +1,
then
xr=02"-1)p+1, (a=p-1)

and

are S-idempotents.

Similarly we can find S-idempotents for each of the ¢(2™) form of prime p.

Theorem 2.7. The ring Zs,, p a prime > 3 has (at least) two S-idempotents of ¢(3)
types.
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Proof. Here p can be one of the form 3m + 1 or 3m + 2. We can apply the Theorem 2.6
for Zs, also.

LIfp=3m+1,thenz=2p+1,(a=p—1) and y = p, (a = 2p) are S-idempotents.

ILIfp=3m+2,thenz=p+1,(a=2p—1) and y = 2p, (a = p) are S-idempotents.

Example 2.7. 1In thering Z55 = Z15 = {0,1,...,14}, here 5=3-14+2. Sox =5+1=
6,(a =2-5—1=09)is an S-idempotent. As 62 = 6(mod15),9? = 6(mod15) and 6 - 9
9(mod15). Also y = 2-5 = 10, (a = 5) is another S-idempotent. As 10> = 10(mod15),5% =
10(mod15) and 10 - 5 = 5(mod15).

Remark: The above result is not true for the ring Zs2,, p prime > 3. As, for p =

9m + 5;x =4p+ 1, (a = 5p — 1) should be an S-idempotent from the above result. But we see
it is not the case in general; for take the ring Z32.03 = Zog7 = {0,1,...,206}. Here p =9-2+5.
Now take

r=4-234+41=93 and a=5-23—1=114.

But
22 # 2(mod207).

So z is not even an idempotent. So 2 = 4p + 1 is not an S-idempotent of Zs2),.

§3. S-idempotents in the group rings Z>G

Here we prove the existance of Smarandache idempotents for the group rings Zs2, of the
cyclic group G of order 2"p where p is a prime of the form 2™t + 1.

Example 3.2. Let G = {g/g°? = 1} be the cyclic group of order 22 - 13. Consider the
group ring Z>G of the group G over Z,. Take

3721+g4+98+912+...+g44+g48

and
a=1+¢*+g"+...+ 92 +¢*
then
2=z, and d®>=z
also

Sox=1+g*+¢8+g2+...+¢* + ¢*® is a S-idempotent in Z,G.
Theorem 3.1. Let ZoG be the group ring of the finite cyclic group G of order 2%p, where
p is a prime of the form 22m + 1, then the group ring ZoG has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 22p, where p of the form 22m + 1.
Take
r=1+g"+¢+... 44"

and
a=14+¢*+g"+... +¢5



Vol. 1 Smarandache Idempotents in finite ring Z,, 185

then
2?2 = (1+gtdg®t... +glomy?
14+g*+¢8+...+¢'m
= xZ.
And
@ = (1+¢+g'+...+¢*)?
= 14+ + @)+ + (")
= Z.
Also
zoa = (1+¢*+ 4. .+ +¢*+¢*+...+ ¢

= 14 4+ +... 4g'om
= .
Sox=1+g*+¢%+...+¢'%" is a S-idempotent in Z,G.

Example 3.3. Let G = {g/g'3¢ = 1} be the cyclic group of order 23 - 17. Consider the
group ring ZsG of the group G over Z,.

Take
r=14+¢4+¢g""+... +4¢"
and
a=1+g*"+g*+.. . +¢%
then
2 = (14+g*+g' ... 1 g%
144 g g2
x.
And
@ = (+g ++...+g%?
= 1+ + (") +.. + (6"
= .
Also
z-a = (1+¢8+¢"%+.. . +¢®A+g*+6%+... +¢%

= 1+¢%+¢"+.. +¢"®

- xZ.

Sox=1+¢84+¢"%+... +¢'2 is a S-idempotent in Z>G.
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Theorem 3.2. Let ZoG be the group ring of a finite cyclic group G of order 23p, where
p is a prime of the form 23m + 1, then the group ring ZoG has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 23p, where p of the form 23m + 1.

Take
t=1+¢"+¢g'"0+.. . + 450D
and
a=1+g*"+¢8+... 40
then
22 = (1+¢8+g%+.. 445002
= 14+¢84+¢"%+.. 440D
= .
And
a2 — (1+g4+98+...+g4(”_1))2
= 1+ (" +(¢")? +.. + (")
= I
Also
zoa = (1+¢8+g"0+. .+ N)A4+¢"+¢5+... +4*PD)

= 1+68+¢"%+... +4507Y

- xZ.

Sox=1+4+¢%+¢"%+ ...+ ¢%*"V is a S-idempotent in Z>G.
We can generalize the above two results as followings:
Theorem 3.3. Let ZoG be the group ring of a finite cyclic group G of order 2"p, where
p is a prime of the form 2™t + 1, then the group ring ZoG has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 2"p, where p of the form 2"t + 1.

Take
r=1+¢" +¢> %4+ . 4420CD
and
= 1 + 92”71 +927L71'2 + . + 92"71'(11—1)
then
2 = (1+92n _"_92”.2_’_.“_’_92"(1)—1)>2
= 1497 +9¥ 24 g7 0D
=
And
o2 = (1+92"—1 +92"—1-2+.“+g2"‘1-(p71))2

n—1 n—1, n—1_ _
= 1+(* P+ HD+...+(¢¥ )

= X.
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Also

r-a = (l—i-gzn+gzn'2+...+g2n(p_1))(1+92n71+g2n71'2+...+gzn71'(p_1))
14 g 4 gD

= .

Sox=14+¢>4+¢>"2+...+¢* @V is a S-idempotent in Z,G.
Corollary 3.1. Let Z5S,, be the group ring of a symmetric group S, where n = 2"p, and
p s a prime of the form 2"t + 1, then the group ring Z3S,, has non-trivial S-idempotents.
Proof. Here 755, is a group ring where n = 2™p, and p of the form 2"t +1. Clearly Z5.5,
contains a finite cyclic group of order 2"p. Then by the Theorem 3.3, Z5S5,, has a non-trivial
S-idempotent.

84. Conclusions

Here we have mainly proved the existance of S-idempotents in certain types of group rings.
But it is interesting to enumerate the number of S-idempotents for the group rings ZoG and
Z5Sy, in the Theorem 3.3 and Corollary 3.1. We feel that ZoG can have only one S-idempotent
but we are not in a position to give a proof for it. Also, the problem of finding S-idempotents
in Z,S,, (and Z,G) where (p,n) =1 (and (p,|G|) =1) or (p,n) =d #1 (and (p,|G|) =d # 1)
are still interesting number theoretic problems.
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