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Abstract: A graph G = (V, E) is called to be Smarandachely uniform k-graph for an integer

k ≥ 1 if there exists M1, M2, · · · , Mk ⊂ V (G) such that fMi
(u) = {d(u, v) : v ∈ Mi} for

∀u ∈ V (G)−Mi is independent of the choice of u ∈ V (G)−Mi and integer i, 1 ≤ i ≤ k. Each

such set Mi, 1 ≤ i ≤ k is called a CDPU set [6, 7]. Particularly, for k = 1, a Smarandachely

uniform 1-graph is abbreviated to a complementary distance pattern uniform graph, i.e.,

CDPU graphs. This paper studies independent CDPU graphs.
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§1. Introduction

For all terminology and notation in graph theory, not defined specifically in this paper, we refer

the reader to Harary [4]. Unless mentioned otherwise, all the graphs considered in this paper

are simple, self-loop-free and finite.

Let G = (V, E) represent the structure of a chemical molecule. Often, a topological index

(TI), derived as an invariant of G, is used to represent a chemical property of the molecule.

There are a number of TIs based on distance concepts in graphs [5] and some of them could

be designed using distance patterns of vertices in a graph. There are strong indications in the

literature cited above that the notion of CDPU sets in G could be used to design a class of TIs

that represent certain stereochemical properties of the molecule.

Definition 1.1([6]) Let G = (V, E) be a (p, q) graph and M be any non-empty subset of V (G).

Each vertex u in G is associated with the set fM (u) = {d(u, v) : v ∈M}, where d(u, v) denotes

the usual distance between u and v in G, called the M -distance pattern of u.
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A graph G = (V, E) is called to be Smarandachely uniform k-graph for an integer k ≥ 1 if

there exists M1, M2, · · · , Mk ⊂ V (G) such that fMi
(u) = {d(u, v) : v ∈Mi} for ∀u ∈ V (G)−Mi

is independent of the choice of u ∈ V (G) − Mi and integer i, 1 ≤ i ≤ k. Each such set

Mi, 1 ≤ i ≤ k is called a CDPU set. Particularly, for k = 1, a Smarandachely uniform 1-graph

is abbreviated to a complementary distance pattern uniform graph, i.e., CDPU graphs. The

least cardinality of the CDPU set is called the CDPU number denoted by σ(G).

The following are some of the results used in this paper.

Theorem 1.2([7]) Every connected graph has a CDPU set.

Definition 1.3([7]) The least cardinality of CDPU set in G is called the CDPU number of G,

denoted σ(G).

Remark 1.4([7]) Let G be a connected graph of order p and let (e1, e2, . . . , ek) be the non

decreasing sequence of eccentricities of its vertices. Let M consists of the vertices with eccen-

tricities e1, e2, . . . , ek−1 and let |V −M | = p −m where |M | = m. Then σ(G) � m, since all

the vertices in V −M have fM (v) = {1, 2, . . . , ek−1}.

Theorem 1.5([7]) A graph G has σ(G) = 1 if and only if G has at least one vertex of full

degree.

Corollary 1.6([7]) For any positive integer n, σ(G + Km) = 1.

Theorem 1.7([7]) For any integer n, σ(Pn) = n− 2.

Theorem 1.8([7]) For all integers a1 ≥ a2 ≥ · · · ≥ an ≥ 2, σ(Ka1,a2,...,an
) = n.

Theorem 1.9([7]) σ(Cn) = n− 2, if n is odd and

σ(Cn) = n/2, if n ≥ 8 is even. Also σ(C4) = σ(C6) = 2.

Theorem 1.10([7]) If σ(G1) = k1 and σ(G2) = k2, then σ(G1 + G2) = min(k1, k2).

Theorem 1.11([7]) Let T be a CDPU tree. Then σ(T ) = 1 if and only if T is isomorphic to

P2, P3 or K1,n.

Theorem 1.12([7]) The central subgraph of a maximal outerplanar graph has CDPU number

1 or 3.

Remark 1.13([7]) For a graph G which is not self centered, maxfM (v) = diam(G)− 1.

Theorem 1.14([7]) The shadow graph of a complete graph Kn has exactly two σ(Kn) disjoint

CDPU sets.

The following were the problems identified by B. D. Acharya [6, 7].

Problem 1.15 Characterize graphs G in which every minimal CDPU-set is independent.

Problem 1.16 What is the maximum cardinality of a minimal CDPU set in G.
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Problem 1.17 Determine whether every graph has an independent CDPU-set.

Problem 1.18 Characterize minimal CDPU-set.

Fig.1 following depicts an independent CDPU graph.

v1 v2

v3v4

{1}

{1}

Fig.1: An independent CDPU graph with M = {v2, v4}

§2. Main Results

Definition 2.1 A graph G is called an Independent CDPU graph if there exists an independent

CDPU set for G.

Following two observations are immediate.

Observations 2.2 Complete graphs are independent CDPU.

Observations 2.3 Star graph K1,n is an Independent CDPU graph.

Proposition 2.4 Cn with n even is an Independent CDPU graph.

Proof Let Cn be a cycle on n vertices and V (Cn) = {v1, v2, . . . , vn}, where n is even.

Choose M as the set of alternate vertices on Cn, say, {v2, v4, . . . , vn}. Then,

fM (vi) = {1, 3, 5, . . . , m− 1} for i = 1, 3, . . . , n− 1, if Cn = 2m and m is even and

fM (vi) = {1, 3, 5, . . . , m}, for i = 1, 3, . . . , n − 1 if Cn = 2m and m odd. Therefore, fM (vi) is

identical depending on whether m is odd or even. Hence, the alternate vertices {v2, v4, . . . , vn}
forms a CDPU set M . Also all the vertices in M are non-adjacent. Hence Cn, n even is an

independent CDPU graph. �

Theorem 2.5 A cycle Cn is an independent CDPU graph if and only if n is even.

Proof Let Cn be a cycle on n vertices. Suppose n is even. Then from Proposition 2.4, Cn

is an independent CDPU graph.

Conversely, suppose that Cn is an independent CDPU graph. That is, there exist vertices

in M such that every pair of vertices are non adjacent. We have to prove that n is even.

Suppose n is odd. Then from Theorem 1.9, σ(Cn) = n − 2, which implies that |M | ≥ n − 2.
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But from n vertices, we cannot have n− 2 (or more) vertices which are non-adjacent. �

Theorem 2.6 A graph G which contains a full degree vertex is an independent CDPU.

Proof Let G be a graph which contains a full degree vertex v. Then, from Theorem 1.5,

G is CDPU with CDPU set M = {v}. Also M is independent. Therefore, G is an independent

CDPU. �

Remark 2.7 If the CDPU number of a graph G is 1, then clearly G is independent CDPU.

Theorem 2.8 A complete n-partite graph G is an independent CDPU graph for any n.

Proof Let G = Ka1,a2,...,an
be a complete n-partite graph. Then, V (G) can be partitioned

into n subsets V1, V2, . . . , Vn where |V1| = a1, |V2| = a2, . . . , |Vn| = an. Take all the vertices

from the partite set, say, Vi of Ka1,a2,...,an
to constitute the set M . Since each element of a

partite set is non-adjacent to the other vertices in it and is adjacent to all other partite sets,

we get, fM (u) = {1}, ∀u ∈ V (Ka1,a2,...,an
) −M . Hence, the complete n-partite graph G is an

independent CDPU graph for any n. �

Corollary 2.9 Complete n-partite graphs have n distinct independent CDPU sets.

Proof Let G = Ka1,a2,...,an
be a complete n-partite graph. Then, V (G) can be partitioned

into n subsets V1, V2, . . . , Vn where |V1| = a1, |V2| = a2, . . . , |Vn| = an. Take M1 as the vertices

corresponding to the partite set V1, M2 as the vertices corresponding to the partite set V2, . . . ,

Mi corresponds to the vertices of the partite set Vi, . . . , Mn corresponds to the vertices of the

partite set Vn. Then from Theorem 2.8, each Mi, 1 ≤ i ≤ n form a CDPU set. Hence there are

n distinct CDPU sets. �

Theorem 2.10 A path Pn is an independent CDPU graph if and only if n = 2, 3, 4, 5.

v1 v2

1

P2

v1 v2 v3 v1 v2 v3 v4

P3 P4

{1} {1} {1,2} {1,2}

v1 v2 v3 v4 v5

P5

{1,3} {1,3}

Fig.2: An independent CDPU paths

Proof Let Pn be a path on n vertices and V (Pn) = {v1, v2, . . . , vn}. When n = 2 and 3, P2

and P3 contains a vertex of full degree and hence from Theorem 2.6, P2 and P3 are independent
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CDPU. When n = 4, take M = {v1, v4}. Then fM (v2) = fM (v3) = {1, 2}, whence M is

independent CDPU. When n = 5, let V (G) = {v1, v2, . . . , v5} and choose M = {v1, v3, v5}.
Then, fM (v2) = fM (v4) = {1, 3}. Hence, P5 is an independent CDPU graph.

Conversely, suppose that Pn is an independent CDPU graph. That is, there exists a CDPU

set M such that no two of the vertices are adjacent. From n vertices, we can have at most
n
2 or n+1

2 vertices which are non adjacent. From Theorem 1.7, σ(Pn) = n − 2, n ≥ 3. When

n ≥ 6, we cannot choose a CDPU set M such that n− 2 vertices are non-adjacent. Hence Pn

is independent CDPU only for n = 2, 3, 4 and 5. �

0010 1010

0110 11100000 1000

0100 1100
0011 1011

11110111

0001 1001

1101

0101

{1,3}

{1,3} {1,3}

{1,3}

{1,3}

{1,3}

{1,3}

{1,3}

Q3

K2

Q3 ×K2

Fig.3 : Q4

Theorem 2.11 n-cube Qn is an independent CDPU graph with |M | = 2n−1.

Proof We have Qn = K2 × Qn−1 and has 2n vertices which may be labeled a1a2 . . . an,

where each ai is either 0 or 1. Also two points in Qn are adjacent if their binary representations

differ at exactly one place. Take M as the set of all vertices whose binary representation differ

at two places. Clearly the vertices in M are non adjacent and also maximal. We have to check

whether M is CDPU. For let M = {v1, v3, . . . , v2n−1}. Consider a vertex vi which does not

belong to M . Clearly vi is adjacent to a vertex vj in M . Hence 1 ∈ fM (vi). Then, since vj is in

M , vj is adjacent to a vertex vk not in M . Hence 2 does not belong to fM (vi). Since vk is not

an element of M and vk is adjacent to a vertex vl in M , 3 ∈ fM (vi). Proceeding in the same

manner, we get fM (vi) = {1, 3, . . . , n− 1}. Hence Qn is independent CDPU with |M | = 2n

2 . �

Theorem 2.12 Ladder Pn ×K2 is an independent CDPU graph if and only if n ≤ 4.

Proof First we have to prove that Pn ×K2 is an independent CDPU graph for n ≤ 4.

When n = 2, take M = {v2, v4}, so that fM (vi) = {1} for i = 1, 3.
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When n = 3, take M = {v1, v4}, so that fM (vi) = {1, 2}, for i = 2, 4, 6.

When n = 4, take M = {v1, v3, v5, v7}, so that fM (vi) = {1, 3} for i = 2, 4, 6, 8. Therefore,

Pn ×K2 is an independent CDPU graph for n ≤ 4.

1,3

v1 v2

v3v4

G1

1

1

v1 v2 v3

v4v5v6

{1,2}

{1,2}

{1,2}

{1,2}

v1

G2

v2 v3 v4 v5

v6v7v8

{1,3}
{1,3}

{1,3}

G3

Fig.4: Pn ×K2 for n ≤ 4

Conversely, suppose that Pn ×K2 is an independent CDPU graph. We have to prove that

n ≤ 4. If possible, suppose n = k ≥ 5. In Pn ×K2, since the number of vertices is even, and

the vertices in Pn × K2 forms a Hamiltonian cycle, then the only possibility of M to be an

independent CDPU set is to choose M as the set of all alternate vertices of the Hamiltonian

cycle. Clearly, in this case M is a maximal independent set. Denote M1 = {v1, v3, . . . , v2n−1}
and M2 = {v2, v4, . . . , v2n}. Consider M1 = {v2, v4, . . . , vi, . . . , v2n}.

Case 1 n is odd.

In this case, fM1(v1) = {1, 3, . . . , n}. Since n is odd we have two central vertices, say, vi

and vj in Pn×K2. Since vi and vj are of the same eccentricity and M1 is a maximal independent

set, vj does not belong to M1. Then, fM1(vj) = {1, 3, . . . , n+1
2 }.

Thus, fM1(v1) 	= fM1(vj). Hence M1 is not a CDPU.

Case 2 n is even.

In this case, fM1(v1) = {1, 3, . . . , n − 1}. Since n is even, there are four central vertices

vi, vj , vk, vl in Pn × K2. Clearly the graph induced by T = {vi, vj , vk, vl} is a cycle on four

vertices. Since M1 is maximal and consists of the alternate vertices of Pn ×Kn, vj , vl should

necessarily be outside M1. Thus, fM1(vj) = {1, 3, . . . , n
2 }.

Thus, fM1(v1) 	= fM1(vj). Hence M1 is not a CDPU.

Therefore Pn ×K2 is not independent CDPU for n ≥ 5. Hence the theorem. �

Theorem 2.13 If G1 and G2 are independent CDPU graphs, then G1 + G2 is also an inde-

pendent CDPU graph.
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Proof Since G1 and G2 are independent CDPU graphs, there exist M1 ⊂ V (G1) and

M2 ⊂ V (G2) such that no two vertices in M1 (and in M2) are adjacent. Now, in G1 +G2, every

vertex of G1 is adjacent to every vertices of G2. Then clearly, independent CDPU set M1 of

G1 (or M2 of G2) is an independent CDPU set for G1 + G2. Hence the theorem. �

Remark 2.14 If G1 and G2 are independent CDPU graphs, then the cartesian product G1×G2

need not have an independent CDPU set. But Gi × Gi is independent CDPU for i = 1, 2 as

illustrated in Fig.5.

G1

G2

{1} {1}

{1}

G1 ×G2

G2 ×G2

{1}

{1}

{1,2}

{1,2}

{1,2} {1,2}
{1,2}

{1,2}

G1 ×G1

Fig.5

Definition 2.15 An independent set that is not a proper subset of any independent set of G is

called maximal independent set of G. The number of vertices in the largest independent set of

G is called the independence number of G and is denoted by β(G).

§3. Independence CDPU Number

The least cardinality of the independent cdpu set in G is called the independent CDPU number

of G, denoted by σi(G). In general, for an independent CDPU graph, σi(G) ≤ β(G), where

β(G) is the independence number of G.

Theorem 3.1 If G is an independent CDPU graph with n vertices, then r(G) ≤ σi(G) ≤ �n
2 �,

where r(G) is the radius of G.

Proof We have, β(G) ≤ �n
2 � and hence σi(G) ≤ �n

2 �. Now we prove that r(G) ≤ σi(G).

Suppose r(G) = k. Then, there are vertices with eccentricities k, k + 1, k + 2, . . . , d, where d

is the diameter of G. Let v be the central vertex of G and e = uv. Since the central vertex

v of a graph on n(≥ 3) vertices cannot be a pendant vertex, there exists a vertex w which is

adjacent to v. Hence, w is of eccentricity k + 1. Also u is of eccentricity k + 1. By a similar
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argument there exists at least two vertices each of eccentricity k + 1, k + 2, . . . , d. Hence, the

CDPU set should necessarily consists of all vertices with eccentricity k, k + 1, k + 2, . . . , d− 1.

Thus, σ(G) ≥ 1 + {2 + 2 + . . . (d − 1 − k)times} ≥ k. Whence, σi(G) ≥ r(G). Therefore,

r(G) ≤ σi(G) ≤ �n
2 �. �

Theorem 3.2 A graph G has σi(G) = 1 if and only if G has at least one vertex of full degree.

Fig.6: A graph with σi(G) = 1

Proof Suppose that G has one vertex vi with full degree. Take M = {vi}. Then fM (u) =

{1}, for every u ∈ V −M . Also M is independent. Hence σi(G) = 1.

Conversely, suppose that G is a graph with σi(G) = 1. That is, there exists an independent

set M which contains only one vertex vi which is a CDPU set of G. Also, σi(G) = 1 implies,

vi is adjacent to all other vertices. Hence vi is a vertex with full degree. �

Corollary 3.3 The independent CDPU number of a complete graph is 1.

Corollary 3.4 If M is the maximal independent set of a graph G with |M | = 1, then G is an

independent CDPU.

Proof The result follows since M is a maximal independent set and |M | = 1, there is a

vertex v of full degree. �

Theorem 3.5 Peterson Graph is an independent CDPU graph with σi(G) = 4.

Proof Let G be a Peterson Graph with V (G) = {v1, v2, . . . , v10}. Let M be such that

M contains two non adjacent vertices from the outer cycle and two non-adjacent vertices from

the inner cycle. Let it be {v3, v5, v6, v7}. Clearly, M is a maximal independent set of G. Also

fM (vi) = {1, 2}, for every i = 1, 2, 4, 8, 9, 10. Thus, M is a CDPU set of G. Hence, G is an

independent CDPU graph with σi(G) ≤ 4. To prove that σi(G) = 4, it is enough to prove that

the deletion of any vertex from M does not form a CDPU set. For, let M1 = {v3, v5, v7}. Then,

fM (vi) = {1, 2}, for i = 1, 2, 4, 8, 9, 10 and fM (v6) = {2}. Hence M1 cannot be a CDPU set for

G. Thus σi(G) = 4. �
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v1

v2

v3v4

v5

v6

v7

v8
v9

v10

{1,2}

{1,2}
{1,2}

{1,2} {1,2}

Fig.7

Theorem 3.6 Shadow graphs of Kn are independent CDPU with |M | = n.

Proof Let v1, v2, . . . , vn be the vertices of Kn and v′1, v
′
2, . . . , v

′
n be the corresponding

shadow vertices. Clearly, M = {v′1, v′2, . . . , v′n} is a maximal independent set of S(Kn). Also,

from Theorem 1.14, M forms a CDPU set. Hence |M | = n. �

Definition 3.7 A set of points which covers all the lines of a graph G is called a point cover for

G. The smallest number of points in any point cover for G is called its point covering number

and is denoted by α0(G).

It is natural to rise the following question by definition:

Does there exist any connection between the point covering for a graph and independent

CDPU set?

Proposition 3.8 If α0(G) = 1, then σi(G) = 1

Proof Since α0(G) = 1, we have to cover every edges by a single vertex. This implies that

there exists a vertex of full degree. Hence from Theorem 3.2, σi(G) = 1. �

Remark 3.9 The converse of Proposition 3.8 need not be true. Note that in Figure 6, σi(G) = 1,

but α0(G) = 6.

Theorem 3.10 The central subgraph < C(G) > of a maximal outerplanr graph G is an

independent CDPU graph with σi(G) = 1, 2 or 3.

Proof Fig.8 depicts all the central subgraphs of maximal outerplanr graph [3]. Since

G1, G2, G3, G4, G5 have a full degree vertex, those graphs are independent CDPU and σi(Gj) =

1, for j = 1, 2, 3, 4, 5.

In G6, let M = {v1, v4}. Then, fM (vi) = {1, 2}, for every vi ∈ V − M . Since M is

independent, G6 is independent CDPU and σi(G6) = 2.
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In G7, let M = {v1, v3, v5}. Then, fM (vi) = {1, 2} for every vi ∈ V −M . Hence, G7 is

independent CDPU with σi(G7) = 3. �

G1 G2 G3 G4

G5 G6 G7

v1

v2 v1

v2

v3

v1
v2

v3v4

v1 v2 v3

v4v5

v1 v2 v3

v4v5v6

v1 v2 v3

v4

v5

v6

Fig.8: Central subgraphs of a maximal outerplanar graph

Theorem 3.11 The independent CDPU number of an even cycle Cn, n ≥ 8 is n
2 .

Proof From Proposition 2.4, the alternate vertices of the even cycle constitute the inde-

pendent CDPU set. As already proved, removal of any vertex from M does not give a cdpu

set. Hence, σi(Cn) = n
2 . �

Remark 3.12 σi(C6) = 2.

Theorem 3.13 For all integers a1 ≥ a2 ≥ · · · ≥ an ≥ 2, σi(Ka1,a2,...,an
) = min{a1, a2, . . . , an}.

Proof From Theorem 2.8 and Corollary 2.9, all the n partite sets form an independent

CDPU set. Hence the independent CDPU number is the minimum of all a′is. �

Theorem 3.14 If σi(G1) = k1 and σi(G2) = k2, then σi(G1 + G2) = min.{k1, k2}.

Proof From Theorem 2.13, either M1 or M2 is an independent cdpu set for G1 + G2. Also

σi(G1 + G2) is the minimum among M1 and M2. �

Theorem 3.15 If G1 and G2 are independent CDPU cycles with n, m(≥ 4) vertices respectively,

then G1 ×G2 is independent CDPU with |M | = mn
2 .

Proof Since G1 has n vertices and G2 has m vertices, then G1 × G2 has mn vertices.

Without loss of generality, assume that m > n. In the construction of G1 ×G2, G2 is drawn n

times and then the corresponding adjacency is given according as the adjacency in G1. Since

G2 is an independent CDPU cycle, from Theorem 3.11, σi(G2) = m
2 . Therefore in G1 × G2

there are mn
2 vertices in the CDPU set. �
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Remark 3.16 In Theorem 3.15, if any one of G1 or G2 is C3, then |M | = n, since σi(C3) = 1.

G1 G2 G3 G4

G5 G6 G7

v1

v2 v3

v4

v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

Fig.9: Graphs whose subdivision graphs are bipartite complementary

Theorem 3.17 The connected graphs, whose subdivision graphs are bipartite complementary

are independent CDPU.

Proof Fig.9 depicts the seven graphs whose subdivision graphs are bipartite self-complementary

[2]. In G4, M1 = {v1, v2} gives fM1(v3) = fM1(v4) = {1, 2}.
In G5, M2 = {v1, v4} gives fM2(v3) = fM2(v2) = {1}.
In G6, M3 = {v2, v3} gives fM3(v1) = fM3(v4) = {1}.
In G7, M4 = {v1} gives fM4(v2) = fM4(v3) = fM4(v4) = {1}. Hence M1, M2, M3, M4

are independent CDPU sets. Thus the connected graphs G4, G5, G6 and G7 are independent

CDPU. �

§4. Conclusion and Scope

As already stated in the introduction, the concept under study has important applications in

the field of Chemistry. The study is interesting due to its applications in Computer Networks

and Engineering, especially in Control System. In a closed loop control system, signal flow

graph representation is used for gain analysis. So in certain control systems specified by certain

characteristics, we can find out M , a set consisting of two vertices such that one vertex will be

the take off point and other vertex will be the summing point.

Following are some problems that are under investigation:

1. Characterize independent CDPU trees.

2. Characterize unicyclic graphs which are independent CDPU.

3. What is the independent CDPU number for a generalized Peterson graph.

4. What are those classes of graphs with r(G) = σi(G), where r(G) is the radius of G.
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