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The objectives of this article are to study the sum IS(d) and to find some upper 
din 

bounds for Smarandache's function. This sum is proved to satisfy the inequality 

IS(d) ~ n at most all the composite numbers, Using this inequality, some new 
din 

upper bounds for Smarandache's function are found. These bounds improve the well­

known inequality Sen) ~ n. 

1. Introduction 

The object that is researched is Smarandache's function. This function was 

introduced by Smarandache [1980] as follows: 

S: N* ~ N defined by Sen) = min{k EN: k! =~} ('tin EN *). (l) 

The following main properties are satisfied by S : 

(\;fa,b EN *) (a,b) = 1 => Sea ·b) = max{S(a), S(b)} . 

(\;fa EN *) Sea) ~ a and Sea) = a iif a is prim. 

(\;fp E N*, p prime)(\;fk E ]1/ *) S(pk) ~ p' k. 

(2) 

(3) 

(4) 

Smarandache's function has been researched for more than 20 years, and many 

properties have been found. Inequalities concerning the function S have a central 

place and many articles have been published [Smarandache, 1980], [Cojocaru, 1997], 

[Tabirca, 1997], [Tabirca, 1988]. Two important directions can be identified among 

these inequalities. First direction and the most important is represented by the 

inequalities concerning directly the function S such as upper and lower bounds. The 

second direction is given by the inequalities involving sums or products with the 

function S. 
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2. About the sum I Sed) 
din 

The aim of this section is to study the sum Is (d) . 
din 

Let SS(n) = IS(d) denote the above sum. Obviously, this sum satisfies 
dn 

SS(n) = IS(d). Table 1 presents the values of S(n) and SS(n) for n<50 [Ibstedt, 
j",dn 

1997]. From this table, it can be seen that the inequality SSe n) :s n + 2 holds for all 

n=l, 2, _._,50 and n;:o12. Moreover, if n is a prim number, then the inequality becomes 

equality SS(n) = n. 

Remarks 1. 

a) If n is a prime number, then SS(n) = S(1) + Sen) = n_ 

b) If n> 2 is a prim number, then 

SS (2 . n) = S (1) + S (2) + S (n ) + S (2 . n) = 2 + n + n = 2 . n + 2 , 

c) SS(n2) = S(l)+S(n)+S(n2) = n+2'n = 3'n:S n2 _ 

.-~---- -- . '--'._- _.-

X S SS n S SS n S SS n S SS n S SS 

0 0 11 11 11 21 7 17 31 31 31 41 41 41 

2 2 ') 12 4 16 22 11 24 "') 
;)- 8 24 42 7 36 

" " " 13 13 13 T"' ')" ')" 33 11 25 43 43 43 ;) ;) ;) -;) -;) -;) 

4 4 6 14 7 16 24 4 24 34 17 36 44 11 39 

5 5 5 15 5 13 25 10 15 35 7 19 45 6 25 

6 " 8 16 6 16 26 13 28 36 6 34 46 ')" 48 ;) -;) 

7 7 7 17 17 17 27 9 18 37 37 37 47 47 47 

8 4 10 18 6 20 28 7 27 38 19 40 48 6 36 

9 6 9 19 19 19 29 29 29 39 13 29 49 14 21 

10 5 12 20 5 21 30 5 28 40 5 30 50 10 "') 
;)-

Table 1. The values of n, S, Ss. 
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The inequality SS(n):::; n is proved to be true for the following particular values 

k", k-, k d6 k n=p ,L-P ,~-p an -p-

Lemma 1. If p> 2 is a prime number and k> 1, then the inequality SS (p k ) :::; /' holds. 

Proof 

The following inequality holds according to inequality (4) and the definition of Ss. 

k k k-(k+l) 
SS(pk) = IS(p'):::; Ip-j = p- .! .. 

1=1 1=1 -

The inequality 

I
k . k-(k+l) k 

P-l=P' <p ! -
i=1 

is proved to be true by analysing the following cases. 

• k = 2 ~ 3. p :::; p2 . 

• k=4 ~ 10. p :::; p 4 
. 

Inequalities (6-8) are true because p> 2. 

(5 ) 

(6) 

(7) 

(8) 

k-l(k - 1) k kIT. J 
• kA ~ P ~ p' P - ~ p-2~- = p' I j . The first and the last three terms 

1=0 

of this sum are kept and it is found 

( (
k - 1) (k - 1) (k - I)J pk ~ p. 2· 0 + 2· 1 + 2 \2 = p. (k2 - k + 2) . The inequality 

,k·(k+l) . k·(k+l) 
k- - k + 2 ~ holds because k>4, therefore l ~ p' ! is true. 

2 

Therefore, the inequality S(Pk ):::; pI.; holds. "" 

Remark 2. The inequality S(Pk):::; pk is still true for p=2 and k>3 because (8) holds 

for these values. Table 1 shows that the inequality is not true for p=2 and k=2,3. 

Lemma 2. If p>2 is a prime number and k> 1, then the inequality SS(2. pk) :::; 2. pk 

holds. 
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Proof 

The definition of 55 gives the following equation 

k k 

55(pk) = 5(2) + IS(pl) + IS(2 ·l)· 
1;1 1;1 

Applying the inequality 5(2'l) ~ p' i and (4), we have 

k k 

55(2· pk) ~ 2 + I p' i + I p' i = 24- p' k . (k + 1). 
1=1 1=1 

The inequality 

2 + p' k . (k 4- 1) ~ 2 . pk 

is proved to be true as before. 

• k= 2 ~ 2 + 6· p ~ 2 . p2 . 

• k=4 ~ 2720· P ~ 2. pJ. . 

• k=5 ~ 2 + 30· p':; 2. p5. 

(9) 

(10) 

(11 ) 

(12) 

(13) 

(14) 

(15) 

These above inequalities (11-15) are true because p> 2. 

k-I(k - 1\ 
• k>6 ~ pk 2 p. pk-I 2 p' 2k

-
1 = p' I. j. The first and the last fourth terms 

j;O 1 

of this sum are kept finding 

( (k - 1) (k - 1) (k - 1)\ ( k - 1\J 
pk 2 p' 2· 0 + 2· 1 + 2· 2 + 2· ~3 ) 2 

> p. (? . (k - 1) + ') . (k - 1) + ') .( k - 1)1 + ? . (k - 111 = 
- - 0 - 1 - \2 - 2 )) 

= p.(2.e -4.k+4) 2 2+ p·Ck2 +k) 

The last inequality holds because k>6, therefore 2 . pk 2 2 + P . k . (k + 1) is true. 

The inequality 55(2· pk) ~ 2· pk holds because (10) has been found to be true. 

Remark 3. Similarly, the inequality S5(3· pk) ~ 3· pi.: can be proved for all (p>3 and 

k21) or (P=2 and k23). 
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Lemma 3. If p> 3 is a prime· number and k:2: 1, then the inequality SS ( 6 . P k ) ::; 6 . p k 

holds. 

Proof 

The starting point is given by the following equation (16) 

k k k k 

SS (6 . pk ) = S (2) + S (3) + S ( 6) + L S(pi ) + L S (2 . pi ) + L S( 3 . pi) + L S ( 6 . pi) . 
i=! l=! l=! 

( 16) 

The inequalities S(pi), S(2· pi), S(3· pi), S( 6· pi)::; p' i hold for all i> 1 because 

p:2:5. Therefore, the inequality 

k k k k k 
SS(6·pk)::;8+ LP·i+ LP·i+ LP·i+ LP·i=8+4·LP·i (17) 

i=! l=! l=! i=! l=! 

holds. The inequality SSe 6· pk)::; 8 + 4· pk ::; 6· pk is found to be true by applying 

(5) in (17). 

The following propositions give the main properties of the function Ss. Let d(n) 

denote the number of divisors of n. 

Proposition 1. If a is natural numbers such that S(a):2:4, then the inequality 

S(a) :2: 2 . d( a) holds. 

Proof 

The proof is made directly as follows: 

S(a)= LS(d)= LS(d)+S(a):2: L2+S(a)=2.(d(a)-2)+S(a)= 
I.n;<dia 

= 2· deal + Sea) - 4:2: 2· d(a). 

Remark 4. The inequality S(a):2:4 is verified for all the numbers a:2:4 and a*6. 

Proposition 2. If a, b are two natural numbers such that (a,b)=I, then the inequality 

SSe a . b) ::; d( a)· SSe b) + d( b) . Sse a) holds. 

Proof 

This proof IS made by usmg (2) and the simple remark that 

a,b:2: O:=>maxfa,b}::; a + b. 
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The set of the divisors of ab is split into three sets as follows: 

{l*d!a o b = Md} = 
{1 *d a=Md} u{l *d I b=Md}u{ d1dzl a=!1dl *lAb=Mdz*lA( d 11 dz) =1} • (18) 

The following transfonnations hold according to (18). 

SS(a-b)= IS(d)= IS(d)+ IS(d)+ I IS(d]d2 )= 
{l.dia-b = !!d) (r-dl .. =!!d) {lod[b=!!d) (1.d1ia=!!d 1 ) (l.dZ!b=!!d

z
) 

=SS(a)+SS(b)+ I Imax{S(d]),S(dJ}:S: 
{1.d 1 ia=!!d 1 ) {l'dzlb=Md

z
} 

= SS(a) + SS(b) + I 

= ss ( a) + SS ( b ) + ss ( a ) - [d ( b) - 1] + SS ( b ) - [d ( a ) - 1 ] 

Therefore, the inequality SSe a- b) :s: d( a) -SSe b) + d( b) -Sse a) holds. 

Proposition 3. If a. b are two natural numbers such that S(a). S(b)?.4 and (a.b)=I, then 

the inequality SSe a- b) ::; SSe a) -SSe b) holds. 

Proof 

Proposition 1-2 are applied to prove this proposition as follows: 

Sea), S(b)?. 4 => S(a)?. 2 -d(a) and S(b)?. 2 . d(b) 

( a, b) = 1 => SS (a -b) :s: d ( a ) . SS ( b ) + d ( b ) -SS ( a ) . 

(19) 

(20) 

The proof is completed if the inequality d(a)-SS(b)+d(b)-SS(a):S:SS(a)-SS(b) is 

found to be true. This is given by the following equivalence 

d ( a) -SS ( b ) + d ( b ) -SS ( a) :s: SS ( a) -SS ( b ) ~ 

d(a)· d(b):S: [SS(a) - d(a)]- [SS(b) - deb)]. 

This last inequality holds according to (19). 

Therefore, the inequality SS (a . b) :s: SS (a) -SS (b) is true. 

Theorem 1. If n is a natural number such that n "* 8, 12, 20 then 

a) SS(n)=n+2 if(3pprime)n=2-p. 

b) SS (n) ::; n , otherwise. 
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Proof 

The proof of this theorem is made by using the induction on n. 

Equation (21) is true according to Remark l.a. Table 1 shows that Equation (22) 

holds for n<51 and n :;t 8, 12, 20. Let n>51 be a natural number. Let us suppose that 

Equation (9) is true for all the number k that satisfies k<n and k does not have the 

form k=2p, p prime. The follo\\ing cases are analysed: 

• n is prime ~ SS(n)=n, therefore Equation (9) holds. 

• n=2p, p> 2 prime ~ SS(n) =n-l-2, therefore Equation (21) holds. 

• (n = 2k and k>3) or (n = pk and k>l) ~ SS(n):5. n according to Lemma 1 

• n = 2· pk, p>2 prime number and k>l ~ SS(n):5. n according to Lemma 2. 

• n = 3· p\ (p>3 prime number and k>l) or (p=2 and k>2) ~ SS(n):5. n 

according to Remark 3. 

• n = 6· pk, p>3 prime number and k~l ~ SS(n):5. n according to Lemma 3. 

• Otherwise ~ Let n = p;l . p;= ..... p;, be the prime number decomposition of n 

with PI < P2 < ... < Ps· We prove that there is a decomposition of n=ab, (a,b)=l 

such that S(a), S(b)~4. Let us select a = p;' and b = p~l . p;' ..... P;~ll . It is not 

difficult to see that this decomposition satisfies the above conditions. The 

induction's hypotheses is applied for a,b<n and the inequalities SS(a)::{a and 

are obtained. Finally, Proposition .... 
.J gIves 

SS (n ) = SS (a . b) :5. SS ( b ) . SS ( a) :5. b . a = n . 

We can conclude that the inequality SS(n)s:n-2 holds for all the natural number n:;t12. 

Remark 5. The above analysis is necessary to be sure that the decomposition of n=ab, 

(a,b)=l, S(a), S(b)~4 exists. 

Theorem 1 has some interesting consequences that are presented in the following. 

These establish new upper bounds for Smarandache's function. 

Consequence 1. If n > 1 is a natural number, then the follO\ving inequality 

S(n):5.n+4-2·d(n) . (23) 

holds. 
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Proof 

The proof of this inequality is'made by using Theorem 1. 

Obviously, (23) is true for n=p or n=2p,p prime number. 

Let n =1= 8, 12, 20 be a natural number. 

We have the following transformations: 

n? SS(n) = IS(d) = Sen) + IS(d)? 
Ln~d,n 

?S(n) + 2 .!~ = I,n!d =1= I,nAdin}= S(n)+ 2 ·(d(n)- 2) = Sen) + 2 ·d(n)-4 

Inequality (23) is also satisfied for n=8, 12, 20. 

Therefore, the inequality S(n)::; n + 4 - 2· den) holds. 

Consequence 2. If n > 1 is a natural number, then the following inequality holds 

S(n)::; n + 4 - min{p; p is prime andp[n}· den) . 

Proof 

(24) 

This proof is made similarly to the proof of the previous consequence by using the 

following strong inequality S(d)? min {pi p is prime andpin}. 

3. Final Remark 

Inequalities (23 - 24) gIve some generalisations of the well - known inequality 

Sen) ::; n. More important is the fact that these inequalities reflect. When n has many 

divisors, the value of n + 4 - min{pj p is prime and pin}· den) is small, therefore the 

value of S(n) is small as well according to Inequality (24). In spite of fact that 

Inequalities (23 - 24) reflect this situation, we could not say that the upper bounds are 

the lowest possible. Nevertheless, they offer a better upper bound than the inequality 

S(n)::;n. 
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